ANÁLISE FOLIAR DE CINCO ESPÉCIES FLORESTAIS NATIVAS*

VICENTE LUIZ ABARCA VILLEGAS RUBENS JOSÉ PIETSCH CUNHA WALTER POLITANO MARCO ANTONIO GARRIDO NILSA A. STIPP

RESUMO

No presente trabalho, foram analisados os macronutrientes: nitrogênio, fósforo, potássio, cálcio e magnésio e os micronutrientes: cobre, ferro, zinco e manganês em folhas das espécies Araribá rosa (Centrolobium robustum), Guarantã (Esenbeckia leiocarpa), Ipê roxo (Tabebuia heptaphylla), Genipapo (Genipa americana) e Joazeiro (Zisyphus joazeiro).

Nas condições do presente trabalho, os resultados encontrados permitem afirmar que: a) foram variáveis as concentrações dos macro e micronutrientes entre as espécies estudadas; b) as concentrações de macro e micronutrientes nas folhas variaram entre as posições no ramo em função das espécies.

INTRODUÇÃO

Sobre as espécies florestais nativas, a bibliografia nacional somente tem abordado aspectos relacionados à características botânicas, morfológicas, usos da madeira e habitats naturais. No tocante a composição elementar dessas espécies não se tem encontrado referências, impossibilitando dessa forma a elaboração de qualquer hipótese sobre as suas exigências nutricionais.

^{*} Trabalho conduzido pelos alunos do Curso Pós-Graduado em Engenharia Florestal, disciplina "Nutrição Mineral em Silvicultura" — Profs. H.P. Haag e G.D. de Oliveira. E.S.A. "Luiz de Queiroz", USP.; Entregue para publicação em 26/08/1976.

Neste trabalho, com o propósito de se obter algumas informações sobre a composição elementar das espécies Araribá rosa (Centrolobium robustum), Guarantã (Esembeckia leiocarpa), Ipê roxo (Tabebuia heptaphyla), Genipapo (Genipa americana) e Joazeiro (Zezyphus Joazeiro) efetuou-se por utilização da técnica de análise foliar a determinação de alguns nutrientes considerados essenciais pela nutrição mineral de plantas.

REVISÃO DA LITERATURA

De acordo com PRIMO,1968; RIZZINI, 1971; GURGEL & GURGEL FILHO, 1973 e GARRIDO, 1976, as espécies estudadas apresentam as características:

- O Araribá rosa, denominado também Araribá e Aribá, pertence a família Leguminosae e a sub-família Faboideae; ocorre nas florestas pluviais desde o nordeste do Ceará até o Paraná. Pode atingir 30 metros de altura, floresce em fevereiro e frutifica em maio-junho;
- O Guarantã, conhecido também por Pau-duro e Guarataia, pertence a família Rutaceae, é espécie de crescimento lento atingindo na fase adulta ao redor de 20 metros, sendo encontrada desde o sul da Bahia até São Paulo e no sul dos Estados de Mato Grosso e Goiás, nas matas úmidas:
- O Ipê roxo, denominado também Ipê rosa e Pau d'arco, é árvore de grande porte podendo atingir no estágio adulto a altura de 15 metros. Pertence a família Bignoniaceae, suas folhas são caducas, floresce entre julho e setembro, frutifica entre outubro e novembro e ocorre naturalmente desde o sul da Bahia até o Estado do Paraná, em área de floresta pluvial;
- O Genipapo é encontrado em todo território brasileiro, preferindo os terrenos úmidos e encharcados. Pertence à família Rubiaceae, é árvore de porte médio com florescimento em épocas variáveis e frutificação em novembro e dezembro;
- O Joazeiro, pertence a família Rhamnaceae, é espécie característica da vegetação de caatinga sendo adaptada portanto às condições de seca. Atinge alturas em torno de 8 a 10 metros com tronco curto e copa esférica densamente folhada.

MATERIAL E MÉTODOS

O material de estudo constitui-se de folhas das espécies: Araribá rosa, Guarantã, Ipê roxo, Genipapo e Joazeiro, localizadas no parque da Escola Superior de Agricultura "Luiz de Queiroz".

O clima da área segundo a classificação de Koeppen é Cwa, clima mesotérmico de inverno seco em que a temperatura média do mês mais frio é inferior a 18°C e a do mês mais quente ultrapassa 22°C. O índice pluviométrico anual é em torno de 1300 mm onde no mês mais seco as chuvas não ultrapassam a 30 mm (COMISSÃO DE SOLOS, 1960).

O solo se constitui em uma faixa de transição entre as unidades Latossol Roxo — Série Luiz de Queiroz e Litossol — Série Lageadinho (RANZANI et alii, 1966).

A coleta do material foi realizada na primeira quinzena de abril, ocasião em que as árvores apresentavam as seguintes características: Araribá rosa — idade 50 anos, altura aproximada de 20 metros, copa com 60% dos galhos mortos, sem brotações novas; Guarantã — altura aproximada de 15 metros, início de florescimento, presença de alguns ramos mortos; Ipê roxo — altura aproximada 12 metros, planta em bom estado vegetativo; Genipapo — altura aproximada de 18 metros, alguma frutificação, presença de muitos ramos mortos, descascamento no tronco e ramos principais e, Joazeiro — altura aproximada de 8 metros, bom estado vegetativo, frutificação intensa com frutos verdes e maduros. Todas as folhas do Joazeiro apresentavam um amarelecimento intenso internerval.

A coleta e o preparo das amostras para análise obedeceram as recomendações de SARRUGE & HAAG, 1974.

O nitrogênio foi determinado por destilação pelo método microkjeldahl e a amônia destilada foi titulada com ácido sulfúrico 0,01 N.

O potássio foi determinado por fotometria de chama.

O fósforo foi determinado por colorimetria pelo método do vanado--molibdato de amônio.

Os elementos cálcio, magnésio, cobre, ferro, zinco e manganês foram determinados por absorção atômica.

Os métodos utilizados estão descritos em SARRUGE & HAAG, 1974.

O delineamento estatístico obedeceu a um esquema fatorial (5 x 3) com três repetições.

RESULTADOS E DISCUSSÃO

Macronutrientes

Tabela 1 — Valores de F e respectivos graus de liberdade, obtidos das análises da variância das porcentagens de nitrogênio, fósforo, potássio, cálcio e magnésio.

C. variação	G.L.	F(N)	F(P)	F(K)	F(Ca)	F(Mg)
Espécies (E)	4	1.730,23**	44,17**	1.051,88**	98,04**	96,67**
Posioões das						
folhas (Pf)	2	22,23**	0,84ne	3,43*	2,65ns	8,67**
Int. E x Pf	8	12,53**	16,50**	2,73*	2,57*	1,33ns
Resíduo	30					
Total	44			neend , geography and a second a		· · · · · · · · · · · · · · · · · · ·
C.V.		1,75%	5,53%	4,13%	10,97%	6,13%

Nitrogênio

A análise da variância das porcentagens de nitrogênio nas folhas das espécies estudadas (Tabela 1) revelou um valor de F para a variável "Espécies" altamente significativo, indicando que as porcentagens médias de nitrogênio nas folhas foram diferentes entre as espécies. Verifica-se também no mesmo quadro que o F da introdução "Espécies x Posições das folhas" foi altamente significativo, indicando que as concentrações de nitrogênio variaram entre as posições das folhas no ramo em função das espécies estudadas.

Comparando os teores médios de nitrogênio nas folhas em diferentes posições no ramo dentro de cada espécie (Tabela 2), verifica-se que as espécies Araribá rosa, Guarantã e Genipapo mostraram concentrações maiores de nitrogênio nas folhas localizadas na ponta do ramo. Para o Ipê roxo não houve variação das porcentagens de nitrogênio entre as folhas localizadas nas diferentes posições do ramo. No Joazeiro, as folhas localizadas na parte intermediária e na base do ramo foram as que presentaram maiores porcentagens de nitrogênio.

Tabela 2 — Porcentagens médias de nitrogênio na matéria seca de folhas de algumas espécies florestais nativas.

Posições	Espécies							
das folhas	Araribá rosa	Guarantã	Ipê Roxo	Genipapo	Joazeiro			
Ponta do								
Ramo	3,24 a (1)	2,63 a	1,67 a	2,07 a	2,29 b			
Interme-								
diárias	3,27 a	2,48 b	1,67 a	2,01 a	2,45 a			
Base do								
Ramo	3,04 b	2,37 c	1,63 a	1,99 b	2,42 a			
Médias das	100			W				
Espécies	3,18 A	2,49 B	1,65 E	1,65 E	2,38 C			

D.M.S. (Tukey) 5% — Entre espécies = 0,06

Entre as espécies (Tabela 2) a maior concentração de nitrogênio foi encontrada nas folhas do Araribá rosa e seguindo em ordem decrescente: Guarantã, Joazeiro, Genipapo e Ipê roxo.

Fósforo

Através da análise da variância das porcentagens de fósforo nas folhas das diferentes espécies (Tabela 1), verifica-se que o valor de F para a variável "Espécies" foi altamente significativa indicando que as porcentagens médias de fósforo nas folhas, variaram entre as espécies estudadas. No mesmo quadro pode-se observar também que a interação "Espécies x Posições das folhas" foi altamente significativa, indicando que as espécies apresentaram teores de fósforo variáveis em função da folha no ramo.

Pela tabela 3 verifica-se que a espécie que apresentou teor mais elevado de fósforo nas folhas foi o Guarantã, as espécies Araribá rosa e Ipê roxo apresentaram as porcentagens mais baixas desse elemento.

Comparando os teores médios de fósforo das folhas nas diferentes posições no ramo, para cada espécie (Tabela 3) verifica-se que as espécies: Genipapo e Joazeiro apresentaram os maiores teores nas folhas

[—] Posições das folhas dentro de espécies = 0,08

⁽¹⁾ As médias de mesma letra não diferenciam estatisticamente entre si ao nível de 5% de probabilidade pelo teste de Tukey.

Tabela 3 — Porcentagens	médias	de	fósforo	na	matéria	seca	đe	folhas	de	alguma s
espécies flores	stais nat	ivas	S.							

Posições	Espécies							
das folhas	Ararib á rosa	Guarantã	Ipê Roxo	Genipapo	Joazeiro			
Ponta do								
Ramo	0,18 a (1)	0,27 a	0,17 a	0,16 b	0,19 b			
Interme-								
diárias	0,19 a	0,23 b	0,16 a	0,21 a	0,21 ab			
Base do								
Ramo	0,18 a	0,20 c	0,17 a	0,22 a	0,23 a			
Médias das				P				
Espécies	0,18 C	0,23 A	0,17 C	0,20 B	0,21 B			

- D.M.S. (Tukey) 5% Entre espécies = 0,01
 - Posições das folhas dentro de espécies = 0,02
- (1) As médias de mesma letra não diferenciam estatisticamente entre si ao nível de 5% de probabilidade pelo teste de Tukey.

da base do ramo. As espécies Araribá rosa e Ipê roxo não apresentaram variações nos teores das folhas nas diferentes posições do ramo. No Guarantã as maiores concentrações de fósforo foram observadas nas folhas da extremidade do ramo.

Potássio

Através da Tabela 1 verifica-se que as porcentagens médias de potássio nas folhas variaram entre as espécies estudadas. Houve variação também dos teores de potássio em função da posição da folha no ramo.

Pela tabela 4, observa-se que as espécies Araribá rosa e Ipê roxo apresentaram as maiores concentrações de potássio nas folhas da base do ramo. Nas demais espécies, não houve diferenças estatísticas das porcentagens de potássio nas folhas localizadas em pontos diferentes no ramo.

Cálcio

Entre as espécies estudadas houve variação das concentrações de cálcio nas folhas, como mostra o teste F (Tabela 1). Nesta mesma tabela, verifica-se também que a interação "Espécies x Posições das folhas" foi significativa.

Tabela 4 —	Porcentagens	médias	de	potássio	na	matéria	seca	de	folhas	de	algum as
	espécies flore	stais na	tiva	s.							

Posições das folhas	Espécies							
	Araribá rosa	Guarantã	Ipê Roxo	Genipapo	Joazei ro			
Ponta do								
Ramo	0,96 b	1,78 a	0,49 b	2,23 a	1,54 a			
Interme-				·	,			
diárias	1,11 a	1,73 a	0,57 ab	2,20 a	1,65 a			
Base do								
Ramo	1,07 ab	1,69 a	0,62 a	2,19 a	1,65 a			
Médias das	The second secon							
Espécies	1,05 D	1,73 B	0,56 E	2,21 A	1,61 C			

D.M.S. (Tukey) 5% — Entre espécies = 0,08 — Posições das folhas dentro de espécies = 0,11

Através da Tabela 5 verifica-se que apenas o Joazeiro apresentou variação na concentração de cálcio entre as folhas situadas nas diferentes posições no ramo, apresentando as maiores concentrações as folhas da extremidade do ramo. Para as demais espécies as porcentagens de cálcio não variaram em função da posição da folha no ramo.

Das espécies estudadas, o Joazeiro destacou-se por apresentar maior concentração de cálcio em suas folhas (Tabela 5).

Magnésio

O teste F aplicado às porcentagens de magnésio nas folhas (Tabela 1), revelou significância para "Espécies" e "Posições das folhas nos ramos" não havendo efeito da interação.

Pela Tabela 6 pode-se observar que a espécie de maior concentração de magnésio nas folhas foi o Ipê roxo e o de menor concentração o Araribá rosa.

Para as espécies estudadas, de uma maneira geral, as folhas localizadas na extremidade do ramo apresentaram concentrações mais elevadas de magnésio (Tabela 7).

Tabela 5 — Porcentagens médias de cálcio na matéria seca de folhas de algumas espécies florestais nativas.

Posições das folhas	Espécies							
	Araribá rosa	Guarantã Ipê Roxo		Genipapo	Joazeiro			
Ponta do								
Ramo	1,38 a	0,97 a	1,62 a	0,60 a	2,06 a			
Interme-								
diárias	1,20 a	1,14 a	1,44 a	0,55 a	1,76 b			
Base do		4.46	1.10	0.44				
Ramo	1,24 a	1,19 a	1,48 a	0,64 a	1,63 b			
Médias das		anggangka digitati anggangka digitati na sanggangka digitati na sanggangka digitati na sanggangka digitati na s						
Espécies	1,27 C	1,10 C	1,51 B	0,60 D	1,82 A			

D.M.S. (Tukey) 5% — Entre espécies = 0,19 — Posições das folhas dentro de espécies = 0,28

Tabela 6 — Porcentagens médias de magnésio na matéria seca de folhas entre as espécies estudadas.

Espécies	Araribá Rosa	Guarantã	Ipê Roxo	Genipapo	Joazeir o
Média das Espécies	0,20 E	0,25 D	0,35 A	0,32 B	0,28 C

D.M.S. (Tukey) 5% = 0.02

Tabela 7 — Porcentagens médias de magnésio na matéria seca entre as diferentes posições das folhas nos ramos.

Posições das	Ponta do	Interme-	Base do
Folhas	Ramo	diárias	Ramo
Médias	0,30 A	0,27 В	0,27 B

D.M.S. (Tukey) 5% = 0.01

Micronutrientes

Tabela 8 — Valores de F e respectivos graus de liberdade obtidos das análises da variância das concentrações em ppm de cobre, ferro, zinco e manganês.

C. Variação	G.L.	F(Cu)	F(Fe)	F(Zn)	F(Mn)
Espécies Posições das	4	5,84**	35,21**	102,78**	203,21**
Folhas Int. E x Pf	2	0,78 ns	13,50**	0,21 ns	2,77 ns
Resíduo	30	4,23**	2,80*	2,14*	1,81 ns
Total	44				
C.V. %	**************************************	10,75%	18,04%	10,05%	15,81%

Cobre

Através da análise da variância das concentrações de cobre nas folhas das diferentes espécies (Tabela 8), verifica-se que o valor de F para a variável "Espécies" foi altamente significativo indicando que as concentrações médias de cobre nas folhas variaram entre as espécies estudadas. Na mesma tabela observa-se também que a interação "Espécies x Posições das folhas" foi altamente significativa, indicando que as espécies apresentaram concentrações de cobre variáveis em função da posição da folha no ramo.

Pela tabela 9 verifica-se que as espécies Araribá rosa e Genipapo apresentaram as concentrações mais elevadas de cobre nas folhas.

As espécies Araribá rosa, Guarantã e Ipê roxo não apresentaram variações na concentração de cobre entre as folhas localizadas em pontos diferentes no ramo.

No Genipapo os maiores teores de cobre foram verificados nas folhas da base do ramo enquanto que no Joazeiro ocorreu o inverso, isto é, as folhas da extremiddae do ramo apresentaram as maiores concentrações.

Posições	Espécies							
das folhas	Araribá rosa	Guarantã	Ipê Roxo	Genipapo	Joazeiro			
Ponta do								
Ramo	10,7 a	8,7 a	8.7 a	9,3 b	10,3 a			
Interme-								
diárias	11,0 a	8,0 a	9,3 a	9,3 b	8,0 b			
Base do								
Ramo	9,7 a	10,0 a	9,7 a	11,4 a	7,0 b			
Médias das		andria deletima membani ana di ang mendalahan berbelah deleti deleti banggalan tenggan pengangan berbelan di	a silaya kan ana mahada da an Africa an Anganggada angata ya da Araba an Angan ka da an Andrewaya an Angan an Andrewaya an Angan	Methods and a second a second and a second and a second and a second and a second a	The state of the s			
Espécies	10 4 A	8,9 B	9,2 AB	10,0 A	8,4 B			

Tabela 9 — Concentrações médias de cobre na matéria seca (ppm na folha).

Ferro

Entre as espécies estudadas, houve variação das concentrações de ferro nas folhas como mostra o teste F (Tabela 8). Nesta mesma tabela verifica-se também que a interação "Espécies x Posições das folhas" foi significativa.

Pela tabela 10 constata-se que as espécies Araribá rosa e Genipapo apresentaram maiores concentrações de ferro nas folhas da base do ramo enquanto que para as demais, as concentrações não variaram em relação a posição da foiha no ramo.

Tabela 10 —	Concentrações	medias c	de ferro	na materia	seca (ppm nas	tolhas).
				derendrikariakeryd ig amarikari buda amarikari 1904 i 190			

Posições das folhas	Espécies					
	Araribá rosa	Guarantã	Ipê Roxo	Genipapo	Joazeiro	
Ponta do						
Ramo	285,3 Ъ	138,0 a	427,0 a	201,6 b	229,3 a	
Interme-						
diárias	382,6 Ъ	165,0 a	430,3 a	261,6 ab	279,0 a	
Base do						
Ramo	560,3 a	219,6 a	437,0 a	317,0 a	272,0 a	
Médias das						
Espécies	409,4 A	174,2 C	431,4 A	260,1 B	$260,1~\mathrm{B}$	

D.M.S. (Tukey) 5% — Entre posições = 49,9

D.M.S. (Tukey) 5% — Entre espécies = 1,3 — Posições das folhas dentro de espécies = 2,0

[—] Posições das folhas dentro de espécies = 111,6

Zinco

Através da Tabela 11 verifica-se que a espécie que apresentou maior concentração de zinco nas folhas foi o Araribá rosa.

Para a maioria das espécies estudadas, as concentrações de zinco não variaram entre folhas situadas em pontos diferentes do ramo; entretanto, para o Araribá rosa as maiores concentrações de zinco foram constatadas nas folhas da extremidade do ramo (Tabela 11).

Posições das folhas	Espécies						
	Araribá rosa	Guarantã	Ipê Roxo	Genipapo	Joazeiro		
Ponta do			a hader (MAN PLA ME 19) SERVICES (10) of STOP STREET, described the Manufacture (MANUFACTURE (MA				
Ramo	71,0 a	30,0 a	39,3 a	27,0 a	42,3 a		
Interme-							
diárias	59,3 Ъ	29,7 a	41,7 a	27,7 a	46,7 a		
Base do							
Ramo	56,7 b	29,7 a	42.7 a	27,7 a	49,3 a		
Médias das					The last of the la		
Espécies	62,3 A	29,8 C	41,2 B	27,4 C	$46,1~\mathrm{B}$		

Tabela 11 — Concentrações médias de zinco na matéria seca (ppm nas folhas).

Manganês

Analisando a Tabela 8 verifica-se que apenas o valor de F para a variável "Espécies" foi significativo indicando que as concentrações de manganês nas folhas variaram apenas entre as espécies estudadas.

A maior concentração de manganês foi constatada nas folhas do Ipê roxo e as menores nas espécies Guarantã e Genipapo (Tabela 12).

Relação entre macronutrientes

Através da Tabela 13 observa-se que o nitrogênio foi o elemento que se apresentou em maiores proporções nas folhas na maioria das espécies estudadas. Exceção feita ao Genipapo em que o potássio foi o macronutriente mais abundante nas folhas.

D.M.S. (Tukey) 5% — Entre espécies = 5.7

[—] Posições das folhas dentro de espécies = 8,4

·			
			
	T / ·		
	Heneciae		
	ESUCCICS		
	L T		
		Espécies	

Tabela 12 — Concentrações médias de manganês na matéria seca (ppm nas folhas).

	Espécies						
	Araribá Rosa	Guarantã	Ipê Roxo	Genipapo	Joazeiro		
Média das Espécies	197 B	53 D	306 A	36 D	145 C		

D.M.S. (Tukey) — Entre espécies = 32

Tabela 13 — Relações entre macronutrientes nas folhas das espécies estudadas.

Macronu- trientes			Espécies		
	Araribá Rosa	Guarantã	Ipê Roxo	Genipapo	Joazeiro
N	100 (1)	100	100	91	100
P	6	9	10	9	9
K	31	68	35	100	67
Ca	41	44	88	27	75
Mg	6	12	24	14	13

^{(1) 100} representa o elemento de maior concentração nas folhas e os demais valores são proporcionais a este.

Relação entre micronutrientes

Observa-se através da Tabela 14 que o ferro foi dentre os micronutrientes estudados o que se apresentou em maiores concentrações nas folhas das espécies estudadas.

Tabela 14 — Relações entre micronutrientes nas folhas das espécies estudadas.

Micronu- trientes			Espécies		<u> </u>
	Araribá Rosa	Guarantã	Ipê Roxo	Genipapo	Joazeiro
Cu	3	5	2	4	3
Fe	100 (1)	100	100	100	100
Zn	15	17	10	11	18
Mn	48	30	71	14	56

^{(1) 100} representa o elemento de maior concentração nas folhas e os demais valores são proporcionais a este.

CONCLUSÕES

Dos resultados obtidos nas condições do presente trabalho permitem observar que:

- a) Foram variáveis as concentrações dos macro e micronutrientes entre as espécies estudadas.
- b) As concentrações de macro e micronutrientes nas folhas variaram entre as posições no ramo em função das espécies.
- c) O Araribá rosa destacou-se entre as demais espécies por apresentar em suas folhas as maiores concentrações de nitrogênio, cobre, ferro e zinco.
- d) O Guarantã apresentou as maiores porcentagens de fósforo em suas folhas.
- e) O Ipê roxo destacou-se dentre as outras espécies por apresentar em suas folhas as maiores concentrações de magnésio e manganês.
- f) O Genipapo destacou-se por apresentar as maiores concentrações de potássio e cobre.
- g) O Joazeiro destacou-se das demais espécies por apresentar em suas folhas as maiores porcentagens de cálcio.
- h) Dentre as macronutrientes estudados, o nitrogênio foi o elemento de maiores proporções nas folhas do Araribá rosa, Guarantã, Ipê roxo e Joazeiro e o potássio o elemento de maior concentração nas folhas do Genipapo.
- i) Dos micronutrientes estudados, o ferro foi o elemento de maior concentração nas folhas das espécies.

AGRADECIMENTOS

São devidos ao Prof. Dr. Fábio Poggiani do Departamento de Silvicultura da E.S.A. "Luiz de Queiroz" pelas sugestões apresentadas.

SUMMARY

LEAF ANALYSIS OF FIVE NATIVE FOREST SPECIES

Analysis have been realized to evalue the content of macronutrients (N, P, K, Ca and Mg), and of micronutrients (Cu, Fe, Zn and Mn) in the leafs of five forest species: Araribá

rosa (Centrolobium robustum), Guarantã (Esenbeckia leiocarpa), Ipê roxo (Tabebuia heptaphylla), Genipapo (Genipa americana) e Joazeiro (Zizyphus joazeiro).

The statistical analysis and interpretation of the data allowed the following conclusions:

- a) Concentrations of macro and micronutrients varied among the species.
- b) Concentrations of macro and micronutrients varied according to position of the leaf on the branch and also to the species.

LITERATURA CITADA

- COMISSÃO DE SOLOS. 1960 Levantamento de reconhecimento dos solos do Estado de São Paulo. Rio de Janeiro. Centro Nacional de Ensino e Pesquisas Agronômicas. 634 p. (Boletim n.º 12).
- GARRIDO, M.A.O. 1976 Competição de cinco espécies indígenas plantadas em povoamentos puros e mistos. Silvicultura em São Paulo.
- GURGEL & GURGEL FILHO. 1973 Desenvolvimento das essências indígenas em cultivo experimental. I.F. 14 p. (mimeografado))
- PRIMO, B.L. 1968 Madeiras comerciais brasileiras. São Paulo. I.P.T. 875 p.
- RANZANI, G., FREIRE, O. & KINJO, T. 1966 Carta de solos do município de Piracicaba. Piracicaba ESALQ. 85 p.
- RIZZINI, C.T. 1971— Árvores e madeira úteis do Brasil. Manual de dendrologia brasileira. São Paulo. Editora USP. 294 p.
- SARRUGE, J.R. & H.P. HAAG. 1974 Análises químicas em plantas. Departamento de Química. E.S.A. "Luiz de Queiroz", USP. Piracicaba. 56 p.