Tipos fermentativos do bacilo tífico

Gobert Araujo Costa, Washington Augusto de Almeida e Niber da Paz Moreira da Silva

Instituto Oswaldo Cruz, Rio de Janeiro, D.F.

Em 1901, Jensen, estudando a ação do bacilo tífico sôbre os hidratos de carbono, demonstra uma diferença na capacidade fermentativa das amostras em presença de xilose e da arabinose. Após êste achado, inúmeros trabalhos apareceram confirmando o comportamento diferente das amostras de Salmonella typhi.

KJER-PETERSEN & BJORNSSON (1909) propõem uma divisão para o bacilo tífico em três tipos: O tipo I constituído por amostras que fermentam a xilose e não a arabinose; o tipo II que não fermenta a arabinose nem a xilose, e o tipo III que decompõe os dois açúcares.

Em 1926, Kristensen & Henriksen atentam para a importância de serem utilizados os tipos fermentativos do bacilo tífico nas investigações epidemiológicas. Mostram êles a estabilidade dos tipos, bem como a possibilidade do seu aproveitamento para se determinar a origem única ou múltipla de uma epidemia.

Em 1933, Hirzfeld, Amzel & Rosenberg, estudando 579 amostras de bacilo tífico isoladas na Polônia, verificam a estabilidade da fermentação da xilose e recomendam o seu emprêgo na rotina diagnóstica.

Posteriormente, Kristensen (1938), em detalhado estudo, volta a insistir na separação dos tipos e em seu aproveitamento nos estudos epidemiológicos. Estabelece êle três tipos bioquímicos bem definidos:

```
Tipo I — Xilose + Arabinose —
Tipo II — Xilose — Arabinose —
Tipo III — Xilose + Arabinose +
```

Mostra Kristensen, mais uma vez, a estabilidade dos 3 biotipos e, em conseqüência, o seu grande interêsse epidemiológico.

OLITZKI e colaboradores (1945) estudam amostras de bacilo tífico isoladas na Palestina demonstrando a constância dos tipos bioquímicos e o seu valor epidemiológico associado à determinação dos fagótipos.

DE Blasi & Buogo (1952) admitem haver ainda um tipo IV, fermentador apenas da arabinose e mais raro que os outros.

Não pretendemos rever aqui tôda a bibliografia sôbre o assunto; no entanto, é oportuno referir os achados recentes de Felix & Ander-

son (1951) e de Pavlatou & Nicolle (1953), confirmando as verificações de Kristensen e assinalando a existência de uma relação entre os lisotipos e os tipos bioquímicos.

No presente trabalho, foi investigada a freqüência da distribuição dos tipos epidemiológicos das amostras de bacilo tífico recebidas de várias cidades do Brasil.

MATERIAL E MÉTODOS DE TRABALHO

Foram examinadas 211 amostras recebidas de sete Estados da Federação (norte, centro e sul) e distribuídas de acôrdo com a Tabela I.

TABELA I Distribuição topográfica das amostras de S. typhi estudadas

ESTADO	N."	Sc	
Distrito Federal	79	37,44	
Rio de Janeiro	43	20,37	
Pernambuco	34	16,11	
Rio Grande do Sul	20	9,47	
São Paulo	17	8,05	
Minas Gerais	9	4,26	
Pará	9	4,26	
TOTAL	211	99,96	

As amostras foram recebidas em meio de agar simples, passadas em placa, para verificação de sua pureza, e submetidas a um estudo bioquímico preliminar, seguido de provas sorológicas, que permitissem a sua identificação como S. typhi.

As fermentações de d-xilose e de l-arabinose foram feitas em tubos de cultura com tubinhos de Durhan. O meio usado foi a água peptonada a 1%, pH 7,2, com 1% do açúcar e 1% de indicador de Andrade. Foram empregados açúcares da Pfanstiehl Chemicals Co., que foram dissolvidos, a frio, no meio básico, distribuídos e tindalizados por três aquecimentos a 75°C, por 1 hora, em dias sucessivos. A leitura da fermentação dos dois açúcares foi feita com 18 a 24 horas.

RESULTADOS

Das 211 culturas estudadas, 120 (56,8%) foram classificadas no tipo I, 90 (42,6%) no tipo II e apenas 1 (0,4%) no tipo III. Foi elevada a percentagem de culturas do tipo II, em comparação com o resultado de outros autores.

Verifica-se, analisando a Tabela II, que foram encontradas amostras do tipo I em tôda a área de estudo, sendo que as culturas recebidas dos Estados de Rio Grande do Sul e Pará pertenciam tôdas a êsse tipo. O maior contingente de amostras do tipo II (71,1%) foi originário do D. Federal e também a única cultura do tipo III veio da Capital da República.

TABELA II Distribuição, segundo a origem e classificação bioquímica, das amostras de S. typhi

	TIPO DE FERMENTAÇÃO								
ESTADOS	l		11						
	N.º	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N.º	%	N.º	%			
Distrito Federal	14	11,6	64	71,1	1	100,0			
Rio de Janeiro	33	27,5	10	11,1					
Pernambuco	$25 \ $	20,8	9	10,0					
Rio Grande do Sul	20	16,6							
São Paulo	16	13,3	1	1,1					
Minas Gerais	3	2,5	6	6,7					
Pará	9	7,5							
TOTAL	120	56,8	90	42,6	1	0,4			

Analisando a Tabela III, verifica-se que o tipo fermentativo I foi o mais frequentemente encontrado em 5 Estados, a saber: Rio de Janeiro, Pernambuco, Rio Grande do Sul, São Paulo e Pará; o tipo II foi predominante no D. Federal e em Minas Gerais.

TABELA III Distribuição por Estados dos tipos bioquímicos de S. typhi

TIPO DE FERMENTAÇÃO	DISTRITO		RIO DE JANEIRO		PERNAM- BUCO		RIO GRANDE DO SUL		SÃO PAULO		MINAS GERAIS		PARÁ		Total
	N.º		N.º		N.º	e;	N.º	e.c	N.º	%	N.º	<u>c, </u>	N. o	C _C	
1	14	17,7	33	76.7	25	73,5	20	100,0	16	94,1	3	33,3	9	100,0	120
11	64	81,0	10	23,2	9	26,4		<u> </u>	1	5,8	6	66,6		 - 	90
111	1	1,2													1
TOTAL	79	99,9	43	99,9	34	99,9	20	100,0	17	99,9	9	99,9	9	100,0	211

Sendo diversa a incidência dos biotipos nas regiões consideradas, procuramos verificar se diferia significativamente o tipo de fermentação conforme o Estado ou zona estudada.

Foram significativas as diferenças de proporção, para os tipos I e II, entre os seguintes Estados:

D. Federal	Rio de Janeiro Pernambuco Rio Grande do Sul S. Paulo Pará
Rio de Janeiro	Rio Grande do Sul Minas Gerais
Pernambuco	Rio Grande do Sul Minas Gerais
R. G. do Sul	Minas Gerais
São Paulo ————————————————————————————————————	Minas Gerais
Minas Gerais	Pará

Verifica-se, por êstes resultados, que as diferenças foram significativas tôdas as vêzes que, entre os Estados comparados, predominavam tipos de fermentação diferentes (I ou II): sòmente em dois casos, ou seja, confrontando o Estado do Rio de Janeiro com o Rio Grande do Sul e Pernambuco com Rio Grande do Sul, a diferença foi significativa entre Estados cujo tipo bioquímico predominante era o mesmo (I).

DISCUSSÃO

Deve-se a Kristensen (1926) a importância dada aos tipos bioquímicos do bacilo tífico na pesquisa epidemiológica desta infecção. De início, era essencial estabelecer, se na realidade havia uma estabilidade dos tipos fermentativos, pois todo o acêrto da pesquisa epidemiológica dependia dêste fato. Não só pôde Kristensen verificar a estabilidade dos biotipos como vários outros trabalhos mostraram ser perfeitamente constantes êstes tipos.

Com o uso rotineiro, preconizado por Craigie & Yen (1938) e os que se lhes seguiram, da determinação dos tipos epidemiológicos por meio de fagos específicos Vi, a tipagem bioquímica ficou relegada a plano secundário, uma vez que maior precisão e mais variedades se obtêm com aquêle método. No entanto, alguns trabalhos recentes têm demonstrado o interêsse da aplicação, mesmo isolada, do método de Kristensen e a necessidade de se completar a tipagem pelos bacteriófagos, principalmente nos lisotipos heterogêneos, com a classificação bioquímica, obtendo-se, com isto, maior eficiência do trabalho (Jude & Nicolle (1949) e Pavlatou & Nicolle (1953).

No presente trabalho, nos preocupámos sòmente com a verificação dos tipos bioquímicos encontrados no Brasil. Foram êstes variados e a sua distribuição desigual. Se bem que o número de amostras estudadas não seja elevado, a análise estatística feita demonstrou haver diferenças significativas na incidência dos tipos de várias regiões.

Nos Estados onde há exclusividade de um tipo único, fácil será verificar a penetração de tipos exóticos e, com isto, localizar a origem da infecção. Nas cidades cosmopolitas, como o Rio de Janeiro, vários foram os tipos encontrados, inclusive o tipo III, que não foi achado em qualquer outra localidade.

Não pretendemos, naturalmente, reduzir as pesquisas epidemiológicas a simples verificações de tipo bioquímico pois a lisotipagem e a análise sorológica devem ser colocadas em primeiro plano. No entanto, em vista dos dados ora obtidos, é de todo recomendável que os laboratórios estaduais de Saúde Pública realizem sistemàticamente a pesquisa dos tipos bioquímicos para que se possa, em estudos posteriores, levantar as predominâncias regionais dos vários tipos de Kristensen.

CONCLUSÕES

Os autores estudaram os tipos bioquímicos de 211 amostras de S. typhi isoladas em vários Estados do Brasil.

O tipo I foi o mais freqüente, não só em tôda a série, como em 5 Estados; o tipo II predominou em 2 Estados e sua percentagem foi relativamente alta.

Houve diferenças significativas, na proporção dos tipos I e II, entre vários Estados. Sempre que, entre as Unidades comparadas, predominavam tipos de fermentação diferentes (I ou II), as diferenças de proporção foram significativas.

É recomendável que se faça rotineiramente, nos laboratórios de Saúde Pública, a determinação dos tipos bioquímicos de Kristensen a fim de se estabelecer a distribuição regional dos mesmos.

Agradecemos ao Prof. Mário Ramos e aos Drs. Dinarte Ribeiro, Augusto Taunay, Laurênio Costa e Germano Bretz a remessa das culturas de S. typhi isoladas nos vários Estados referidos no presente trabalho.

BIBLIOGRAFIA

DE BLASI, R. & Buogo, H., 1952, citado por Pavlatou, M. & Nicolle, P. (1953). CRAIGIE, J. & YEN, C.H., 1938, Notes of the typing of B. typhosus with Vi phage. Canad. Publ. Hlth. J., 29: 448, 484.

FELIX, A. & Anderson, E.S., 1951, Bacteriophage, virulence and agglutination tests with a strain of S. typhi of low virulence. J. Hyg., 49 (2-3): 349.

HIRZFELD, L., AMZEL, R. & ROSENBERG, J., 1933, Sur la differentiation de types biochimiques parmi les bacilles typhiques. C. R. Soc. Biol., Paris, 112: 1454-1456.

- JENSEN, C.O., 1901, citado por Kristensen, M. & Henriksen, H.C.D. (1926).
- JUDE, A. & NICOLLE, P., 1949, Determination des types bactériophagiques et caractères biochimiques des souches de S. typhi. Ann. Inst. Pasteur, 77 (5): 550.
- KJER-PETERSEN & BJORNSSON, K., 1909, citado por Kristensen, M. & Henriksen, H.C.D. (1926).
- Kristensen, M., 1938, Studies on the type division of the typhoid and paratyphoid B bacilli by fermentation. J. Hyg., 38 (6): 688.
- Kristensen, M. & Henriksen, H.C.D., 1926, Reactions fermentatives du bacille typhique et leur rôle epidemiologique. Comm. Inst. Serother. Danois, 16:
- OLITZKI, L., OLITZKI, A.L. & SHEBUSKY, M. 1945, Types of Eb. typhosa in Palestine. Trans. R. Soc. Trop. Med. Hyg., 39 (2): 167.
- Pavlatou, M. & Nicolle, P., 1953, Incidente des types biochimiques parmi les types bactériophagiques de Salmonella typhi. Ann. Inst. Pasteur, 85 (2): 185-198.