INFLUÊNCIA DO NEMATÓIDE MELOIDOGYNE EXIGUA NA ABSORÇÃO DE NUTRIENTES EM PLANTAS JOVENS DE CAFEEIRO *

— Resultados preliminares —

M. C. M. MACEDO **

H. P. HAAG ***

L. G. E. LORDELLO ****

RESUMO

No sentido de avaliar a influência do nematóide M. exigua sobre o desenvolvimento e composição química do cafeeiro (Coffea arabica L., cultivar Mundo Novo, 376/4 — IAC), mudas de um ano foram cultivadas em vasos contendo solo — Terra Roxa Estruturada (argilosa) e Podzolico Vermelho Amarelo, variação Laras (arenoso). Foram estabelecidos três níveis de nutrientes: inferior — o próprio solo; normal — adubação usual; superior — adubação em excesso. Metade das plantas foram inoculadas com M. exigua. Decorridos 420 dias de ensaio as plantas foram coletadas, mensuradas e analisadas para N, P, K, Ca, Mg, B, Cu, Fe, Mn e Zn. Não se observou efeito da presença do nematóide sobre o desenvolvimento do cafeeiro quando adubado. Na absorção dos nutrientes houve um forte efeito depressivo na quantidade de Zn e B para o solo arenoso e somente em Zn para o argiloso quando infestado com o nematóide.

Plantas infestadas provenientes do solo arenoso apresentaram quantidades mais elevadas de Mn.

INTRODUÇÃO

As primeiras referências acerca da existência de nematóides parasitando o cafeeiro, segundo PETENUCCI (1971) e LORDELLO (1968) devem-se aos trabalhos de JOBERT em 1878 e GOELDI em 1887.

[•] Entregue para publicação em 18/4/74.

^{**} Ex-bolsista do CNPq junto ao Dep. Química, ESALQ-USP.

^{***} Departamento de Química, ESALQ-USP.

^{****} Departamento de Zoologia, ESALQ-USP.

Goeldi, descobriu que a «moléstia que dizimava os cafezais da então Província do Rio de Janeiro» se devia ao parasitismo por nematóides da espécie Meloidogyne exigua. Goeldi (1887), citado por LORDELLO & ZAMITH (1958) afirmava que «replantar cafeeiros mesmo sãos, nos lugares deixados pelos pés mortos, é como encher de água um cesto», o que atesta a problemática causada pelo parasita nas culturas do cafeeiro.

Só recentemente, o problema passou a ser considerado, devido aos prejuízos causados aos cafeicultores.

CURI et alii (1970) constataram a existência do **M. exigua** em 115 municípios do Estado de São Paulo, suspeitando fortemente da existência de três formas de diferentes patogenicidades do verme. A importância do ataque por **M. exigua** foi avaliada pela primeira vez no Estado de São Paulo por ARRUDA (1957).

Ainda, ARRUDA (1957, 1960, 1960a) e ARRUDA & REIS (1962) conduziram ensaios a fim de determinar a importância econômica do parasitismo por nematóides no cafeeiro, e de um modo geral concluiram que:

- 1) plantas atacadas após um ano, apresentaram uma diferença no crescimento em altura em cerca de 30% em confronto com plantas sadias;
- 2) redução drástica na produção de café cereja, em plantas atacadas, na ordem de 50%.

Recentemente, MACEDO & HAAG (1973)*, analisando o 3.º e o 4.º par de folhas de cafeeiros da var. «Bourbon Vermelho» provenientes de uma plantação com 45 anos de idade situada em um Latossol roxo atacados e sadios, constataram os seguintes valores expressos em porcentagem e ou ppm na matéria seca:

	sadio	atacado		sadio	atacado
N%	3,23	2,43	Fe(ppm)	220	193
P%	0,22	0,23	Cu(ppm)	31	35
K%	2,03	2,95	Zn(ppm)	30	22
Ca%	1,50	1,13	Mn(ppm)	56	91
${ m Mg}\%$	0,18	0,38			

O presente trabalho tem por finalidade aquilatar quantitativamente a influência de **M. exigua** no desenvolvimento e na composição química do cafeeiro, cultivado em solo arenoso e argiloso.

^{*} Dados não publicados.

MATERIAL E MÉTODOS

Solos

O solo argiloso foi representado pela Terra Roxa Estruturada (TRE) e o arenoso pelo Podzolico Vermelho Amarelo, variação Laras (PVA).

As características químicas foram determinadas segundo CATANI et alii (1955) e acham-se abaixo expostas:

	$ ext{TRE}$	PVA
	(argiloso)	(arenoso)
Fósforo * (e.mg $PO_4^{-3}/100 g$)	1,88	0,22
Potássio (e.mg $K^+/100 g$)	0,39	0,10
Cálcio (e.mg $Ca^{+2}/100 g$)	6,53	0,96
Magnésio (e.mg $Mg^{+2}/100 g$)	3,27	0,83
Alumínio (e.mg $Al^{+3}/100 g$)	0,09	0,30
Mat. Org. (%)	2,06	0,56
pH	6,30	5,80

Instalação dos ensaios

Os dois experimentos foram instalados em vasos de 20 1 de capacidade, previamente impermeabilizados internamente com Neutrol-45 e recebendo na parte externa uma camada de tinta aluminizada.

Com base nos padrões de fertilidade dos solos estabeleceu-se os níveis dos nutrientes: inferior — o próprio solo; normal — adubação usual; superior — adubação em excesso. Os valores dos níveis em g de adubos foram:

Momentes	nível	normal	nível s	uperior
Elementos	PVA	TRE	PVA	TRE
Nitrogenio	6,20	-	18,60	36,00
Fósforo	0,42		0,85	0,85
Potássio	0,78	****************	1,56	1,56

Os adubos empregados foram sulfato de amônio (21% N), superfosfato simples (20% P_2O_5) e cloreto de potássio (60% K_2O).

^{*} soluvel em H_2SO_4 0,05 N

Uma vez os adubos misturados aos solos, procedeu-se ao transplante de três mudas de café (Coffea arabica L., cultivar Mundo Novo, 376/4 — IAC) por vaso correspondente (tratamento). Os ensaios foram conduzidos a pleno sol.

Procedeu-se a inoculação do nematóide **Meloidogyne exigua**, através de raízes de **Coffea arabica** L. var. Bourbon comprovadamente infestadas pelo nematóide, da Estação Experimental de Ribeirão Preto, São Paulo. O material foi picado, passado em liquidificador e porções de 350 ml da massa inoculadora, foram incorporadas ao solo dos vasos a uma profundidade de 5-8 cm próximo às raízes. A superfície dos vasos inoculados foi protegida dos raios solares durante vinte dias, após a inoculação.

A inoculação foi repetida aos 150 e 180 dias após o tratamento inicial.

Decorridos 420 dias da instalação dos ensaios, procedeu-se a coleta das plantas e a parte aérea das mesmas foi analisada para N, P, K, Ca, Mg, B, Cu, Fe, Mn e Zn de acordo com os métodos citados em SAR-RUGE (1972).

RESULTADOS E DISCUSSÃO

Crescimento

O crescimento do cafeeiro em função dos tratamentos foi avaliado através do aumento no peso da matéria seca e os dados acham-se expostos nos Quadros 1 e 2.

Tratando-se de um ensaio preliminar, cujo número de repetições dos tratamentos foi reduzido, os dados não foram submetidos a análise estatística.

Contudo, observa-se, que o fornecimento de nutrientes a ambos os solos não afetou o crescimento. Digno de nota é a diferença observada nos tratamentos **OOO** em ambos os solos, confrontando os tratamentos «inoculado» e «sadio».

ARRUDA (1960), levou ao campo, mudas de cafeeiro infestadas e sadias. Todas as plantas receberam no plantio, matéria orgânica, superfosfato e cloreto de potássio. O nitrogênio foi aplicado em cobertura em data posterior. Um ano após, foi constatada uma diferença significativa le 31,4% na altura entre plantas sadias e infestadas.

Extração de nutrientes

Os Quadros 3 e 4 apresentam as quantidades de nutrientes encontrados na parte aérea das plantas em função do tipo de solo, adubação, presença ou não de nematóides.

As plantas cultivadas no solo arenoso, PVA — Laras, apresentaram ligeira superioridade, em média, na quantidade de N, P e K quando não infestadas.

Examinando-se os tratamentos **OOO**, observa-se que as plantas infestadas apresentam quantidades menores de N, P e K, sugerindo que os nematóides alteraram de algum modo os mecanismos de absorção, translocação e acumulação de nutriente na planta. Resultados semelhantes foram constatados por JENKINS & MALEK (1966), quando inocularam **Scutellonema brachyurum** em **Vicia villosa**. Chama a atenção, a diferença na quantidade de Zn e B contida em plantas sadias e inoculadas. Plantas sadias continham, em média, quatro vezes mais Zn e B do que as infestadas. Este fato deverá ser motivo de pesquisas futuras.

Em condições de campo quando o cafezal é formado, segundo PES-SENDA et alii (1968), os primeiros sintomas aparecem normalmente do primeiro para o segundo ano após o plantio. As plantas infestadas, segundo os mesmos autores, mostram um quadro geral de fraqueza, menor desenvolvimento vegetativo, menor resistência à seca, sintomas foliares de deficiência de N e de Zn e finalmente menor produção.

Os dados referentes às plantas cultivadas no solo TRE, mostram a mesma tendência em relação ao tratamento «inoculado» e «sadio». Por se tratar de um solo de fertilidade mais elevada do que o arenoso, as quantidades de nutrientes absorvidas foram maiores.

Quadro I: Peso da matéria seca (g) das diversas partes da planta em função dos tratamentos no solo arenoso (PVA-Laras). Valor médio de três plantas.

	ratamento	Folhas Novas	Folhas Velhas	Caule	Raízes	Total
1	ОРК	27,1	14,3	31,0	60,8	133,2
N	N ₁ PK	30,6	19,2	40,0	72,7	162,5
0	ЙОК	23,2	20,7	46,3	71,8	162,0
С	NP ₁ K	17,9	24,8	41,2	62,7	146,6
U	NPO	24,4	22,5	52,6	72,0	171,5
_	NPK ₁	23,8	20,2	54,3	84,2	182,5
A D	NPK	23,2	17,9	42,1	69,9	153,2
<u>o</u>	000	17,0	14,2	44,1	76,7	152,0
	ОРК	18,9	17,6	33,3	78,7	148,5
S	N ₁ PK	16,0	24,0	40,8	42,8	123,6
3	ŃОК	13,1	13,9	50,5	43,2	120,7
Α	NP ₁ K	18,0	17,6	55,3	53,4	144,3
D	NPO	9,0	11,3	21,7	19,2	61,2
i	NPK ₁	17,0	18,2	65,4	40,3	140,9
0	NPK	23,7	20,8	56,5	74,9	176,0
	000	29,6	19,1	42,4	89,3	180,4
	C.V.%					22

Т	ratamento	Folhas Novas	Folhas Velhas	Caule	Raízes	Total
N	оок	24,4	21,6	46,3	81,3	173,6
	OPO	25,8	14,4	29,0	88,2	157,4
Ŭ	NOO	35,4	19,8	41,8	70,6	167,6
L A D	000	28,3	20,4	36,9	82,0	167,7
) -	ООК	23,7	35,8	62,8	103,0	225,3
À	OPO	24,0	33,6	55,3	109,0	221,9
3	NOO	27,6	42,0	68,5	57,0	195,1
)	900	26,4	46,6	75,3	108,0	256,5
	C.V.%					9

Quadro II: Peso da matéria seca (g) das diversas partes da planta em função dos tratamentos no solo argiloso (TRE). Valor médio de três plantas.

Concentração de nutrientes nas folhas

As concentrações de nutrientes expressas em porcentagem ou em ppm na matéria seca das folhas, em função do tipo de solo, tratamento presença ou não de nematóide acham-se expostas nos Quadros 5, 6, 7 e 8. Para o solo arenoso, PVA — Laras, verifica-se que as concentrações dos macronutrientes N, P e K foram mais elevadas toda vez em que foram fornecidos através da adubação, sendo contudo as porcentagens mais elevadas nas folhas de plantas sadias. No que se refere a Ca e Mg, praticamente não houve efeito da adubação e presença ou não dos nematóides sobre a concentração destes dois macronutrientes nas folhas.

MALAVOLTA & COURY (1967) apresentam os seguintes níveis de «deficiente» e «normal» para interpretação de análise foliar do cafeeiro:

	deficiente	normal
N(%)	2,0 — $2,9$	3,0 - 3,9
P	0,05 - 0,10	0,15 - 0,20
K	0,5 — 1,9	2,0 — 2,5
Ca	0,3 — 0,8	1,0
$\mathbf{M}\mathbf{g}$	0,05 - 0,20	0,25
B(ppm)	20 — 60	70 — 100
Cu	5 — 8	10 — 15
${f Fe}$	de la companya de la	100 - 200
$\mathbf{M}\mathbf{n}$	5 — 40	50 - 200
$\mathbf{Z}\mathbf{n}$	3 — 9	10

Extração dos nutrientes (mg) pela parte aérea das plantas em função dos tratamentos no solo arenoso (PVA-Laras) Valor médio de três plantas. Quadro III:

OPK IORZ,10 IOZZ,10 I	•	Tratamentoe .				S	TRIEN	TES				
1.082,10 108,77 837,60 569,56 209,54 5,08 1,78 0,45 8,94 1.506,68 87,76 948,20 564,20 177,64 6,28 1,86 0,49 67,14 1.339,13 83,03 997,85 477,62 157,78 10,43 1,69 0,37 44,93 1.339,13 83,03 997,85 484,92 167,24 7,62 1,63 0,24 50,75 1.297,36 128,02 960,20 586,62 189,08 14,77 1,47 0,23 48,19 1.308,16 90,47 990,73 521,17 170,74 9,82 1,73 0,23 48,19 968,24 90,37 566,66 189,08 1,47 1,47 0,23 44,53 968,24 90,35 564,66 189,08 1,47 0,23 44,53 1.281,14 83,94 903,57 564,66 189,38 8,60 1,40 0,23 16,28 1.284,70 50,86 </th <th></th> <th></th> <th>z</th> <th>ط</th> <th>¥</th> <th>బ</th> <th>Mg</th> <th>Zn</th> <th>8</th> <th>3</th> <th>Mn</th> <th>Fe</th>			z	ط	¥	బ	Mg	Zn	8	3	Mn	Fe
NPK 1.506,68 87,76 948,20 564,20 177,64 6,28 1,86 0,49 67,14 NOK 1.339,13 83.03 997,88 477,62 157,78 10,43 1,69 0,37 44,93 NP1 1.331,89 72,94 823,45 484,92 167,34 7,62 1,63 0,24 50,75 NPO 1.297,35 128,02 964,45 727,06 233,67 10,24 1,99 0,21 63,90 NPK 1.308,16 90,47 960,20 586,62 189,08 1,477 1,47 0,25 64,18 OOO 968,24 60,47 554,65 189,08 1,477 1,47 0,25 64,18 OVO 968,14 90,37 554,65 188,38 8,60 1,47 0,23 44,53 Media 1.281,14 83,94 903,57 554,65 188,38 8,60 1,47 0,22 16,28 Ny PK 1.335,68 91,23		OPK	1.082,10	108,77	837,60	99'699	209,54	2,08	1,78	0,45	8,94	25,79
NOK 1.339,13 83.03 997,85 477,62 157,78 10,43 1,69 0,37 44,93 NP ₁ K 1.331,89 72,94 823,45 484,92 167,34 7,62 1,63 0,24 60,75 NPO 1.297,35 128,02 964,45 727,06 233,67 10,24 1,99 0,21 63,90 NPK 1.297,35 128,02 966,20 586,62 189,08 14,77 1,47 0,25 48,19 OOO 968,24 69,86 776,15 506,08 201,30 46,61 1,27 0,23 65,18 Média 1.281,14 83,94 903,57 554,65 186,38 8,60 1,47 1,47 0,23 66,18 OVO 968,24 69,86 776,15 560,08 201,30 1,46 0,27 16,28 16,28 16,28 16,28 16,28 16,28 16,28 16,28 16,28 16,28 16,28 16,28 16,27 16,28 <td>7</td> <td>N, PK</td> <td>1.506,68</td> <td>87,76</td> <td>948,20</td> <td>564,20</td> <td>177,64</td> <td>6,28</td> <td>1,86</td> <td>0,49</td> <td>67,14</td> <td>16,17</td>	7	N, PK	1.506,68	87,76	948,20	564,20	177,64	6,28	1,86	0,49	67,14	16,17
NP ₁ K 1:331,89 72,94 823,45 484,92 167,34 7,62 1,63 0,24 60,75 NPO 1:287,35 128,02 954,45 727,06 233,67 10,24 1,99 0,21 63,90 NPK 1:287,16 103.65 960,20 586,62 189,08 14,77 1,47 0,25 48,19 NPK 1:381,16 90,47 930,73 521,17 170,74 9,82 1,73 0,23 56,18 OOO 968,24 69,86 776,15 506,08 201,30 4,61 1,27 0,25 48,19 OOO 968,24 69,86 776,15 506,08 201,30 4,61 1,27 0,25 48,19 OOK 954,51 122,88 97,240 525,20 176,13 17,97 5,80 0,41 35,52 NPK 1.346,24 88,72 965,15 440,16 15,364 47,19 5,28 0,41 31,43 NPK <	0	NOK	1.339,13	83.03	997,85	477,62	157,78	10,43	1,69	0,37	44,93	12,95
NPO 1.297,35 128,02 964,45 727,06 233,67 10,24 1,99 0,21 63,90 NPK1 1.415,61 103,65 960,20 586,62 189,08 14,77 1,47 0,25 48,19 ONO 968,24 69,86 776,15 566,08 201,30 4,61 1,27 0,22 48,19 MAdia 1.281,14 83,94 903,57 554,66 188,38 8,60 1,47 1,47 0,25 48,19 ONO 968,24 69,86 176,13 17,97 5,80 1,73 0,22 16,28 OPK 954,51 122,88 95,26 1034,00 386,72 176,13 17,97 5,80 0,41 35,52 NPK 1.357,68 92,56 1034,00 386,72 175,12 17,97 5,28 0,41 35,52 NPK 1.462,24 88,72 966,15 165,46 125,32 5,28 0,41 31,29 NPK <		NP, K	1.331,89	72,94	823,45	484,92	167,34	7,62	1,63	0,24	50,75	11,82
NPK ₁ 1.415,61 103,65 960,20 586,62 189,08 14,77 14,7 0,25 48,19 NPK 1.308,16 90,47 930,73 621,17 170,74 9,82 1,73 0,33 66,18 000 968,24 69,86 776,15 506,08 201,30 4,61 1,27 0,22 16,28 000 968,24 69,86 776,15 564,65 188,38 8,60 1,40 0,22 16,28 00FK 954,51 122,88 972,40 625,20 176,13 17,97 5,80 0,22 12,19 N ₁ PK 1.357,68 92,56 1.034,00 386,72 132,00 26,12 6,36 0,41 35,52 NoV 1.344,70 50,86 914,85 405,48 125,32 6,36 0,41 35,52 NoV 1.346,22 83,72 326,40 237,60 26,46 37,40 6,73 0,41 13,23 NPK 1.886,42	•	NPO	1.297,35	128,02	954,45	727,06	233,67	10,24	1,99	0,21	63,90	12,60
NPK 1.308,16 90,47 930,73 521,17 170,74 9,82 1,73 0,33 56,18 000 968,24 69,86 776,15 506,08 201,30 4,61 1,27 0,22 16,28 000 968,24 69,86 776,15 564,65 188,38 8,60 1,40 0,22 16,28 00PK 954,51 122,88 972,40 525,20 176,13 17,97 5,80 0,22 12,19 NPK 1.354,68 92,56 1.034,00 386,72 132,00 26,12 6,36 0,41 35,52 NPK 1.354,78 90,86 440,15 153,2 6,36 0,41 35,52 NPK 1.462,24 88,72 440,15 153,6 47,19 5,28 0,41 35,52 NPK 1.462,24 88,72 440,15 153,6 47,19 5,28 0,41 31,43 NPK 1.886,42 8790 970,81 386,80	4	NPK,	1.415,61	103,65	960,20	586,62	189,08	14,77	1,47	0,25	48,19	15,33
000 968,24 69,86 776,15 506,08 201,30 4,61 1,27 0,22 16,28 Média 1.281,14 83,94 903,57 554,65 188,38 8,60 1,40 0,22 14,53 OPK 954,51 122,88 972,40 525,20 176,13 17,97 5,80 0,22 12,19 NPK 1.357,68 92,56 1.034,00 386,72 132,00 26,12 6,36 0,41 35,52 NPK 1.344,70 50,86 914,85 405,48 125,32 65,12 6,36 0,41 35,52 NPK 1.346,24 88,72 966,15 440,15 153,64 47,19 5,28 0,21 31,43 NPK 1.482,24 87,20 970,81 398,80 135,80 77,40 6,73 0,16 32,34 NPK 1.886,22 149,15 1.531,18 551,50 232,79 45,01 6,73 0,14 7,34 OOO	0	NPK	1.308,16	90,47	930,73	521,17	170,74	9,82	1,73	0,33	56,18	12,49
OPK 964,51 1221,38 903,57 554,65 188,38 8,60 1,40 0,32 44,53 OPK 964,51 122,88 972,40 525,20 176,13 17,97 5,80 0,22 12,19 N ₁ PK 1.357,68 92,56 1.034,00 386,72 132,00 26,12 6,36 0,41 35,52 NOK 1.344,70 50,86 914,85 405,48 125,32 65,42 3,07 0,23 29,61 NPK 1.362,24 88,72 966,15 440,16 153,64 47,19 5,28 0,21 31,43 NPK 1.886,42 88,72 966,15 440,16 153,69 77,40 6,73 0,14 13,23 NPK 1.886,42 87,90 970,81 398,80 135,80 77,40 6,73 0,15 22,98 OOO 1.426,39 15,783 1.531,18 561,50 282,79 16,91 9,04 0,14 7,94 Média <td>0</td> <td>000</td> <td>968,24</td> <td>98'69</td> <td>776,15</td> <td>506,08</td> <td>201,30</td> <td>4,61</td> <td>1,27</td> <td>0,22</td> <td>16,28</td> <td>18,33</td>	0	000	968,24	98'69	776,15	506,08	201,30	4,61	1,27	0,22	16,28	18,33
OPK 954,51 122,88 972,40 625,20 176,13 17,97 5,80 0,22 12,19 N ₁ PK 1.357,68 92,56 1.034,00 386,72 132,00 26,12 6,36 0,41 35,52 NOK 1.344,70 50,86 914,85 405,48 125,32 55,42 3,07 0,23 29,61 NPC 834,70 50,86 914,85 440,15 153,64 47,19 5,28 0,41 35,52 NPC 834,17 53,06 536,15 440,15 153,64 47,19 5,28 0,27 31,43 NPC 834,17 53,06 536,0 237,80 92,60 25,80 3,58 0,14 13,22 NPK 1.886,42 87,90 970,81 398,80 135,80 77,40 6,73 0,15 32,34 OOO 1.426,39 157,83 1.531,18 551,50 38,97 5,80 0,14 7,94 OA,0 19,10		Média	1.281,14	83,94	903,57	554,65	188,38	8,60	1,40	0,32	44,53	15,68
N ₁ PK 1.357,68 92,56 1.034,00 386,72 132,00 26,12 6,36 0,41 35,52 NOK 1.344,70 50,86 914,85 405,48 125,32 56,12 3,07 0,23 29,61 NP ₁ K 1.462,24 88,72 966,15 440,15 153,64 47,19 5,28 0,27 31,43 NPO 834,17 53,05 970,81 338,80 135,80 77,40 6,73 0,16 13,22 NPK 1.859,22 149,15 1.531,18 551,50 185,80 45,01 6,57 0,15 22,98 OOO 1.426,39 157,83 1.333,75 629,72 232,79 16,91 9,04 0,14 7,94 Média 1.390,66 88,79 1.033,06 28,00 22,00 54,20 58,0 25,00 34,90		OPK	954,51	122,88	972,40	525,20	176,13	17,97	5,80	0,22	12,19	12,60
NOK 1.344,70 50,86 914,85 405,48 125,32 65,42 3,07 0,23 29,61 NP ₁ K 1.462,24 88,72 966,15 440,15 153,64 47,19 5,28 0,27 31,43 NPO 834,17 53,05 535,40 237,80 92,60 25,80 0,14 13,22 NPK 1.886,42 87,90 970,81 398,80 135,80 77,40 6,73 0,15 32,34 NPK 1.859,22 149,15 1.531,18 551,50 185,80 45,01 6,57 0,15 22,98 OOO 1.426,39 157,83 1.033,05 38,58 154,26 38,97 5,80 0,14 7,94 Media 1.330,66 88,79 1.033,06 24,00 22,00 54,20 58,00 0,12 23,15		N,PK	1.357,68	92,56	1.034,00	386,72	132,00	26,12	6,36	0,41	35,52	16,63
NP ₁ K 1.462,24 88,72 966,15 440,15 153,64 47,19 5,28 0,27 31,43 NPO 834,17 53,05 535,40 237,80 92,60 25,80 3,58 0,14 13,22 NPK 1.886,42 87,90 970,81 398,80 135,80 77,40 6,73 0,15 32,34 NPK 1.859,22 149,15 1.531,18 551,50 185,80 45,01 6,57 0,15 22,98 OOO 1.426,39 157,83 1.033,75 629,72 232,79 16,91 9,04 0,14 7,94 Média 1.390,66 88,79 1.033,06 398,58 154,26 38,97 5,80 0,12 23,15 C.V.(%) 19,10 37,00 24,00 26,00 22,00 54,20 38,60 25,00 34,90		NOK	1.344,70	50,86	914,85	405,48	125,32	55,42	3,07	0,23	29,61	8,65
NPO 834,17 53,05 535,40 237,80 92,60 25,80 3,58 0,14 13,22 NPK ₁ 1.886,42 87,90 970,81 398,80 135,80 77,40 6,73 0,15 32,34 NPK 1.859,22 149,15 1.531,18 551,50 185,80 45,01 6,57 0,22 22,98 0000 1.426,39 157,83 1.339,75 629,72 232,79 16,91 9,04 0,14 7,94 Média 1.390,66 88,79 1.033,06 398,58 154,26 38,97 5,80 0,22 23,15 C.V.(%) 19,10 37,00 24,00 26,00 22,00 54,20 38,60 25,00 34,90	_	NP, K	1.462,24	88,72	966,15	440,15	153,64	47,19	5,28	0,27	31,43	14,06
NPK1 1.886,42 87,90 970,81 398,80 135,80 77,40 6,73 0,15 32,34 NPK 1.859,22 149,15 1.531,18 551,50 185,80 45,01 6,57 0,22 22,98 000 1.426,39 157,83 1.339,75 629,72 232,79 16,91 9,04 0,14 7,94 Média 1.390,66 88,79 1.033,06 398,58 154,26 38,97 5,80 0,22 23,15 C.V.(%) 19,10 37,00 24,00 26,00 22,00 54,20 38,60 25,00 34,90	_	NPO	834,17	53,05	535,40	237,80	92,60	25,80	3,58	0,14	13,22	5,45
NPK 1.859,22 149,15 1.531,18 551,50 185,80 45,01 6,57 0,22 22,98 000 1.426,39 157,83 1.339,75 629,72 232,79 16,91 9,04 0,14 7,94 Média 1.390,66 88,79 1.033,06 39,58 154,26 38,97 5,80 0,22 23,15 C.V.(%) 19,10 37,00 24,00 26,00 22,00 54,20 38,60 25,00 34,90	,	NPK ₁	1.886,42	87,90	970,81	398,80	135,80	77,40	6,73	0,15	32,34	13,29
1.426,39 157,83 1.339,75 629,72 232,79 16,91 9,04 0,14 7,94 1.390,66 88,79 1.033,06 398,58 154,26 38,97 5,80 0,22 23,15 5 19,10 37,00 24,00 26,00 22,00 54,20 38,60 25,00 34,90	`	NPK	1.859,22	149,15	1.531,18	551,50	185,80	45,01	6,57	0,22	22,98	13,78
1.390,66 88,79 1.033,06 398,58 154,26 38,97 5,80 0,22 23,15 6) 19,10 37,00 24,00 26,00 22,00 54,20 38,60 25,00 34,90		000	1.426,39	157,83	1.339,75	629,72	232,79	16,91	9,04	0,14	7,94	11,33
19,10 37,00 24,00 26,00 22,00 54,20 38,60 25,00 34,90		Média	1.390,66	88,79	1.033,06	398,58	154,26	38,97	5,80	0,22	23,15	11,97
		C.V.(%)	19,10	37,00	24,00	26,00	22,00	54,20	38,60	25,00	34,90	26,90

3										
Tratamentoe				T U N	RIENT	E S				
	z	Ь	¥	రి	Mg	Zn	8	n _O	Mn	Fe
00K	981,19	106,10	1.490,00	680,82	205,17	2,58	5,06	1,32	8,55	21,16
OPO	806,72	99'26	1.241,30	585,88	166,36	1,76	5,70	0,84	7,12	18,38
000	1.670,42	86,24	1.506,70	516,76	195,00	3,09	3,99	0,92	54,50	32,81
000	1.027,18	109,05	1.414,77	642,94	191,73	2,05	5,26	1,4	10,69	25,12
Média	1.121,37	92'66	1.438,19	09'909	189,56	2,73	5,00	1,12	20,21	24,36
00K	1.407,05	150,01	1.956,55	877,58	261,96	6,53	7,52	2 ,	6,93	49,51
OPO	1.325,08	127,78	1.709,90	96'056	251,66	62'9	7,54	1,30	13,16	51,86
00N	2.401,99	121,63	2.143,20	972,72	268,34	12,98	4,15	1,36	69,70	40,93
000	1.795,25	156,54	2.299,18	1.005,50	301,59	0,77	7,02	1,70	12,35	58,95
Média	1.732,34	138,99	1.599,73	951,69	270,88	10,03	6,55	1,47	26,28	50,31
C.V. (%)	8,20	4,68	8,10	9,80	7,00.	34,90	11,90	6,40	19,70	23,00

Quadro V: Teores porcentuais de macronutrientes nas folhas velhas (FV) e novas (FN) em função dos tratamentos - solo arenoso (PVA-Laras), Valor médio de três plantas.

OPK NOK NOK NPO	Z			-		10%)				
OPK N ₁ PK NOK NP ₁ K			a			Y	පී		Mg	
OPK N ₁ PK NOK NP ₁ K	7	Z.	FV	N.	FV	S	FV	E.	FV	T N
N ₁ PK NOK NP ₁ K	1,67	1,99	0,20	0,17	1,05	1,45	1,08	1,12	0,42	0,38
NOK NP ₁ K NPO	2,14	2,30	0,12	0,12	1,20	1,30	0,84	0,82	0,24	0,26
NP ₁ K NPO	1,89	2,13	0,11	0,12	1,35	1,50	0,74	0,68	0,18	0,28
NPO	1,93	2,35	0,11	0,14	1,10	1,35	0,80	89′0	0,23	0,34
	1,61	2,00	0,16	0,14	1,25	1,25	1,18	06'0	0,33	0,33
NPK,	1,79	2,17	0,16	0,14	1,55	1,35	0,94	0,80	0,26	0,30
NPK	2,04	2,22	0,14	0,13	1,48	1,38	0,94	0,77	0,27	0,29
000	1,82	2,10	0,15	0,13	1,15	1,40	1,12	06'0	0,48	0,42
Média	1,86	2,15	0,14	0,13	1,26	1,37	0,95	0,83	06,0	0,32
OPK	1,83	2,06	0,24	0,18	1,70	1,80	1,18	0,94	0,36	0,35
N ₁ PK	2,25	2,79	0,16	0,16	1,80	1,85	0,62	0,62	0,20	0,27
NOK	2,51	2,86	60'0	0,10	1,75	1,85	0,92	0,50	0,23	0,25
NP, K	2,13	2,60	0,13	0,12	1,65	1,45	0,82	0,54	0,23	0,26
NPO	2,58	3,16	0,15	0,16	1,60	2,00	0,82	09'0	0,27	0,28
NPK,	2,56	2,97	0,11	0,13	1,55	1,55	0,58	0,34	0,20	OE'O
NPK	2,40	2,83	0,19	0,16	2,12	1,97	080	09'0	0,27	0,25
000	1,93	2,27	0,25	0,20	1,85	1,90	1,16	0,72	0,33	0,33
Média	2,27	2,69	0,16	0,15	1,75	1,79	0,85	0,62	0,26	0,26

Quadro VI: Concentração de micronutrientes em ppm, nas folhas velhas (FV) e novas (FN) em função dos tratamentos - solo arenoso

				N T N	IENTES	S (PPM)				
· somementos		Zu		8		3	_	Mn		F
	3	FN	FV	N.	FV	N.	Æ	FN	FV	T.
OPK	84	25	47	41	6	က	189	180	1.153	172
N ₁ PK	53	21	88	37	7	4	1.379	1.196	321	212
NOK	8	19	45	33	7	2	874	99/	280	185
NP, K	24	29	45	29	٠ م	2	1.075	865	300	125
NPO	56	21	53	31	വ	2	1.290	912	310	140
NPK,	28	23	47	22	9		993	760	334	167
NPK	27	22	22	36	7	2	1.172	1.050	331	8
000	27	23	22	8	ഥ	-	448	407	317	142
Média	28	22	47	32	ဖ	2	487	767	418	142
OPK	125	8	187	133	ဖ	-	274	272	395	232
N ₁ PK	146	111	186	119	7	13	715	298	414	248
NOK	128	98	128	66	9	i	923	526	329	161
NP, K	1 80	111	187	111	9	1	832	420	379	13
NPO	129	198	240	97	ß	ı	624	346	274	10,
NPK	51	98	220	162	S	1	741	382	308	128
NPK	2	11	204	108	4	6,0	442	320	303	145
000	78	ਲ	230	157	က	ı	127	125	306	108
11445		į	-0,	•						

olo argiloso		Mg	FN	0,34	0,32	0,26	0,30	06,0	0,30	0,32	0,29	0,31	0,30
antos - s			FV	0,33	0,30	0,14	0,26	0,25	0,27	0,29	0,22	0,27	0,26
os tratame		පී	N N	1,06	1,14	0,54	96′0	1,05	98′0	0,88	0,72	0,75	08'0
função d			FV	1,14	1,14	08'0	1 ,04	1,03	1,04	1,28	1,06	1,11	1,12
ivas (FN) em	(%)	¥	FN	2,35	2,15	2,05	2,13	2,17	2,15	2,00	2,20	2,17	2,13
(FV) e no	NTES		FV	2,10	2,15	1,20	1,90	1,83	2,20	1,85	1,70	2,00	1,93
nas folhas velhas (FV) e novas (FN) em função dos tratamentos - solo argiloso	NUTRIENTES (%)		NH NH	0,13	0,16	0,11	0,15	0,13	0,13	0,12	0,13	0,11	0,12
onutrientes plantas.		٩	F	0,13	0,17	0,07	0,14	0,12	0,14	0,13	60'0	0,12	0,12
Teores porcentuais de macronutrientes (TRE). Valor médio de três plantas.		Z	ΝΉ	1,57	1,62	2,18	1,72	1,77	1,71	1,81	2,44	1,80	1,94
Teores por (TRE). Va			FV	1,28	1,29	2,09	1,40	1,51	1,43	1,40	2,24	1,60	1,66
Quadro VII:	Tratamentoe			00K	000	00N	000	Média	00K	OPO	00N	000	Média
ā				_ Z	00	כנ	- 4	٥٥	ဟ	∢ (۵ _	. 0	

Concentração de micronutrientes em ppm, nas folhas velhas (FV) e novas (FN) em função dos tratamentos - solo argiloso (TRE). Valor médio de três plantas. Quadro VIII:

FN FN<						NUTRI	ENTES	S (PPM)				
FW FW<		mentos –	Zn		80		0	3	Ž		F	
24 43 127 95 11 16 131 170 405 23 24 156 134 11 11 122 161 409 18 16 91 62 9 7 807 858 568 22 24 140 94 16 10 70 153 373 31 135 96 11 11 11 282 335 438 76 31 148 107 10 8 134 218 491 75 30 148 107 10 8 134 218 491 47 34 23 104 83 10 9 110 639 549 8 29 29 110 8 311 309 549			FV	FN	FΥ	NH.	FV	FN			FV	FN
23 24 156 134 11 11 12 161 409 18 16 91 62 9 7 807 858 568 22 24 140 94 16 10 70 153 373 31 135 96 11 11 11 282 335 438 75 30 148 107 10 8 134 218 491 47 34 68 47 10 7 912 696 379 64 23 104 83 10 8 110 696 379 8 23 24 30 10 8 31 30 549	_ Z (OK	24	43	127	95	11	16	131	170	405	281
18 16 91 62 9 7 807 858 568 22 24 140 94 16 10 70 153 373 31 12 11 11 282 335 438 76 31 140 106 12 10 90 164 688 75 30 148 107 10 8 134 218 491 47 34 68 47 10 7 912 696 379 64 23 104 83 10 8 110 160 639 8 29 29 110 8 311 309 549		0	23	24	156	134	11	=	122	161	409	355
22 24 140 94 16 10 70 153 373 31 135 96 11 11 282 335 438 76 31 140 106 12 10 90 164 688 75 30 148 107 10 8 134 218 491 47 34 68 47 10 7 912 696 379 64 23 104 83 10 8 110 639 549 8 29 29 110 309 549	Ž	00	18	16	91	62	တ	7	807	828	268	451
a 21 26 135 96 11 11 282 335 438 76 31 140 106 12 10 90 164 688 75 30 148 107 10 8 134 218 491 47 34 68 47 10 7 912 696 379 64 23 104 83 10 8 110 160 639 8 29 120 85 10 8 311 309 549	Ō	00	22	24	140	94	16	10	20	153	373	263
76 31 140 106 12 10 90 164 688 75 30 148 107 10 8 134 218 491 47 34 68 47 10 7 912 696 379 64 23 104 83 10 9 110 160 639 a 65 29 120 85 10 8 311 309 549	Σ	é dia	21	26	135	96	=	1	282	335	438	337
75 30 148 107 10 8 134 218 491 47 34 68 47 10 7 912 696 379 64 23 104 83 10 9 110 160 639 a 65 29 120 85 10 8 311 309 549	Ŏ) S	76	31	140	106	12	10	6	164	889	414
47 34 68 47 10 7 912 696 379 64 23 104 83 10 9 110 160 639 65 29 120 85 10 8 311 309 549	ð	0	75	8	148	107	10	œ	134	218	491	171
64 23 104 83 10 9 110 639 65 29 120 85 10 8 311 309 549	Ž	00	47	34	89	47	10	7	912	969	379	462
65 29 120 85 10 8 311 309 549	Ó	00	2	23	104	83	10	တ	110	160	639	513
	Ž	é dia	65	53	120	82	10	œ	311	309	549	540

Pelo exame comparativo destes níveis com os dados do presente trabalho, verifica-se que a concentração de N nas folhas velhas foi «deficiente» nos tratamentos das plantas «inoculadas»; tendo sido «normal» nos demais macronutrientes. A concentração nos micronutrientes foi «normal», com exceção da de B e Cu. Chama a atenção, os teores elevados em Mn, o que ocorreu possivelmente pelo emprego do sulfato de amônio. O teor de Zn nas folhas foi normal, apesar da quantidade total encontrada nas plantas ter sido bem inferior no tratamento «inoculado».

No solo argiloso (TRE) observa-se que a análise das folhas serviu apenas para comprovar a adição do nutriente sob a forma de fertilizante; não houve praticamente influência dos tratamentos «inoculado» e «sadio». Não se constatou efeito na concentração dos micronutrientes, com exceção do Zn que foi inferior no tratamento «inoculado».

CONCLUSÕES

- 1 A presença de nematóides não afeta o crescimento do cafeeiro, quando adubado, no nível ou grau de infestação usado;
- 2 A presença de nematóides no solo Podzólico Vermelho Amarelo, variação Laras, exerce um forte efeito depressivo na absorção de Zn e B pelo cafeeiro.
- 3 A presença de nematóides exerce um efeito depressivo na absorção de Zn no solo Terra Roxa Estruturada.
- 4 A presença de nematóides nos solos não tem efeito sobre as concentrações de N, P, K, Ca, Mg, Cu, Fe, Mn nas folhas do cafeeiro.

SUMMARY

Effect of the nematode Meloidogyne exigua on the absorption of nutrients by young coffee trees. Preliminary results.

In order to detect the effect of the nematode on the growth and chemical composition of **Coffea arabica** L., cultivar Mundo Novo, 376/4-IAC, young plants were cultivated in pots containing two different soils — Terra Roxa Estruturada (a clayished soil) and Podzolico Vermelho Amarelo — Laras (a Sandy Soil).

Three levels of nutrients were applied: level 0 — no fertilizer added; level 1 — fertilization recommended usually for the crop; level 2 — heavy fertilization.

Half of the plants were latelly inoculated by adding organic mater containing the nematodes.

After 420 days all plants were harvested, measured and analysed for N. P. K. Ca. Mg. B. Cu. Fe. Mn and Zn.

Fertilized trees present no difference on the growth in the presence of the nematodes.

The absorption of Zn and B were severely affected in the presence of the nematode on the sandy soil, even when fertilized. On the clayished soil the nematodes depressed only the absorption of Zn.

Diseased plants grown on the sandy soil presented a higher content in Mn than the healthy ones.

LITERATURA CITADA

- ARRUDA, H. V. 1957. Nematóides em cafeeiros em Ribeirão Preto. Boletim da Sup. dos Serviços do Café n.º 370: 21-24.
- ARRUDA, H. V. 1960. Efeito depressivo de nematóides sobre mudas de cafeeiros formadas em laminado. Bragantia 10 : XV-XVII.
- ARRUDA, H. V. 1960a. Redução no crescimento de cafeeiros com um ano de campo devida ao parasitismo de nematóides. Bragantia 19: CLXXIX-CLXXXII.
- ARRUDA, H. V., A. R. REIS. 1962. Redução nas primeiras colheitas de café devida ao parasitismo de nematóides. Biológico 28(12): 349.
- CATANI, R. A., J. R. GALLO, H. GARGANTINI. 1955. Amostragem de Solos, Métodos de Análises, Interpretação de Indicações Gerais para Fins de Fertilidade. Boletim n.º 69, Inst. Agron. de Campinas, Campinas.
- CURI, S.. M., L. G. E. LORDELLO, A. BONA, A. F. CINTRA. 1970. Atual distribuição geográfica dos nematóides do cafeeiro (Meloidogyne coffeicola e M. exigua), no Estado de São Paulo. Biológico 36(1): 26-28.
- JENKINS, W. R., R. B. MALEK. 1966. Influence of Nematodes on Absorption and Acumulation of Nutrients in Vetch. Soil Sci. 101: 46-49.
- LORDELLO, L. G. E., A. P. ZAMITH. 1958. Nematóides atacando cafeeiros no Estado de São Paulo. Revista de Agricultura 33(1):59-62.
- LORDELLO, L. G. E. 1968. Nematóides das plantas cultivadas. Livraria Nobel S/A. São Paulo.
- MALAVOLTA, E., T. COURY. 1967. Adubação do Cafeeiro. Em «Manual do Cafeeiroltor coordenação de E. A. Graner & C. Godoy Junior». Editora da Universidade de São Paulo, São Paulo.
- PESSENDA, C. E., T. MATUO, J. C. GONÇALVES, R. A. THOMAZIELLO. 1968. Nematóides nocivos ao cafeeiro. Boletim Técnico SCR n.º 31. Campinas.
- PETENUCCI, W. 1971. Os nematóides do cafeeiro e sua importância econômica. Divulgação Agronomica Shell n.º 31:4-11.
- SARRUGE, J. R. 1972. Análises Químicas em Plantas. Curso Pós Graduado em Solos e Nutrição de Plantas. E. S. A. «Luiz de Queiroz». Piracicaba.