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ABSTRACT. We analyzed the seasonal variation in the diet, trophic niche breadth (Levins index), the partitioning of food resources (Pianka’s symmetric 
index) and trophic level (weighed average of trophic level of each prey determined in FishBase and SeaLifeBase platform) of Plagioscion squamosissimus 
(Heckel, 1840) and Hydrolycus scomberoides (Cuvier, 1819) in the Machado River, Rondônia, Brazil. Fish samplings were conducted bimonthly from 
June 2013 to May 2015 in five sites, using eight sets of gillnets. The occurrence frequency and volumetric frequency were used to quantify the food 
items. We analyzed the stomach contents of 283 individuals, 134 of H. scomberoides and 149 of P. squamosissimus. Fish were the most consumed 
food item by both piscivorous species. However, H. scomberoides mostly ingested pelagic fish (e.g. Characiformes fishes and Prochilodus nigricas 
Spix & Agassiz, 1829), while P. squamosissimus mostly consumed benthic fish [e.g. Pimelodus blochii Valenciennes, 1840 and Tenellus trimaculatus 
(Boulenger, 1898)]. Hydrolycus scomberoides presented the trophic level 3.55 for both periods analyzed, while P. squamosissimus 4.01 in the flood period 
and 3.82 in the drought period. Seasonal variations in the diet of H. scomberoides and P. squamosissimus were observed (PERMANOVA). Specifically, 
P. squamosissimus consumed mainly “Siluriformes” fishes and P. blochii in the drought period. The trophic niche breadth of P. squamosissimus was 
greater than that of H. scomberoides in the flood period. The species P. squamosissimus and H. scomberoides had low (0.35) food niche overlap in both 
seasons analysed. The data indicated that P. squamosissimus has a generalist feeding habit, while H. scomberoides is specialized in prey selection. The 
overlap of food niche between the species in both periods of the hydrological cycle was low, indicating that niche partitioning was probably the main 
mechanism of coexistence of these species, with little relationship with variations of the hydrological cycle. 

KEYWORDS. Diet, trophic niche, Machado River, seasonal variation.

RESUMO. Particionamento de nicho de duas espécies de peixes piscívoros em um rio na Amazônia Ocidental Brasileira. Nós analisamos a 
variação sazonal na dieta, a amplitude do nicho trófico (Índice de Levins), a partição dos recursos alimentares (Índice simétrico de Pianka) e o nível 
trófico (média do nível trófico de cada presa determinada pela plataforma FishBase e SeaLifeBase) de Plagioscion squamosissimus (Heckel, 1840) e 
Hydrolycus scomberoides (Cuvier, 1819) no rio Machado, Rondônia, Brasil. As amostragens de peixes foram realizadas bimestralmente de junho de 2013 
a maio de 2015 em cinco locais, utilizando oito conjuntos de redes de emalhar. A frequência de ocorrência e a frequência volumétrica foram utilizados 
para quantificar os itens alimentares. Analisamos o conteúdo estomacal de 283 indivíduos, 134 de H. scomberoides e 149 de P. squamosissimus. Peixes 
foram o item alimentar mais consumido pelas duas espécies piscívoras. No entanto, H. scomberoides ingeriu principalmente peixes pelágicos (ex. peixes 
Characiformes e Prochilodus nigricas Spix & Agassiz, 1829), enquanto P. squamosissimus consumiu principalmente peixes bentônicos [ex. Pimelodus 
blochii Valenciennes, 1840 e Tenellus trimaculatus (Boulenger, 1898)]. Hydrolycus scomberoides apresentou nível trófico de 3,55 para ambos os períodos 
analisados, enquanto para P. squamosissimus o nível trófico foi de 4,01 no período da cheia e 3,82 no período de seca. Variações sazonais na dieta de H. 
scomberoides e P. squamosissimus foram observadas (PERMANOVA). Especificamente, P. squamosissimus consumiu principalmente peixes “Siluriformes” 
e P. blochii no período de seca. A largura do nicho trófico de P. squamosissimus foi maior que a de H. scomberoides no período da cheia. Plagioscion 
squamosissimus e H. scomberoides apresentaram baixa (0,35) sobreposição de nicho alimentar nas duas estações analisadas. Os dados indicaram que 
P. squamosissimus tem hábito alimentar generalista, enquanto H. scomberoides é especializado na seleção de presas. A sobreposição de nicho alimentar 
entre as espécies em ambos os períodos do ciclo hidrológico foi baixa, indicando que a partição de nicho foi provavelmente o principal mecanismo de 
coexistência dessas espécies, com pouca relação com as variações do ciclo hidrológico.

PALAVRAS-CHAVE. Dieta, nicho trófico, rio Machado, variação sazonal.

The Amazon basin covers approximately 6,000,000 
km2, discharging about 16% of the world’s freshwater into the 
Atlantic Ocean (Venticinque et al., 2016; Latrubesse et al., 
2017), and have high global freshwater biodiversity (Tisseuil 
et al., 2013). Specifically, the fish fauna is represented by 
2,257 species described (including over 1,000 endemic 

species; not found anywhere else in the world). Consequently, 
in the Amazon basin making up approximately 15% of the 
described global freshwater ichthyofauna (Tedesco et al., 
2017).

The theories related to species coexistence, which 
consequently try to explain high species diversity, mostly in 
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Amazonia, are based on two competing theories, Hutchinson’s 
niche theory (Hutchinson, 1957) and Hubbell’s neutral 
theory (Hubbell, 2001). Niche theory states that guilds of 
competing species will diverge, leading to reduced niche 
overlap. The ubiquity of ecological niches provides a general 
explanation for the positive relationship between diversity 
and functioning: through competitive divergence each species 
only covers some part of the total niche space available 
in a community (Tilman et al., 1997). The neutral theory 
considers that groups of trophically similar species typically 
can occur in sympatry and compete for similar resources, 
because the diversity of the assemblage results from stochastic 
processes acting on both local and regional scales (Gaston 
& Chown, 2005). 

However, MacArthur (1965) described that gradients 
of richness could be explained by two contrary patterns of 
niche occupation: (i) the niche expansion model, where 
an increase in richness is linked to the occupation of new 
regions of niche space (habitat dimensions and resources), 
which are not available or still need to be explored by more 
assemblages (MacArthur, 1965; Karr & James, 1975); and 
(ii) the niche packing model that proposes higher diversity 
is associated to denser niche packing, which arises through 
more restricted specialization or greater overlap in resource 
use (Klopfer & MacArthur, 1961; Karr & James, 1975) 
that, in turn, may reflect differences in the ecological capacity 
of coexistence or regional differences in speciation rates 
(Hubbell, 2006).

One approach for evaluating interactive processes 
in aquatic assemblages (Esteves & Aranha, 1999), is the 
investigation of the diet of fishes (Reis & Santos, 2014), 
whose feeding habits can be influenced by environmental 
conditions, the biological traits of the species (Abelha et 
al., 2001) and spatial-temporal variations (Ximenes et al., 
2011). According to Junk et al. (1989), the hydrological 
cycle plays an important role in controlling natural fluvial 
systems by affecting the structure of habitats and the life 
cycle of species. Seasonal river fluctuations unite large 
extensions of terrestrial environments in the fluvial system, 
which promotes greater availability of habitats and food 
(Agostinho et al., 2007), supports a high diversity of species 
with distinct morphological traits (Willis et al., 2005), and 
facilitates the coexistence of species via resource partitioning 
(Winemiller et al., 2000).

Piscivorous fish represent a high percentage of the 
total biomass of Neotropical aquatic environments (Pereira 
et al., 2017). Piscivorous fish play an important role in the 
dynamics and structuring of fish assemblages (Petry et 
al., 2010), coupled with the fact that flooding affects inter- 
and intraspecific relationships between synoptic species 
(Pereira et al., 2017). Species belonging to this guild are 
usually top predators and are able to sustain biodiversity 
and prevent strong trophic cascades (Monteiro & Faria, 
2016). Species with similar diets, such as piscivores, but 
with different feeding strategies, should behave differently 
in relation to the hydrological cycle and resource availability 
(Luz-Agostinho et al., 2009).

Large piscivorous fishes show notable versatility in 
their feeding habits and high plasticity in feeding due to the 
high variation in aquatic environments of tropical regions 
(Lowe-McConnell, 1999; Moyle & Cech, 2004; Correa 
& Winemiller, 2014; Barbosa et al., 2018). In several 
environments and biomes (Hahn et al., 1999; Bennemann 
et al., 2000, 2006; Santos et al., 2016), Plagioscion 
squamosissimus (Heckel, 1840), the South American silver 
croaker is piscivorous (Barbosa et al., 2018) or a generalist 
carnivore (Neves et al., 2015). This species is a sedentary 
fish native to the Amazonian region (Santos et al., 2006), a 
valuable resource for human consumption and recreational 
fishing (Barros et al., 2012) and preferentially dwells in the 
water column and at the bottom of rivers and lakes (Teixeira 
& Bennemann, 2007). In recent studies by Barbosa et al. 
(2018), this species consumed preferably species of the order 
Siluriformes. Similarly, Hydrolycus scomberoides (Cuvier, 
1819), the dogtooth characin, is distributed throughout the 
Amazon basin (Queiroz et al., 2013), has a piscivore dietary 
habit, consumes entire fish, but has insignificant commercial 
importance (Santos et al., 2006).

Considering their ecological importance, this study 
aimed to evaluate piscivorous fish feeding in a stretch of the 
Machado River, Amazônia, comparing flood and drought 
periods. The questions that this survey aims to investigate 
are: i) The hydrological periods change the diet and trophic 
niche breadth of P. squamosissimus and H. scomberoides in 
the river? ii) There are trophic relationships (niche overlap) 
between fish species. Whereas water level changes, and 
the allochthonous and autochthonous inputs varies in their 
importance for fish assemblages (Vazzoler, 1996; Junk et 
al., 1989, 2010), we hypothesized that the diet composition 
of both species of fish varies between the seasons of the 
hydrological cycle (flood and drought periods), in a river 
in southwestern Amazonia. Considering the occurrence and 
high abundance of both species in the Machado river, we 
infer that such species have specialized food habits, however, 
a smaller niche partitioning between P. squamosissimus and 
H. scomberoides occurs. 

MATERIAL AND METHODS

Study area. We carried out the study in the Machado 
River (commonly known as Ji-Paraná River) basin, which 
covers 75,400 km2 in the State of Rondônia, Brazil (Fig. 1). 

This seventh-order river annually drains about 700 
m3.s-1 into the middle course of the Madeira River (Krusche 
et al., 2005). The Machado River has large individual rocks, 
rocky portions, as well as trunks and branches observed 
during the drought season with low sediment loads, typifying 
it as a clear-water Amazonian river (Goulding et al., 2003). 

The climate of the region is characterized by 
temperatures that vary between 19 and 33ºC and annual 
precipitation of around 2,500 mm (Krusche et al., 2005). The 
hydrological regime is characterized by the peak of the flood 
in March and the minimum level in September (Companhia 
de Pesquisa de Recursos Minerais, 2012). The Machado 
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River runs through the Jarú Biological Reserve (ReBio Jaru, 
Fig. 1), which has a total area of 47,733 km2 (MMA, 2010), 
with a preserved riparian zone covered by ombrophylous 
forest that is mainly open and has low floristic variations 
(IBGE, 1992).

Fish sampling. Samplings were performed bimonthly 
from June 2013 to May 2015 in five sites (Carmita, Farofa, 
Suretama, São Sebastião and Poção) (Fig. 1). A total of 
12 samples were taken (four samples in 2013, six in 2014 
and two in 2015; flood season = six samples and drought 

season: six samples). Eight sets of gillnets (2 x 20 m with 
mesh sizes varying from 30 to 100 mm) were used. Sampling 
effort was standardized, and scientific fishing was carried 
out for 24 hours continuously at each sampling site. The 
gillnets reviews were carried out every three hours. Some 
specimens were fixed in 10% formalin and preserved in 70% 
ethanol. Subsequently, these specimens were deposited in 
the Ichthyology collection at the Universidade Federal de 
Rondônia (voucher: UFRO-ICT 023107) and Universidade 
Federal de Mato Grosso (voucher: CPUFMT 3390). License 
for fish collections was provided by the Instituto Brasileiro 
do Meio Ambiente e dos Recursos Naturais Renováveis 
(IBAMA # 4355-1).

Stomach content analysis. In all analyzed individuals, 
the standard length (LS in cm) was measured. A total of 283 
stomachs were analyzed: 134 stomachs of H. scomberoides 
and 149 of P. squamosissimus (Tab. I).

Fish abdominal cavities were opened and their 
stomachs were removed. After, the gut contents were stored in 
70% alcohol, and food items were analyzed and identified to 
the lowest taxonomic level (Hamada & Ferreira-Keppler, 
2012; Hamada et al., 2014). The occurrence frequency (Fi%) 
and the method of volumetric frequency (Vi%) were used to 
quantify the gut contents (Hyslop, 1980). The occurrence 
frequency method, whereby the number of stomachs in which 
a particular item is found, is expressed as the percentage of 
the total number of examined stomachs containing food. 
For the volumetric frequency, the volume of each item was 
obtained using the percentage in relation to the total value of 
all gut contents. The volume was obtained using a gridded 
dish, and cubic millimeters were converted to milliliter 
(Hellawell & Abel, 1971). This value was combined in 
a feeding index (IAi) proposed by Kawakami & Vazzoler 
(1980). The index is given by the equation IAi = (Fi*Vi)/Σ 
Fi*Vi)*100, where i = 1 to number of food items; Fi = 
Frequency of occurrence of food item i; and Vi = Volume 
of food item i. Food items were grouped according to type 
(animal or plant) and origin (autochthonous or allochthonous). 
Fullness index (FI) was determined according to Hahn et al. 
(1999) and gut contents were coded as follows: 0 (empty), 
1 (volume < 25%), 2 (25% < volume < 75%) and 3 (75% 
< volume < 100%).

Data analysis. A Permutational Multivariate Analysis 
of Variance (two-way PERMANOVA – Anderson et al., 
2005) was performed to test the null hypothesis that diet 
composition of P. squamosissimus and H. scomberoides does 
not differ between hydrological periods. Was applied to a 
matrix of food items of individual fish, with volume values 
log transformed. The significance of multivariate dispersion 
generated by PERMANOVA was assessed using a Monte 
Carlo test with 9999 permutations, followed by a post hoc 
pair wise comparison between hydrological seasons.

A non-metric multidimensional scaling analysis 
(nMDS) was used to examine multidimensional temporal 
variation in diet using the total volume of each item. The 
dissimilarity matrix used in the ordination was built using 
the Bray-Curtis index.

Fig. 1. Sampling site (black circles), Ji-Paraná Town (black triangle) and 
Machado River basin, Madeira River drainage, Brazil. Samples taken in 
June 2013 to May 2015. REBIO Jaru = Jaru Biological Reserve; Rondônia 
State = black square
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To estimate the trophic niche breadth, we used the 
standardized Levins index (Ba): Ba = [(ΣjP2ij)]-1(n-1)-1, 
where Ba = niche breadth, Pij = proportion of item j in the 
diet of species i, and n = total number of items (Krebs, 1998). 
This index ranges from zero (when the species consumes 
only one type of item) to one (when the species consumes 
all items in equal proportions). Species feeding overlap in 
each period was calculated using Pianka’s symmetric index 
(Pianka, 1974) that varies in a scale from 0 to 1, with 1 
indicating complete overlap. Overlap values were arbitrarily 
set at the following levels: high (> 0.6), intermediate (0.4 - 0.6) 
or low (<0.4) (Grossman, 1986). This index assumes prey 
to be equally available to all predators (Reinthal, 1990).

The differences in the niche breadth between species 
and periods were tested using one-way analysis of variance 
(ANOVAs), when normality (Shapiro-Wilks test) and 
homoscedasticity (Levene’s test) assumptions were met. 
The nonparametric Kruskal-Wallis test was used for data 
with non-normal distributions.

The trophic level (TL) was calculated using the 
formula TL = 1 + (weighed average of TL’s of each prey) 
(Pauly & Christensen, 1995). Trophic level and maximum 
length of P. squamosissimus and H. scomberoides fish prey 
were determined using FishBase platform (Froese & Pauly, 
2019) and SeaLifeBase (http://sealifebase.org).

The niche breadth was performed using the software 
PAST (version 2.1.7) (Hammer et al., 2001). Statistical 
tests were performed using the software R (version 3.5.2) 
(R Development Core Team, 2018), with the package’s 
vegan, MASS for ANOVA, PERMANOVA, NMDS and 
SPAA for niche overlap. Results were considered significant 
when p ≤ 0.05.

RESULTS

Both species ingested a wide variety of food items, such 
as fishes, shrimps, terrestrial and aquatic insects at different 
life stages, and plants. Hydrolycus scomberoides consumed 
a total of 14 food items (flood season: eleven items; drought 
season: eight items), while P. squamosissimus consumed a 
total of ten items (flood season: ten items; drought season: 
eight items) (Tab. II). We highlight that H. scomberoides 

mainly ingested pelagic fish and P. squamosissimus mainly 
ate benthic fish.

Prochilodus nigricans Spix & Agassiz, 1829 was the 
most important food item (high IAi) for H. scomberoides 
in the flood period, as well as Characiformes fishes and 
unidentified fish fragments (Tab. I; Fig. 2A). For the drought 
period, Characiformes fish, nematodes and terrestrial insects 
were the main items (high IAi) encountered in the diet of H. 
scomberoides (Tab. I; Fig. 2B). Unidentified fish fragments 
were the most important food item for P. squamosissimus in 
the flood period, as well as Pimelodus blochii Valenciennes, 
1840 and Siluriformes fishes (Tab. I; Fig. 2C). In the drought 
period, unidentified fish fragments, Siluriformes fishes and 
Tenellus trimaculatus (Boulenger, 1898) were the most 
important items in the diet of P. squamosissimus (Tab. I; 
Fig. 2D).

The PERMANOVA indicated that the diet between 
H. scomberoides and P. squamosissimus for both periods 
analyzed was significantly different (pseudo-F = 2.54, 
p = 0.02) (Tab. III). “Siluriformes” (PERMANOVA, 
pseudo-F = 2.00; df = 3; p = 0.006) and Pimelodus blochii 
(PERMANOVA, pseudo-F = 1.77; df = 3; p = 0.01) were 
the food items consumed mainly by P. squamosissimus in 
the drought period.

In the NMDS analysis, clustering was observed based 
on the distinct use of food resources between H. scomberoides 
and P. squamosissimus for both seasonal periods, with a 
“stress” of 0.12 (Fig. 3).

Mean values for niche breadth were lower as follows: 
0.181 and 0.172 for H. scomberoides in the flood and drought 
periods, respectively. For P. squamosissimus the mean of 
niche breadth was high, 0.813 and 0.632 in the flood and 
drought periods, respectively. The trophic niche breadth of P. 
squamosissimus was greater than that of H. scomberoides in 
the flood period (ANOVA, F = 7.1; p < 0.05; df = 3) (Fig. 4).

The general niche overlap between P. squamosissimus 
and H. scomberoides was low (0.35). There was no niche 
overlap between the species in the flood period (overlap = 
0), whereas in the drought period it was 0.03. Considering 
the periods, the average overlap between the diets was low 
(0.10), showing a high degree of food resource partitioning 
(Fig. 5).

Tab. I. Sampling site, abundance (N) and standard length (LS; mean ± standard deviation) of Hydrolycus scomberoides (Cuvier, 1819) and Plagioscium 
squamosissimus (Heckel, 1840) at flood and drought periods of Machado River, Brazil (June 2013 to March 2015). 

Site

H. scomberoides P. squamosissimus

Flood Drought Flood Drought

N LS N LS N LS N LS

Carmita 8 57.5 ± 7.4 10 59.6 ± 5.0 8 49.4 ± 4.9 13 47.2 ± 6.8

Farofa 7 49.7 ± 3.9 13 57.2 ± 4.2 22 46.3 ± 3.8 10 47.0 ± 2.2

Suretama 9 50.2 ± 2.9 14 58.6 ± 4.8 19 48.5 ± 5.1 8 48.1 ± 1.8

São Sebastião 26 58.7 ± 3.4 32 51.3 ± 4.9 12 49.3 ± 2.1 40 46.9 ± 1.2

Poção 5 57.9 ± 2.4 10 56.2 ± 4.0 12 48.9 ± 1.6 5 47.3 ± 3.2
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Tab. II. Trophic level (TL), occurrence frequency (Fi%), volumetric frequency (Vi%), and feeding index (IAi) for diet items from Hydrolycus scomberoides 
(Cuvier, 1819) and Plagioscium squamosissimus (Heckel, 1840) at flood and drought periods of Machado River, Brazil (June 2013 to March 2015). 
Allochthonous items†; autochthonous items‡. 

Food item TL

H. scomberoides P. squamosissimus

Flood Drought Flood Drought

Fi% Vi% IAi Fi% Vi% IAi Fi% Vi% IAi Fi% Vi% IAi

Animal origin

  Characiformes‡ 3.2 0.371 0.057 0.385 0.286 0.259 0.501 0.111 0.041 0.033

Acestrohynchus falcatus‡ 4.2 0.057 0.037 0.038

Prochilodus nigricans‡ 2.4 0.029 0.815 0.424

Moenkhausia sp.‡ 3.2 0.029 0.004 0.002

  Siluriformes‡ 3.2 0.057 0.008 0.008 0.143 0.074 0.072 0.111 0.077 0.061 0.176 0.300 0.358

Pimelodus blochii‡ 3.2 0.029 0.020 0.011 0.071 0.111 0.054 0.074 0.152 0.080 0.176 0.013 0.016

Tenellus trimaculatus‡ 2 0.111 0.077 0.061 0.118 0.140 0.111

  Gymnotyformes‡ 3.2 0.111 0.049 0.039 0.176 0.035 0.042

  Fish no identified‡ 3.2 0.200 0.029 0.107 0.071 0.037 0.018 0.185 0.483 0.639 0.176 0.345 0.412

  Shrimp‡ 2 0.111 0.067 0.053 0.059 0.022 0.009

  Scales‡ 3.2 0.086 0.009 0.013 0.071 0.037 0.018 0.111 0.046 0.037 0.059 0.002 0.001

  Nematodes‡ 2 0.214 0.111 0.161

  Aquatic insects‡ 2 0.037 0.005 0.001

  Terrestrial insects† 2 0.071 0.296 0.143 0.037 0.003 0.001 0.059 0.142 0.056

  Coleoptera† 2 0.057 0.008 0.008

  Annelida‡ 2 0.057 0.008 0.008

Plant origin

  Seeds† 1 0.029 0.004 0.002

Unidentified Material

Detritus/mud‡ 1 0.071 0.074 0.036

In both periods, H. scomberoides showed similar 
trophic level values (mean of TLflood = 3.55; TLdrought = 
3.55; χ2 = 0.0; df = 1; p = 0.95), which was also found for 
P. squamosissimus (mean of TLflood = 4.01; TLdrought = 3.82; 
χ2 = 0.0; df = 1; p = 0.99). 

DISCUSSION

In our study, H. scomberoides and P. squamosissimus 
consumed different food items. For each fish species 
analyzed, we did not observe significant differences in the 
items ingested between the periods. Further, the trophic 
level values for both species were similar between the 
drought and flood periods. Our results could indicate that 
the high TLs and the similarity between them refer to 
habitat use, which is used by H. scomberoides in the pelagic 
region, to capture prey, and to P. squamosissimus in the 
benthic region. According to Bennemann & Shibatta 
(2002), variations in the pelagic and benthic food chains 
and opportunistic behavior was already identified for these 
species in other environments. The competitive exclusion and 
limiting similarity are expected to favor the co-occurrence 
of dissimilar species by promoting the exploitation of 
different resources (“niche partitioning” hypothesis; Pianka, 

1974). However, microhabitat heterogeneity or resource 
availability can greatly influence the partitioning of resources 
among species (Mouquet et al., 2002). We highlight that 
structurally complex environments, such as the Machado 
River (comprising rapids, rocks, trunks, and branches from 
the forest margin), are stable and have resources (Pelicice 
et al., 2005; Willis et al., 2005), favoring the exploration 
of resources in a compartmentalized way. 

Generalist carnivorous species has large feeding 
spectrum, consuming different food resources that are 
appropriate for its feeding behavior, digestive capacity and 
morphology (Neves et al., 2015). The greater consumption 
of pelagic fish by H. scomberoides can be explained by 
the ecomorphological traits of the species. In general, H. 
scomberoides is able to eat whole prey due their large 
mouth with underslung jaw (Beaumord, 1991; Cardoso 
et al., 2019), but have also been shown to capture their 
prey using their long canine teeth (Howes, 1976). Due to 
their large and upward-oriented mouths, these species focus 
prey-capture at the water surface or at the limnetic zone 
(Saint-Paul et al., 2000). The H. scomberoides is predator 
with surface-oriented vision that have remarkably similar 
morphology. The narrow head allows stereoscopic vision 
anteriorly, ventrally, and dorso-anteriorly (Howes, 1976). 
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The enlarged pectoral fins of these fish probably are used for 
rapid upward acceleration, followed by prey capture either 
by impalement on large inferior canines in the upturned 
mouth, or by suction caused by expansion of the buccal 
cavity (Howes, 1976; Goulding, 1980).

Given their morphology, P. squamosissimus is efficient 
swimmer and have the capacity of expanding their mouths to 

ingest entire prey (Rodrigues & Menin, 2006; Teixeira & 
Bennemann, 2007). These characteristics allow this species 
to exploit the most accessible and abundant feeding items, 
which could change seasonally from fish to shrimp, insects, 
among others (Prudente et al., 2016). The P. squamosissimus 
is a silvery fish with a large mouth and a flattened ventrum. 
This species often lives in turbid waters and have elaborate 

Tab. III. Results of Two-way PERMANOVA applied to diet of Hydrolycus scomberoides (Cuvier, 1819) and Plagioscium squamosissimus (Heckel, 1840) 
in flood and drought periods of Machado River, Brazil (June 2013 to March 2015). F = Flood; D = Drought.

Species Pseudo-F = 2.75; p = 0.0002

Hydrological periods Pseudo-F = 2.54; p = 0.02

H. scomberoides (F) x H. scomberoides (D) p = 0.172

H. scomberoides (F) x P. squamosissimus (D) p < 0.0001

H. scomberoides (D) x P. squamosissimus (F) p = 0.014

P. squamosissimus (F) x H. scomberoides (F) p = 0.001

P. squamosissimus (D) x H. scomberoides (D) p = 0.009

P. squamosissimus (F) x P. squamosissimus (D) p = 0.786

Fig. 2. Simplified food chain for Hydrolycus scomberoides (Cuvier, 1819) (Hs) in the flood (A) and drought (B), and for Plagioscion squamosissimus 
(Heckel, 1840) (Ps) in the flood (C) and drought (D) periods in Machado River (Brazil), June 2013 to May 2015. Arrow width illustrates importance in the 
diet Y-axis = trophic level (TL), X-axis: maximum length (cm). TL and maximum length are from fishbase.org and and Casatti (2003). Ps = Plagioscion 
squamosissimus (Heckel, 1840), Hs = Hydrolycus scomberoides (Cuvier, 1819), Af = Acestrohynchus falcatus (Bloch, 1794), Pn = Prochilodus nigricas 
Spix & Agassiz, 1829, Pb = Pimelodus blochii Valenciennes, 1840, Tt = Tenellus trimaculatus Boulenger, 1898, Ch = Characiformes, Si = Siluriformes, 
Gy = Gymnotiformes, Fni = Fish no identified, Sc = Scales, Ne = Nematoda, Sr = Shrimp, Ti = Terrestrial insect and De = Detritus.
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sound producing and receiving systems and a well-developed 
lateral line (Moyle & Cech, 2004). Also, Nico & Taphorn 
(1984) have shown that P. squamosissimus feeds near or on 
the bottom during the night.

Thus, fish is the main food item for P. squamosissimus, 
but with reduced fish availability this species becomes 
opportunistic (Bennemann & Shibatta, 2002). However, 
the optimal foraging theory must be considered, this predicts 
that optimal patterns of behavior based on the costs and 
benefits are associated with various strategies of species 
survival (Broughton, 2002). According to predictions of 
optimal foraging theory, foragers are expected to have more 
specialized diets when preferred resources are abundant, 
and to broaden their diets during periods of food scarcity 
(Stephens & Krebs, 1986; Perry & Pianka, 1997). Aside 
from the differences between pelagic and benthic food webs, 
it is common to associate deforestation with increased inputs 
of organic matter (Thomaz et al., 2004), as well as upwelling 
organic matter to eutrophication (Brasil et al., 2016), 
which could lead to blooms of toxin-producing microalgae 
and force detritivory (Bezerra et al., 2018), limiting the 
pelagic trophic network (Paerl & Paul, 2012). Under these 
circumstances, resources are available to benthic organisms 
and other generalist species that could drive the omnivorous 
fishes to benthivory (Bezerra et al., 2018). Such alternative 
state increases energy dissipation in the upper trophic levels 
(D’Alelio et al., 2016), which is also linked to omnivory 
(González-Bergonzoni et al., 2016) and the consumption 
of benthos (Bezerra et al., 2018). This phenomenon can be 
described as “benthification” in oligotrophic waters (Mayer 
et al., 2014), representing a sudden change from turbidity 
to clarity caused by invertebrate filter feeders consuming 
phytoplankton, a change which benefits generalist fish 
(Karatayev et al., 2007). This concept could also be used 
in environments as the Machado River.

The relation between Amazonian ichthyofauna and 
the hydrological cycle has been discussed in many studies 
(Junk et al., 1989; Freitas et al., 2010). The period with 
high water is expected to be advantageous to prey species, 
since there is more space for dispersal and refuge (Gomes et 
al., 2012), and flooded forest areas with tree roots, trunks, 
branches, rocks and holes (Araújo-Lima & Goulding, 1998; 
Claro-Jr et al., 2004). Drought season favors predators 
because of the restricted environment in the region of the 
river channel and low availability of refuge areas, making 
it easy to find prey (Luz-Agostinho et al., 2009).

In our study, significant differences were not identified 
for the diet of H. scomberoides and P. squamosissimus 
between the drought and flood periods. The consumed items 
were compatible with ecomorphological of each species, as 
previously described. The only exception was the greater 
contribution, but not statistically significant, of terrestrial 
insects in the diet of H. scomberoides in the drought period. 
The increased presence of terrestrial insects in the diet of 
fish during a flood period has been reported in many studies 
(Angermeier & Karr, 1983; Winemiller, 1990; Zavala-
Camin, 1996; Lowe McConnell, 1999; Yamamoto et al., 
2004), which is because these insects are carried by rain 
water and water courses expand along marginal areas during 
this period. Our results were contrary to those described in 
the literature and the consumption of terrestrial insects by 

Fig. 5. Trophic niche overlap between Plagioscion squamosissimus (Heckel, 
1840) (Ps) and Hydrolycus scomberoides (Cuvier, 1819) (Hs) in the flood 
(F) and drought (D) periods in the Machado River, Rondônia State, Brazil, 
June 2013 to May 2015. 

Fig. 3. Non-metric multidimensional scaling analysis (nMDS) of IAi data of 
Plagioscion squamosissimus (Heckel, 1840) and Hydrolycus scomberoides 
(Cuvier, 1819) in the flood and drought periods in the Machado River, 
Rondônia State, Brazil, June 2013 to May 2015. Hydrolycus scomberoides 
(Cuvier, 1819)/flood (square); Hydrolycus scomberoides/drought (square 
opened); Plagioscion squamosissimus (Heckel, 1840)/flood (circle) and 
Plagioscion squamosissimus (Heckel, 1840)/drought (circle opened).

Fig. 4. Values of trophic niche breadth (mean±standard error) of Plagioscion 
squamosissimus (Heckel, 1840) (Ps) and Hydrolycus scomberoides (Cuvier, 
1819) (Hs) in the flood (F) and drought (D) periods in the Machado River, 
Rondônia State, Brazil, June 2013 to May 2015. 
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H. scomberoides could be related to the life cycle of the 
arthropods eaten by this species.

Additional studies have shown that seasonal variation 
in the overlap of species’ niches can occur within some 
systems (Pokharel et al., 2015). As a result, there have 
been renewed efforts to explore species’ trophic plasticity 
and the influence natural and/or human factors have on the 
adaptability of food web structures (Corrêa et al., 2011). 
Opposite to that described by Pokharel et al. (2015), the 
overlap of food niche between H. scomberoides and P. 
squamosissimus in both periods of the hydrological cycle was 
low, showing that niche partitioning was probably the main 
mechanism promoting the coexistence of these species, with 
little relationship with variations of the hydrological cycle. 
According to Pereira et al. (2017), low diet overlap between 
species would reflect the high heterogeneity of habitats 
that these species are able to reach; this fact is highlighted 
by the consumption of and selectivity for different prey 
types. The niche differentiation will lead to a reduction in 
the niche overlap between possible competitors, reducing 
competition and allowing coexistence (MacArthur, 1958; 
Pianka, 1974). These differences in niche might involve 
changes in some combination of strategies for habitat use, 
such as feeding time, energy allocation, defense, and diet 
restrictions, through feeding selectivity or niche retraction 
(Winemiller et al., 2015).

Thus, understanding and predicting how extreme 
inundation and flood events (which are increasing with 
climate change) influence the diet of fish assemblages 
are of relevant importance to the development of control 
programs and reducing impacts on ichthyofauna. As 
fishing pressure is eased through management efforts to 
restore overexploited stocks, making it necessary to enter 
information about interactions between species, especially 
trophic interactions between prey and predators, in models 
that promote the prediction and management of recovered 
fish stocks effectively (Jennings & Kaiser, 1998). For 
this, it is necessary to understand the trophic relationships 
between species and the factors that influence prey-predator 
interactions.
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