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This paper presents a diffusion model of larval dispersal especifically designed to account for par-
ticular aspects of postfeeding larval dispersal from the food source in organisms such as blowflies. In
these organisms the dispersal of immatures includes two groups of individuals, those that are actively
migrating and those that have initiated the pupation process. The classical diffusion equation in one
dimension was modified to incorporate a function which describes the burying of larvae to become
pupae. The analytical solution of this equation predicts oscillatory and monotonic dispersal behaviors,
which are observed in experimental populations of blowfly species.
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Diffusion models have been extensively em-
ployed to investigate dispersal and have yielded
considerable insight into the dynamics of animal
movement in space and time (Okubo 1980, Kareiva
1982, 1983, Andow et al. 1993, Christie et al.
1995). Diffusion models can be written in the sim-
plest form as

¶ u       = D Ñ2u + f(u),
¶ t                                                (1)

where the operator  Ñ denotes the spatial gradient,
t is time, u(x,y,t) is the local population density in
the spatial variables x and y, D is the coefficient of
diffusion, and f(u) is the reaction term describing
the net population change due to birth and death.
Whereas equation (1) entails several simplifying
assumptions about the dispersal process (Andow
et al. 1993), the ease with which distinct behav-
ioral details can be incorporated has turned diffu-
sion models into a powerful tool (Holmes et al.

1994). Equation (1) has been variously modified
to take into account animal movement toward ex-
ternal stimuli or movement driven by wind or wa-
ter currents (Helland et al. 1984, Banks et al. 1988),
correlation of movement between directions of
travel (Holmes 1993), and cases where organisms
have a tendency to move away from conspecifics
(Gurney & Nisbet 1975, see review in Holmes et
al. 1994).

Most studies employing diffusion equations
have described movement in adult animals (Andow
et al. 1993), but this approach has seldom been used
to study dispersal in immatures, whose dispersal
has important consequences for the population and
community dynamics and genetic structure of
populations (de Jong 1979, Roughgarden et al.
1988, Gaines & Bertness 1993). However, the same
theoretical results concerning diffusion in adults
can be applied to study dispersal in immatures
(Broadbent & Kendall 1953). In the present study
a diffusion approach is employed to model the form
of larval dispersal from the food source based on
experimental data from three blowfly species,
Chrysomya megacephala, C. putoria, and Co-
chliomyia macellaria. We take advantage of the
flexibility of diffusion models to incorporate be-
havioral characteristics of dispersal in the larval
stage. The model includes the classic diffusion and
velocity terms and also a function which describes
the process of larvae burying in the substrate to
become pupae. The focus on these blowflies is
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motivated by the fact that the two Chrysomya spe-
cies, which are native from the Old World and
Australasia, are part of an ongoing invasion of the
Americas (Guimarães et al. 1978, Baumgartner &
Greenberg 1984). The invading flies have dispersed
rapidly throughout the continent and have appar-
ently caused the decline in population numbers of
the native species, C. macellaria (Guimarães et al.
1979, Guimarães 1984, Greenberg & Szyska 1984).

MATERIALS AND METHODS

The process of larval migration from the food
source was investigated in laboratory populations
of C. megacephala, C. putoria and C. macellaria.
Laboratory colonies were founded from specimens
collected in the vicinities of the Universidade
Estadual de Campinas, SP, Brasil, and these indi-
viduals were considered the parental generation.
Adult flies were maintained at 25±1oC in cages
(30́ 30́ 48 cm) covered with nylon and were fed
water and sugar ad libitum. Eggs were obtained by
providing females with fresh beef liver. Newly
hatched larvae, the F1 generation, were transferred
to vials (7.2 cm diameter, 13.8 cm height), con-
taining 100 g of rearing media (Leal et al. 1982).
Horizontal dispersal of full grown larvae was sepa-
rately monitored for each species, depositing the
vials at one end of a cardboard box (3.0 cm long,
12 cm height, 30 cm wide), covered with wood
shavings, 5cm depth at the bottom. Dispersal was
quantified (in cm) as the distance travelled by the
larvae from the starting point at one end of the box
to the point where they buried to pupate. Two rep-
licates were run, with the following numbers of
larvae in each replicate: C. megacephala, 220, 294;
C. putoria, 119, 214; C. macellaria, 200, 124.

RESULTS

Larval dispersal - The process of larval dis-
persal of postfeeding larvae from the food source
in calliphorids such as C. megacephala, C. putoria,
and C. macellaria involves individuals that are
actually dispersing while some of them begin to
bury in the substrate to pupate. Because of this
characteristic the form of dispersal can only be in-
ferred when all individuals have pupated. For each
species, after all individuals had pupated in the
substrate, we counted the number of pupae ob-
served at each 20 cm interval from the release point
at one end of the cardboard box. Individual dis-
persal distances were then measured as the distance
travelled by the postfeeding larvae from the point
of release to the site of pupation.

The number of pupae found at each interval
was plotted against distance travelled by the lar-
vae and the overall pattern that emerges from this
data set is similar for the three species in that they

did not move far from the food source, and the
number of larvae dispersing decreases with dis-
tance (Fig. 1). Nevertheless the two invading spe-
cies differ remarkably from the native species in
the shape of dispersal. In C. megacephala and C.
putoria, the shape of dispersal shows a pattern of
dampened oscillations, whereas in the native spe-
cies, C. macellaria, the number of dispersing lar-
vae apparently declines monotonically (Fig. 1).

Diffusion model - The diffusion model devel-
oped here takes into account both dispersing indi-
viduals and those that have already buried, and is
written in one-dimensional space and time as:

    ¶c(x,t)           ¶2c(x,t)          ¶c(x,t)                 = D                + a                - h(x,t),
       ¶t                  ¶x2                    ¶x

(2)
where c(x,t) is the concentration of larvae on sur-
face, x is the one-dimensional spatial coordinate, t
is time, D is the diffusion coefficient representing
the random movement of the larvae and a is a co-
efficient of proportionality describing the velocity
which is taken to be characteristic of each species.
The first two terms in equation (2) describe the
movement of larvae in the surface of the substrate.
The last term in equation (2) is of particular im-
portance in the context of larval migration because
it is a function describing the rate of burying of the
larvae.

As an approximation to the shape of spread of
larvae shown in Fig. 1, the process of larval bury-
ing in the substrate is considered to decline expo-
nentially with the distance dispersed by the larvae
and to be directly proportional to the difference in
concentration of the larvae. These assumptions then
lead to

h x t k c
x x

x
e c x trx( , )

( )
( , )

*

*= − −










−
0  for  t £ t*  and

x £ x*,                                                             (3)

Fig. 1: horizontal dispersal in Chrysomya putoria, Cochliomyia
macellaria and Chrysomya megacephala.
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where k is a constant of proportionality, c0 is pro-
portional to the initial concentration of larvae, x*
is the maximum distance travelled by the larvae,
and t* indexes the end of dispersal when no larvae
remain in the surface. Notice that c(x,t) ³  0 and
h(x,t) ³  0 for t £ t*. On the other hand, t > t*, c(x,t)
º  h(x,t) º  0.

The concentration of buried larvae at any point
in time, c*(x,t), is given by

            c x t h x d
t* ( , ) ( , )= ∫ τ τ
0

      (4)

Using equation (3) in equation (4) we obtain

c x t
kc

x
x x te k c x drx t*

*
*( , ) ( ) ( , )= − −− ∫0

0
τ τ   for  t

£ t*  and  x £ x*.  (5)

When t > t*, there are no larvae left in the sub-
strate. In this case,

c x t
kc

x
x x t e k c x drx t* *

*
* *( , ) ( ) ( , )

*

= − −− ∫0

0
τ τ ,  x £ x*,

(6)

describes the end of the process of larval dispersal
as a result of all larvae having buried in the sub-
strate, which implies

                       
∂

∂
c x t

t

( , )*

= 0 . (7)

From equations (2) and (7),

    D
c

x

c

x
h x t

∂
∂

α ∂
∂

2

2 0+ − =( , ) ,  for  t = t*. (8)

Since the derivatives in equation (8) do not depend
on time we have

  
d c

dx D

dc

dx

k

D
c

kc

Dx
x x e rx

2

2
0+ + = − −α
*

*( ) . (9)

The solution of the homogeneous part of equa-
tion (9) is of the form

       c x Ae Beh
x x( ) = +λ λ1 2 ,

and the roots (l i) are given by the characteristic
equation

       λ i

p p q
=

− ± −2 4

2
,  i = 1, 2,

where p = a/D and q = k/D. The real parts of l 1
and l 2 are always negative, yielding solutions with
exponential decay. The case p2 £ 4q is relevant for
the understanding of the pattern of dispersal be-

cause the associated complex roots l 1 and l 2 de-
scribe the damped oscillations observed in our ex-
periments of larval dispersal (Fig. 1). The discrimi-
nant in the characteristic equation establishes a re-
lationship between the coefficients of diffusion, D,
the velocity of dispersal, a, and the constant of pro-
portionality k, as follows.

If p2 £ 4q we have that

             
α2

4
D

k< . (10)

For the case where inequality (10) holds, the homo-
geneous solution to equation (9) can be written as

c x x eh

p
x

( ) cos( )= −
−

β ω θ 2                                                      , (11)

with ω = −4 22q p .

A particular solution to (9) can be found as

        ( )c x B A x ep
rx( ) = + −

1 1 . (12)

Substituting cp(x) in equation (9) we obtain

        A
qc

x r rp q1
0

2=
−

− +* ( )
and

    
[ ]

B
qc p r x r pr q

x r pr q1
0

2

2 2

2
=

− + − +

− +

*

*

( )

( )
.

The general solution to equation (8) is thus found
as

( )c x x e B A x e
p

x
rx( ) cos( )= − + +

− −β ω θ 2
1 1 .(13)

Finally, using equation (13) in equation (6) we ar-
rive at an expression for the distribution of larvae
at equilibrium, that is, when all larvae have buried
to pupariate and dispersal in the substrate has
ended,

c xt kt x e kt c B A
c

x
x e

p
x

rx* * * *
*( , ) cos( )=− − + − − +











− −β ω θ 2
0 1 1

0 .
.

(14)
DISCUSSION

Insects whose immature stages migrate from
the food source in search of pupation sites, charac-
terize a particular system with two populations; one
of actively migrating larvae and the other of lar-
vae burying to pupate. The process of larval dis-
persal is completed when all larvae have buried
and no larvae remain dispersing in the substrate.
These fundamental aspects were taken into account
in our model by adding to the diffusion equation a
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function, h(x,t), describing the process of larval
burying in the substrate. This function involves
biologically important parameters such as the ini-
tial concentration of larvae, the maximum distance
travelled by the larvae during dispersal and the time
taken for dispersal to occur. The form of this func-
tion was inferred from the experimental data pre-
sented here that suggests that the decrease of the
number of pupae with distance from the source is
exponential.

The diffusion equation incorporating the bury-
ing function yielded an analytical solution (equa-
tion 14), which describes the equilibrium distribu-
tion of larvae buried in the substrate. This analyti-
cal solution was used to compare the dispersal be-
havior predicted by the diffusion model with the
observed data for C. megacephala, C. putoria, and
C. macellaria. Equation 14 was fitted to the data
using a nonlinear regression whose details are de-
scribed in the Appendix. Fig. 2 shows the fit of
equation 14 to the dispersal data for the three spe-
cies and demonstrates that the equilibrium distri-
bution given by the diffusion model is consistent
with the observed pattern of larval dispersal in the
blowflies analyzed here. In other words, the diffu-
sion equation incorporating the burying function
seems to account for both the oscillatory and mono-
tonic decrease in the number of pupae with increas-
ing distance from the food source. The complexity
in behavior of dispersal as indicated by the inequal-
ity in (10) is apparently the outcome of an interac-
tion between the velocity (a2), the random move-
ment of larvae in these blowflies indexed by the
diffusion coefficient (D), and also involves the
constant of proportionality (k) governing the rate
at which larvae bury in the substrate.

Diffusion models have been extensively used
to address ecological problems (Okubo 1980,
Murray 1989, Holmes et al. 1994) and have been
particularly useful to analyze dispersal in adult in-
sects (Kareiva 1983, Andow et al. 1993). Never-
theless this approach apparently has not been ex-
plored to understand the dispersal behavior of im-
mature insects such as blowflies, where two groups
of individuals are interacting, those that are actively
migrating and those that have already buried in the
substrate. The present effort is a first approxima-
tion to the complex problem of larval dispersal,
which includes factors acting at the individual level
such as the minimum weight necessary for pupa-
tion (Ullyett 1950) and those intervening at the
population and community levels including the tim-
ing and the velocity with which larvae leave the
substrate (Peschke et al. 1987, Blackith & Blackith
1990), the spatio-temporal patterning of predation
and parasitism (Norris 1959, Putman 1977, Peschke
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Fig. 2: fit of the diffusion model to dispersal data for Chry-
somya megacephala, Chrysomya putoria, and Cochliomyia
macellaria. The histograms are based on number of pupae plot-
ted against distance travelled in meters and the curve fitted to
the data is based on the solution of the diffusion equation (equa-
tion 14).

et al. 1987, Sereno & Neves 1993), the physical
makeup of the substrate, and the availability of
suitable places to pupate (Kneidel 1984).

The application of diffusion theory has a rich
tradition of illuminating mechanisms and processes
in population biology (Kareiva 1983), and we be-
lieve that the approach presented here follows this
tradition. As in other studies (e.g. Kareiva 1983,
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Possingham & Roughgarden 1990), simplifying
assumptions were made such as the invariance of
diffusion coefficients with space, time, and larval
density. Nevertheless, the primary purpose of the
model presented here was to develop a framework
to analyze dispersal of immature insects living in
carrion or other ephemeral substrates. The simple
passive diffusion model approach taken here does
include two relevant features in that it explicitly
accounts for the dispersing life-stage and assumes
that the dispersal distances are limited, which is
commonly regarded as a limitation in diffusion
models such as those applied to the dispersal of
adult insects (Andow et al. 1993). We believe that
the model presented here may prove a useful tool
to explore the diffusion dispersal dynamics of or-
ganisms such as blowflies and other diptera where
the same phase of the dispersing cycle in immatures
has two stages, i.e., one actively moving and the
other burying in the substrate.
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Appendix

Nonlinear Parametric Regression to Estimate
the Parameters of Equation (14)

The parameters presented in equation (14) can
be grouped and renamed to produce the following
nonlinear regression model:

c x t a a x a e a a x ea x a x* *( , ) cos( ) ( )= − + +− −
1 2 3 5 6

4 7.

For the three species C. megacephala, C. putoria
and C. macellaria, the objective is to determine the
corresponding set of parameters {a1, ..., a7} from
the experimental data (xi,yi), i=1, ..., N. Here, x (the
explanatory variable) denotes the distance travelled,
y (the response variable) denotes the corresponding
number of buried larvae, and N is the number of dis-
crete distances considered (Fig. 1).

The set of parameters {a1, ..., a7} can be esti-
mated through nonlinear parametric regression,
generally described as the minimization of the
mean square error:

( )min ( , ) min ( ,..., )
,...,

* *

,...,a a
i i

i

N

a a
c x t y J a a

1 7 1 7

1

2

2

1
1 7− =

=
∑

Denoting the gradient of J(•), the vector of first
derivative terms, by ÑJ(•), we have:

,

where

    
∂

∂
c x t

a
a x a e a x

* *( , )
cos( )

1
2 3

4= − −

    ∂
∂

c x t

a
xa a x a e a x

* *( , )
sin( )

2
1 2 3

4= − − −

    
∂

∂
c x t

a
a a x a e a x

* *( , )
sin( )

3
1 2 3

4= − −

    ∂
∂

c x t

a
xa a x a e a x

* *( , )
cos( )

4
1 2 3

4= − − −

    ∂
∂

c x t

a
e a x

* *( , )

5

7= −
   ∂

∂
c x t

a
xe a x

* *( , )

6

7= −

    

∂
∂

c x t

a
x a a x e a x

* *( , )
( )

7
5 6

7= − + −

We are now prepared to estimate the set of pa-
rameters {a1, ..., a7} that minimizes J(•) by means
of the following iterative algorithm:

Initialization : Set random initial values to {a1, ...,
a7} and an arbitrary small value to e;

Step 1: compute 
∂
∂

J

ai

 , i=1,...,7;

Step 2: find a positive value to s  such that the
new values of {a1, ..., a7} given by

     a a
J

ai
new

i
old

i

= − σ ∂
∂ ,  i = 1,...,7,

produce J a a J a anew new old old( , ..., ) ( , ..., )1 7 1 7< ;

Step 3: if J a a( , ..., )1 7 > ε , return to step 1.

Given the experimental data, the application of
this algorithm for each species gives:

C. megacephala: a1 = 60.0872; a2 = 5.9472; a3 =
1.8544; a4 = 1.4474; a5 =
93.2371; a6 = 26.6265; a7 =
1.1573

C. putoria:   a1 = 34.8800; a2 = 3.6839; a3 = 0.1634;
a4 = 0.9026; a5 = 35.7570;
a6 = 13.9524; a7 = 0.6872

C. macellaria: a1 = 85.6961; a2 = 4.6069; a3 =
1.6826; a4 = 2.3604; a5 = 87.6527;
a6 = 17.6138; a7 = 1.9009
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