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Procedures to Characterize and Study P,,/P2X,
Purinoceptor: Flow Cytometry as a Promising Practical,
Reliable Tool
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The expression of,B/P2X; purinoceptor in different cell types is well established. This receptor is a
member of the ionotropic P2X receptor family, which is composed by seven cloned receptor subtypes
(P2X, - P2X)). Interestingly, the R/P2X; has a unique feature of being linked to a non-selective pore
which allows the passage of molecules up to 900 Da depending on the cell type. Early stugies of P
P2X, purinoceptor were exclusively based on classical pharmacological studies but the recent tools of
molecular biology have enriched the analysis of the receptor expression. The majority of assays and
techniques chosen so far to study the expressiopAR X, receptor explore directly or indirectly the
effects of the opening of,#P2X; linked pore. In this review we describe the main techniques used to
study the expression and functionality g§P2X; receptor. Additionally, the increasing need and im-
portance of a multifunctional analysis o} JP2X; expression based on flow cytometry technology is
discussed, as well as the adoption of a more complete analysjg®2R, expression involving differ-
ent techniques.
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NUCLEOTIDES AND NUCLEOSIDES AS EXTRACEL-  nucleosides as extracellular messengers was ini-
LULAR SIGNALING MOLECULES tially viewed with skepticism because of its im-

Nucleotides and nucleosides comprise a reggortance in cell maintenance and survival. Yet,
cently established new family of extracellular mesfurther studies, showing the direct physiological
sengers (see Ralevic & Burnstock 1998). The firstffect of such molecules in every system (respira-
evidence that such molecules can play a physiologlry, muscular, vascular, haemopoietic, immune
cal role when applied extracellularly came fronand nervous system), stand for their relevance
experiments of Drury and Szent-Gyorgyi (1929)(Dubyak & El-Moatassim 1993, Alves et al. 1999).
where perfusion of adenosine and adenosine F\dditionally, ATP and derivatives have been found
monophosphate promoted hipotension angtored within vesicles of platelets, basophils and
bradicardia in the guinea pig cardiovascular sysnast cells, being released with other known com-
tem. Based on systematic investigations, Burnstogiounds when the appropriate stimulus is applied
(1971, 1996) proposed the existence of a purinerg{Pubyak & El-Moatassim 1993).
component in the vegetative nervous system, where Extracellular nucleotides and nucleosides, re-
the ATP is released by synaptic terminals as a nel@ased from neural and non-neural sources, interact
rotransmitter or co-transmitter in both sympathetigvith a specific family of membrane associated-mol-
and parasympathetic systems. ecules named purinergic receptors (reviewed by

In fact, the discovery of such purinergic comFredholm et al. 1994). The purinergic receptors have
ponent in the autonomic nervous system was keen classified into two types, P1 and P2, as origi-
landmark that established the importance of nucleally proposed by Burnstock (1978); both types
otides and their derivatives as extracellular medeing ubiquitous (Ralevic & Burnstock 1998). P1
sengers. The proposed new role of nucleotides apdrinoceptors are specific for adenosine, being sub-

classified into four subtypes, namely A1, A2a, A2b
and A3, according to pharmacological, functional
and molecular criteria. Specific agonists as well as
This work was partially supported with grants frommO|e.CUIar biology techniques are available to qls'
CNPq, Pronex/CﬁPq PXDC‘FI)'PCNPq and ngerj (Brasn)'ngu'Sh each P1 receptor subtype (Olah & Stiles
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tional Union of Pharmacology (IUPHAR) major families, P2Y and P2X (Abbracchio &
Purinoceptor Classification Subcommittee. It waBurnstock 1994). P2Y family is composed by
based on differences in terms of agonist potency ramketabotropic receptors, and is structurally related
order and selectivity, sensitivity to antagonist, functo G protein-coupled receptors, with seven putative
tional response, signal transduction mechanism awdhelical transmembrane segments, extracellular
desensitization features of the receptor after coamino-terminal, and intracellular carboxyl-terminal.
tinuous agonist application (Fredholm et al. 1994)The P2Y family comprises at least 5 functional
Pop: Po1i Py @and By, are G-protein coupled while cloned mammalian receptors (PRP2Y,, P2Y,,

P, and By are ligand-gated intrinsic ion channelsP2Y, and P2Y, ) that have been described in sev-
Interestingly, despite the differences in signal tran®ral different cell types (Ralevic & Burnstock 1998,
duction all the receptor subtypes tested are able iking et al. 1998). By contrast, the P2X family is
induce an increase in the intracellular calcium coreomposed by ionotropic receptors, i.e. ligand-gated
centration. Molecular cloning of P2 receptors led tion channels, and so far seven receptor subtypes have
the discovery and addition of new purinergic recepseen identified (P2X— P2X) (Table I). The P2X

tor subtypes that established the existence of tweceptors bear two putative transmembrane domains

TABLE |
Classification of P2X purinoceptors

Subtype  Species Agonist rank order of potency Amino GenBank References
acid accession
number number

P2X, Rat 2-MeSATP>ATPm,meATP>>ADP 399 X80477 \Varela et al. 1994
Human ATP,BmeATP 399 X83688 Varela et al. 1995
Human Not determined 399 U45448Longhurst et al. 1996
Human a,fmeATP>ATP>ADP 399 AF020498 Sun et al. 1998
P2X, Rat Sensitive to ATP, 2-MeSATP and Al 472 U14414 Brake et al. 1994
P2X,.,2 Rat ATP 403  Y09910 Brandle et al. 1997
P2X2_3"jl Rat Not determined 212 AF013241 Salih et al. 1998
P2X, (b): Rat 2-MeSATP=ATPu,meATP 403 Y10473 Simon et al. 1997
P2X, © Rat Not sensitive to ATP 466 Y10474 Simon et al. 1997
P2X, (d)a Rat Not sensitive to ATP 484 Y10475 Simon et al. 1997
P2X, Rat ATP>2-MeSATP>ATRS>ADP 397 X91167 Lewis et al. 1995
Rat 2-MeSATP>ATPm,BmeATP> ATR/S 397  X90651 Chen et al. 1995
Human 2-MeSATP>ATP&,meATP> ADP 397 Y07683 Garcia-Guzman et al. 1997a

P2X, Rat ATP>ATR/S>2-MeSATP®,fmeATP=ADP 388 X91200 Bo etal. 1995
Rat ATP>ADP>2-MeSATP>>t,meATP 388 U47031 Wang et al. 1996

Rat ATP>2-MeSATP=,meATP 388  U32497 Seguella et al. 1996
Rat ATP>2-MeSATPg,meATP 388 X93565  Soto et al. 1996a
Rat ATP 388  X87763 Buell et al. 1996
Human ATP>2-MeSATP&,meATP 388 Y07684 Garcia-Guzman et al. 1997b
Human Inactive channel 329 - Dhulipala et al. 1998

P2X.P Rat ATP>2-MeSATP>ADP 455  X97328  Garcia-Guzman et al. 1996
Rat ATP>2-MeSATP>ATKS >ADP 455 X92069 Collo et al. 1996
Human Not sensitive to ATP 422 AF016709 Léetal 1997

P2X5 Rat ATP>2-MeSATP>ADP>ATFS 379 X9207¢ Collo et al. 1996
Rat Not sensitive to ATP 379 X973%6 Soto et al. 1996b

P2X; (P,,) Rat BzATP>>ATP>2-MeSATP>AT¥E>>ADP 595  X95882  Surprenant et al. 1996
Human BzATP>ATP 595  Y09561 Rassendren et al. 1997
Mouse BZATP>ATP 595 AJ009823 Chessell et al. 1998a

ADP: adenosine 5'-diphosphate; ATP: adenosine 5'-triphosphatg/SABEenosine 5'-O-(3-thiotriphosphate);
a,BmeATP:a,B-methylene ATP; BZATP: 3'-O-(4-benzoyl)benzoyl ATP; 2-MeSATP: 2-methylthio ATFR2X,

receptor splice varian; unpublished data from Toyuyama et al. indicates the existence of h&@tor splicing

variants (GenBank accession: U49395, U49396; direct submission), not shown in thecTable;functional

hP2X, receptor splice variant (obtained from clone HSd4lP2X; receptors with the same amino acid sequence;

e: rP2X; receptors with the same amino acid sequence; the homology among the receptors was analyzed comparing
the respective amino acid sequence obtained from GenBank.
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connected by a large extracellular ligand-bindingin all cell types tested so far) and KN-62 (particu-
loop and intracellular amino- and carboxyl- terminiarly in lymphocytes) (Murgia et al. 1993, Wiley
(Valera et al. 1994, Hansen et al. 1997). P2X recept al. 1993, Gargett & Wiley 1997). Functionally,
tors have been found expressed preferentially the hallmark for this receptor is the opening of a
neurons and muscle cells, except for P2a6 we low selective pore permeable to molecules up to
shall discuss here. Thus, P2 receptors are similar300 Da (Steinberg et al. 1987). Interestingly, per-
other known classical neurotransmitter receptonsieability differences have been found depending
such as those that recognize acethylcholine, gamnin cell type analyzed: thymocytes and peripheral
amino butyric acid (GABA), glutamate andlymphocytes present lower permeability, limiting
serotonine, which present functionally and structutthe passage of molecules until 200-414 Da (Pizzo
ally distinct families of ionotropic and metabotropicet al. 1991, Wiley et al. 1993, Nagy et al. 1995,
receptors. These families mediate fast and slow rehused et al. 1996). This raises the possibility ex-
sponses, respectively, via different signaling mechgsting other B, receptor subtypes or different
nisms (Burnstock 1997). Probably during the evopores, or the existence of pore subconductances.
lution, each type of signaling pathway has accom- The sensitivity to BzZATP and the unique pore-
plished a different advantage to the organism SUforming capacity of the /P2X, receptor make
vival. In this context, ATP and other energetic nucleits characterization less uncertain than for the other
otides might have been chemotaxic molecules, iRy rinoceptors.

dicating position of damage or dead cells. Thus, cells e P2X, receptor was cloned from rat brain
which had receptors for such molecules could havg, 4 expressed in HEK293 cells by Surprenant et

been pos_itively selected, determining suryival ang) (1996). This receptor presents 595 amino acids
reproductive success. In agreement with this hypoth, 5 y where the first 395 a.a. share 40% structural

esis some unicellular organisms and invertebra ; ;
] . mology with other P2X receptors with the same
species express ATP and AMP nucleotide recepto;gJ 9y b

NN . X ; Jtative structure: two transmembrane domains and
indicating that use of nucleotides as signaling mol:

. large extracellular loop. Conversely, the P2X
ecules may be very ancient (Carr et al. 198 eceptor presents a longer COOH-terminal com-

Devreotes & Zigmond 1988). pared to other P2X purinoceptors. It has been pro-
THE Py/P2X; RECEPTOR posed that such extra intra-domain is responsible

The wide expression of P1 and P2 receptors #Q': O participates in the formation of the pore.
different systems has fostered the recent search fbitis hypothesis was based on an experiment where
its physiological importance as well as its pharmahe expression of the P2Xrotein truncated at 418
Co|ogica| app”cations_ One P2 receptor Subtypé‘ll.a. p0.5|t|0n n HEK293 cells did not induced pore
the P, has interested mostly immunologists, heformation as ascertained by dye uptake assay
matologists and biophysicists. The, Rs the en- (Surprenant et al. 1996). This cloned rat P2ec
dogenous native counterpart of the cloned p2xceptor presented the following agonist potency
purinoceptor and for this reason it is also callesank order: BzZATP>>ATP>2MeATP>ATS>>
P,,/P2X, by some authors. The existence of a disADP. Additionally, it required high ATP concen-
tinct purinergic receptor named fwas proposed trations to be activated (Eg¢ 115 + 9 pM), was
by Gordon (1986) based on pharmacological analgntagonized by oxidized ATP (0ATP), and pro-
sis. Subsequent investigation established more preoted the non-selective pore formation. More re-
cisely other B, receptor properties. It has beercently, the human and mouse R2¥ceptor was
proposed that 3 receptor is restrictively activated cloned and presented 80 to 85% of homology with
by the fully anionic ATP*, requiring higher con- the rat orthologue receptor (Rassendren et al. 1997,
centrations of ATP to be activated (§0.1to 1 Chessell et al. 1998a).

mM) when compared with other P2X purinoceptors ~ Since these initial studies the native,P
(~1-10pM). The B receptor is sensitive to few purinoceptor and the cloned P2Xeceptor
other agonists, particularly to BzATP, usually 1Gnatched many features, becoming possible the es-
to 100 times more potent than ATP (Dubyak & Eltablishment of a consistent correlation between
Moatassim 1993, Di Virgilio 1995). The agonistthem. That was in opposition to some P2 recep-
potency rank order of B was BZATP>ATP=tors. The B,/P2X, receptor has been expressed
ATPyS>>>ADP=AMP. Agonists such as adenosmostly in cells of haemopoietic origin, although it
ine and UTP, potent agonists for other P1 and Rgso may be found expressed in other cell types as
receptor subtypes, were ineffective foy,P well as in different cell lines (Table I). Such par-
(Steinberg et al. 1987, Dubyak & El-Moatassimijcularities distinguish the2/P2X, purinoceptor,

1993, Nuttle & Dubyak 1994). Additionally the making it quite different from all other known P2X
P, was specifically antagonized by oxidized ATPreceptors.
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TABLE Il
P,,/P2X; receptor expressing cells, properties and characterization approaches A
>0
Cell types Characterization EG Current Main BA/P2X. Dye uptake Intracellular Antagonists References 1
expressing approaches reversal agonists mEQ calcium ‘ﬁ
P, /P2X and/ potential increase e
or |ts transcnpts N
Astrocyte CM, DUA ND ND BzATP ND LY + OATP Ballerini et al. 1996 S
CHO-K1 celP DUA, EF, LCE, 1.2 uyM -2mV  BzATP, ATP, + YO-PRO-1 + ND Michel et al. 1998 %’_
NB, SF ATR/S (RT-PCR) ”
Dendritic celf CM, DUA, FC, 721 uM ND  BzATP, ATP, + EB, LY, + OATP Coutinho-Silva et al. 1999, Mutini et al. 1999, 5
PPP, RT-PCR, WB AT (RT-PCR)  YO-PRO-1 Nihei et al. manus. submitted. é
Fibroblast CM, EF, LSS, 2.2 uM ND  BzATP, ATP + EB, LY + 0ATP, Gonzalez et al. 1989, Pizzo et al. 1992, W
PPP, RT-PCR (RT-PCR) PPADS Solini et al. 1999 =
N
Endothelial cell RT-PCR ND ND ATP + (RT-PCR) ND ND ND Von Albertini et al. 1998 N
Glanulocyte NB ND ND ND + (ISH) ND ND ND Collo et al. 1997 o
Macrophag® EF, ISH, WB >100 uM  -2mV  BzATP, ATP, + CEB, EY, + OATP, Steinberg et al. 1987, Greenberg el 8B8, 2:
ATPYS (ISH, WB) FU, LY, KN-62 Picello et al. 1990, Alonso-Torres & Trautmannx
YO-PRO-1 1993, Murgia et al. 1993, Blanchard et al. 199@
Naumov et al. 1995, Chiozzi et al. 1997, z
Coutinho-Silva & Persechini 1997 =
Mast celf CM, DUA, EF >100 uyM 0-5mV ATP, BZATP ND EB, TPM-DPH *  Brilliant blue G Tatham & Lindau 1990, Sudo et al. 1996 E
Mesangial cell DUA, NB, PPP >100 pM ND  BzATP, ATP, #NBH) LY ND OATP Schulze-Lohoff et al. 1998 2
ATPYS
Microglial cel® CM, DUA, EF, SF 298 uM +4.6 mV  BzATP, ND EB, LY + OATP, Chessell et al. 1997, Ferrari et al. 1996, 1997
ATP,ATHS, PPADS
2-MeSATP
Monocyté DUA, FC, ISH >100 pM ND ATP, BZATP + EB, TO-PRO-3 ND 0ATP, Humphreys & Dubyak 1996, Collo et al. 1997,
(ISH, RT-PCR) KN-62 1998, Persecchini et al. 1998
NG108-1% CM, EF, RT-PCR >300 uM +9.3 mV BzATP, ATP, + EB + ND Kaiho et al. 1996, 1998, Song & Chueh 1996
2-MeATP,  (RT-PCR)
ATPYS
NK DUA, FC ND ND ATP ND TO-PRO-3 ND ND Alves-Neto & Persecchini, pers. communi.

cont.



Cell types Characterization EG Current Main B,/P2X Dye uptake Intracellular Antagonists References

expressing approaches reversal agonists mEQ calcium
P,,/P2X; and/ potential increase
or |ts transcnpts
Lymphocyté DUA, FC, NB 189 uMm ND BzATP, ATP, + EB, + 0ATP, WAty et al. 1993, 1994, 1998, Chused et al.
ATPyS, (ISH, RT-PCR) YO-PRO-1 HMA, 1996, Jamieson et al. 1996, Collo et al. 1997
2-MeATP KN-62
Parotid acinar cell CM, NB, SF >100 uM ND  BzATP, ATP + ND +  Brilliant blue Mcmillian et al. 1993, Fukushi et al. 1997, z
(RT-PCR) G, DIDS, Tenneti et al. 1998 g
Reactive blue 2 =
Phagocytic cell of ~ DUA, EF ND +3 mvV ATP ND LY ND ND Coutinho-Silva et al. 1996a 2
thymic reticulum g
Smooth muscle cell DUA, EF,NB  8@®00 uM +3 mV ND + EB ND OATP Cario-Toumaniantz et al. 1998 g\i
(RT-PCR, NBH) S
@)
Submandibular NB, PPP 220 uM ND  BzATP, ATP + ND ND Coomassie blue, Alzola et al. 1998 2
ductal cell (RT-PCR) OATP, suramin N
A~
Thymocyte CF, CM, DUA, SF >100 pM ND  BzATP, ATP ND EB, PI, + ND Lin et al. 1985, El-Moatassim et al. 1989, 1990_'
TPM-DPH Nagy et al. 1995, Chused et al. 1996, Ross et & o
al. 1997 D:,
CF: 6-carboxyfluorescein; DIDS: 4,4'-diisothiocyanatostilbene-2,2'-disulfonate; DUA: dye uptake assay; EB: ethidium bromlieey &physiology; EY: eosine yellowish; 2

FU: FURA-2; HMA: 5-(N-hexamethyl)amiloride); ISHin situ hybridization; KN-62: 1-[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine; LSS:
liquid scintillation spectrometry; LY: lucifer yellow; NB: northern blotting; NBH: northern blotting reveled by hybridizathdi®: 2',3'-dialdehyde (oxidized ATP); PI: &
propidium iodide; PPADS: pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid; PPP: pharmacological studies based orcphyaralogiters; RT-PCR: reverse transcriptasgg
polimerase chain reaction; SF: spectrofluorometry; TPM-DPH: 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene; W blEstgra: ECgy >100 UM was o
chosen when the data were not precise but clearly evidenced high ATP concentration requirement to,gt82x4e iéceptor, in general its is a underestimated védue;
Variant of the Chinese Hamster Ovarian cell line (CHOY he analysis include primary cultured cells as well as cell lohedybrid cell line of the mouse neuroblastomaz
N18TG-2 and the rat glioma C6Bu-1 celilsthe analysis was based on normal and leukemic lymphocytes; ND: not determined.d

000Z “unf/ABW *

6Ly
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P,,/P2X; PURINOCEPTOR CHARACTERIZATION  showed a biphasic inward current response during
APPROACHES the kinetics of activation of the,@P2X; recep-

Methodologically different techniques havetor, consisting of an initial fast current due to the
been used to characterizg,/P2X; receptor (Table opening of a poorly selective cation channel, fol-
I1). Most of them directly or indirectly investigate lowed by a delayed large current due to the opening
pores, ion channels and membrane alteration@f an non-selective pore. This led to the notion that
comprising: (1) analysis of membrane biophysic®,,/P2X; receptor has two transient forms (ion chan-
(electrophysiological techniques); (2) analysis ofel/pore). Patch clamp studiescell attachecand
transductional signaling that follows the,AP2X,  out-side outonfigurations have attributed low con-
activation (calcium microfluorometry); (3) indirect ductances and subconductances (2 to 17 pSyto P
analysis of the receptor activation (dye uptake a§2X; receptor triggered single channels (Tatham &
say, membrane depolarization, different ion influxiindau 1990, Naumov et al. 1995, Coutinho-Silva
analysis); (4) analysis of physiological alterationgt al. 1996b, Markwardt et al. 1997, Persechini et
that follow the B,/P2X; receptor activation (for al. 1998), what is consistent with the fast activating
ex. cytotoxicity, cytokine secretion). More recentlyjon channel activity, but not with the low selectivity
with the availability of the P2Xreceptor cONA pore formation. More recently, the conductance
(Surprenant et al. 1996), molecular biology techeompatible with the non-selective pore was reported
niques have been gradually adopted to study thg Coutinho-Silva and Persechini (1997). In this
expression of the P2)teceptor at mRNA and pro- work two pores were described, showing conduc-
tein level, making receptor study more accurat@ances of 280 pS and 409 pS. Nevertheless, it is not
Some of the most frequently used techniques i@t clear if such findings actually represent two types
characterize and studyJ?P2X; receptor are pre- of pores or two subconductance states of the pore.
sented below including the discoveries associated |n addition, there is an unsolved controversy
with each one. whether the pore linked to,f#P2X; receptor cor-

Electrophysiology One of the most common responds to the receptor itself or represents a dis-
electrophysiological technique to study,FP2X;  tinct chemical entity. When the rat P2beceptor
receptor is the patch clamp which was developeglas expressed in HEK293 cells, ATP application
by Neher and Sakmann (1976) and has revolutiofhduced cell permeabilization to YO PRO-1
ized the study of membrane biophysics. The patqiSurprenant et al. 1996), but the same did not hap-
Clamp method isolates a tlny portion of the Ce| en when the rat P2_)(Nas expressed in Xenopus
membrane and makes it possible to study singigocyte system (Petrou et al. 1997). Furthermore,
ion channels and pores individually or collectivelystydies of P2X expression on chinese hamster
(Sakmann & Neher 1995). Such electrophysiologigvarian variant cell line (CHO-K1) cells have dem-
cal technique has been widely used to stugly P onstrated that at 22 the permeabilization to YO-
P2X; receptor and have been proved to be apprerO-1 delayed up to 8 min when compared to that
priate to elucidate important receptor propertiegt 37C. In contrast, calcium influx delayed just
such as its kinetics of activation, pore permeabiltg seconds, suggesting two transient forms of the
ity, selectivity and conductance, current reversakceptor (ion channel/pore) or two distinct entities
potential and rectification, as well as the analysigviichel et al. 1998). In keeping with this, electro-
of agonist and antagonist selectivity (Albuquerquehysiological studies irell attachedconfigura-
et al. 1993, Surprenant et al. 1996, COUtlnhO-SI'Vﬁon conducted by Coutinho-Silva and Persechini
& Persechini 1997, Rassendren et al. 1997, Virginip1 997) reinforce the receptor/pore dissociation
et al. 1997, Chesse" et al. 1997, 1998a,b) Patmpothesis_ In such a Conﬁguration the P72'X-
clamp studies imhole cellconfiguration have re- ceptor/pore structure is confined within the record-
vealed that the receptor activation induces a fagig pipette tip isolated from extracellular bulk by
inward current of Naand C&" ions that appear a gigaseal. However, the authors observed that the
in the first milliseconds. This current generallyexternal ATP application induced a 409 pS inward
lacked inward rectification (or had it low) andcyrrent, showing that the pore may be dissociated
showed a reversal potential near 0 mV, which igom the receptor, possibly been gated by an intra-
consistent with the non-selective ion channel. l@ellular messenger. Thus, electrophysiological
addition, the current presented no or low desensichniques have been critical to elucidate novel
tization under continuous agonlst exposure. |ﬁspects of EZ/P2X7 receptor activation that oth-
murine macrophages and phagocytic cells of thyerwise would be impossible.
mic reticulum, a secundary outward currentdue to - Analysis of signal transduction: Calcium
the activation of C%*'-dependent Kchannels WQS microﬂuorometry_ The Signa| most Common|y as-
also recorded (Albuquerque et al. 1993, Coutinhgociated with the activation of all P2 receptors is
Silva et al. 1996a). Nuttle and Dubyak (1994}he increase of intracellular calcium (Dubyak &
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El-Moatassim 1993). In regard to the receptors gfore opening induces the exchange of ions and
the P2Y family, the intracellular calcium increasemolecules up to 900 Da according to an electro-
is dependent on triphosphate inositol pathway, whahemical gradient. Electrophysiological, fluoro-
induces the calcium release from intracellulametric and radiometric studies have revealed that
stores. On the other hand in the P2X receptor farthe B,,/P2X; channel/pore is permeable to sev-
ily, calcium chiefly comes from the extracellulareral ions such as NaK*, Li*, Rb*, CI', Mn2*,
milieu and enters the cell through ligand-gated io€&2*, SP* and B&*, as well as larger molecules
channels according to its electrochemical gradiestuch as tris(hidroxymethyl)aminomethane (TRIS)
(Harden et al. 1995). This response in particulgl21.1 Da) and N-methyl-D-glucamine (NMDG+)
has been explored to complement the charactgt95.2 Da) (Steinberg et al. 1987, Naumov et al.
ization of B,/P2X; receptor in different cell types. 1992, Albuquerque et al. 1993, Wiley et al. 1993,
In keeping with this, calcium microfluorometry hasNuttle & Dubyak 1994).
been directed to pharmacological and functional Several studies have also demonstrated that the
studies since the calcium response amplitude B,,/P2X; pore is permeable to different fluores-
correlated with the agonist potency and concercent markers such as 1-(4-trimethylammonium-
tration, when it is non-saturating. The calcium rephenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH)
sponse induced by,RP2X; receptor activation (290 Da), ethidium bromide (314 Da), YO PRO-1
has been described in the majority of cells ang375.5 Da), 6-carboxyfluorescein (376 Da),
lyzed (Table II). In general, the rise of intracellulapropidium iodide (414 Da), TO-PRO-3 (417 Da),
calcium due to activation of,B/P2X; receptor lucifer yellow (443 Da), eosine yellowish (646 Da)
initiates milliseconds after the agonist applicatiorand FURA-2 (831 Da), but is not permeable to
and presents a fast elevation, although its amplirypan blue (961 Da), evans blue (961 Da) and high
tude depends on the cell type. In thymocytes, inmmolecular weight dextran conjugates (Steinberg et
tracellular calcium increases four times the baselired. 1987, ElI-Moatassim et al. 1990, Picello et al.
(0.1-1 uM) whereas in macrophages, it reaches 4890, Wiley et al. 1993, Nuttle & Dubyak 1994,
least ten times the baseline values under the saibagy et al. 1995, Surprenant et al. 1996, Persechini
P,,/P2X; stimulation condition (Greenberg et al.et al. 1998). This permeability is a functional hall-
1988, Pizzo et al. 1991). Additionally, after a singlanark and has been explored in the majority of stud-
agonist application, the,R¥P2X; receptor induces ies that characterize thg J/P2X; receptor.
a sustained increase of intracellular calcium thatis Additionally, this assay has been used to con-
maintained for many seconds or even minuteduct pharmacological and functional studies. In
(Greenberg et al. 1988, Ross et al. 1997). In thimacrophages, it was demonstrated that the pore
way, calcium microfluo-rometric evaluation al-opening is temperature and pH dependent; being
lowed the distinction of the B/P2X; response inactive below 18C and at pH 6.5 and optimally
from that of the other P2 receptors, as ascertainedtive at 3C and pH 8.0-8.5 (Steinberg et al.
by distinct variables such as the required ATP cort987). Such phenomenon is also inhibited by
centration to trigger calcium response (high ATMg2*, indicating that the active,RP2X; recep-
concentrations), calcium response amplitude (higtor ligand is the non-complexed AFRSteinberg
amplitude), duration of the response (sustainegt al. 1987). The dye uptake assay has also been
calcium response), agonist and antagonist selegseful to verify the functional expression of,P
tivity (responsive to ATP and BzATP) as well asP2X; purinoceptor in studies that involve the gen-
the calcium source (extracellular) (Greenberg et atration of cell lines with altered expression g§/P
1988, Macmillian et al. 1993). P2X; receptor (Chiozzi et al. 1996, 1997),,P

Other transductional signaling pathways hav@2X, receptor hiper (ATP-sensitive) and hipo
been associated tgJ/P2X; receptor such as phos- (ATP-resistant) expressed in J774 cell lines can be
pholipase A2 (Alzola et al. 1998) and phospholiclearly differentiated by the degree of perme-
pase D (PLD) activation (El-Moatassim & Dubyakabilization to fluorescent dyes (Chiozzi et al. 1996,
1992,1993, Gargett et al. 1996, Humphrey &997). Dye uptake assay may also demonstrate
Dubyak 1996). Interestingly, in THP-1 monocyticmodulation of the R,/P2X; receptor expression.
cell line the PLD activation was explored as adduman THP-1 monocyte cell line presents in-
marker of B,/P2X; activation in the study of its creased expression of,J?P2X; receptor when
modulation by pro-inflammatory factors such agreated concomitantly with different pro-inflamma-
interferony (INFy) and lipopolysaccharide (LPS) tory and inflammatory factors such as IMfend
(Humphreys & Dubyak 1996). LPS or INFyand tumor necrosis factor{TNFa),

Dye uptake assayThe B,/P2X, purinoceptor as ascertained by permeabilization assay
differs from other known ligand-gated receptor§Humphreys & Dubyak 1996, 1998). The primary
due its link to a non-selective pore. Thg/P2X,  characterization of the,B/P2X; receptor by dye
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uptake assay can thus be used as a fast and praati: Hickman et al. (1994), demonstrated a possible
cal method to ascertain its functionality. augmented expression o PP2X, receptor in
However, additional techniques are required tmmonocytes, which varied with cultured time using
ascertain the uncertain expression g$/P2X, the flow cytometry as an complementary technique
purinoceptor when the cell analyzed is resistant tand the YO-PRO-1 dye. In these studies, DNA bind-
ATP-induced permeabilization. It has been the caseg dyes such as ethidium bromide, propidium io-
with neutrophils and, in a lesser extent, monocytetide and YO-PRO-1 have preferentially been cho-
and B lymphocytes (Walker et al. 1991, Hickmarsen to analyze dye uptake by flow cytometry. These

et al. 1994, Chused et al. 1996). fluorescent dyes presented two major advantages
FLOW CYTOMETRIC ANALYSIS OF P ,,P2X, over other dyes such as lucifer yellow, that do not
PURINOCEPTOR bind DNA: (1) these dyes are almost unaffected by

The flow cytometry was developed by a Col_diffusion; (2) they do not suffer the subtraction by
lective effort that began in the 1950s. This invenorganic transporters that could decrease its concen-

tion allowed automatic counting and quantificatratlon In cytoplasm and, consequently, diminish the

. ; e A ‘associated fluorescent signal.

tion of cell size for the first time, what significantly Another important point before performing
increased the reliability of such analysis (Melame -

et al. 1991). Later a fluorescence detection syste%iw cytometry analyses of dye uptake assays is to

was coupled and evolved making it possible ce certain by fluorescence microscopy if the phe-
P gnp omenon is simply due tg,F#P2X; activation, i.e.,

multiparametric studies. Additionally, the devel-Only pore opening, rather than endocytosis. In this
opment of monoclonal antibody technology by.o o4 our group has identified thg,MP2X,
Koehler and Milstein in the 70s increased the avail, ;i o cantor in primary cultured murine dendritic
ability of reagents directed to research and clinicaly s “ 1, this study, permeabilization analyses were
studies, and, as a consequence, the availability Birformed by flow cytometry using ethidium bro-
fluorescent coupled ones (Koehler & M|Iste|nmiole as the standard dye. In this case the dye up-

1975). Such technological evolvements made it re?éke analysis was also viewed by fluorescence mi-

the use of flow cytometry as a powerful tool tocroscopy in order to avoid any unwanted artifact.

:‘rc;\?vrzv?orriﬁ?rﬁg;] I(Tig]yv?(i?:;OlI%ggd %Oxi??ésgggendritic cells treated with ATP concentrations
Y yusag P ompatible with that necessary to activatg/P

rese'arch laboratories, being applied to analy X, became permeabilized to ethidium bromide
multiple cell parameters such as cell cycle, ce s shown in Fig. 1. Additionally, dendritic cells

membrane alterations, alterations of intracellule\;‘vere sensitive to the agonist BZATP and the ATP-
Cal(fr';‘]g‘ snﬁag‘;'(" ngenc;zpe(.)re-format'on ca ac_induced permeabilization was antagonized by oxi-
itv h %Z 7 | P q E II P tdized ATP (0ATP), thus showing that dendritic cells
ity has been explored by several groups e meapilization is due to specifig P2X; re-

permeabilize different cell types in order to intro-. ptor activation (Fig. 1). In this régard, other P1

cold have cinical or research interest (Ploello 4 P2 300rists such as adenosine, AMPc, ADP
nd UTP were ineffective (Fig. 2).

al. 1990, Jaffar & Pearce 1993, Munerati et al. .
’ oI : . The time-resolved flow cytometry has also been
1994, Gan et al. 1998). Additionally, using differ- lored to study thezgle);(? rece)[/)tor proper-

, . X
ent techniques, these studies have analyzed 82 In this case, the mean fluorescence intensity
Important parameters that could be'a}ffe(':ted by su a pre-determined number of cells that pass in
ATP-mdgceq membrane permeabmzatlon su_ch Hferent time intervals is collected, what provides
the cell viability, morphology, intracellular calcium o iy ous observation of the analyzed phenom-
and pH, and apoptosis. Using flow cytometry all, ) “\wjiey et al. (1998), using this method, con-
these analyses can be performed with accuracyg .- that BzATP was a full agonist of the,P

Several studies have used the flow cytometry t ) Tk )
study the B,/P2X, receptor (Wiey et a. 1993, 2. [SCepLOr-dependent permeabilzation of hu

1998, Hickman et al. 1994, Nagy et al. 1995, Chused Flow cytometry has also been used to detect

et al. 1996, Persecchini et al. 1998). The main focLiﬁ : :
' X e tracellular calcium alterations due t 2X

gf such r%ports IS th? Jndlrecgé-?P 2X; Teceplor iy ation (Nagy et al. 1995, Chused Qe%FZI. 17996).

etection by means of dye uptake assays. A PIONEgfy, osoq st dies indo-1 and fluo-3 dyes have been
work that use'd this technology was that of Wiley €lsed. Chused et al. (1996) monitored the ATP de-
al. (1993), which demonstrated that lymphocytes o yendent permeabilization and intracellular calcium
tam_ed from B-cell chronic Iymphqcytlc IGUke.m'aaterations of different murine thymocyte and pe-
patients became permeable to ethidium bromide b k)heral lymphocyte populations in a multipara-

not to propidium iodide after ATP-treatment. Latermetric analysis performed by flow cytometry. This
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A 2 1Control 1 Recently, a monoclonal antibody (mAb) di-
rected to the p/P2X; receptor was developed
and tested (Chiozzi et al. 1997, Collo et al. 1997,
B Buell et al. 1998). Once largely adopted, it will
' facilitate the B,/P2X; receptor expression analy-
O o i Pt sis. Thus, the flow cytometry will consist in a more
B2]Bzatp M, useful tool to study this purinergic receptor. Con-
- comitantly with specific mAb labeling,,B/P2X;
2 - pore functionality could be ascertained in the same
£ mw\ experiment by dye uptake assay. Furthermore,
= o ; . : . multifunctional analyses of different cell popula-
8 p=laTP W1 tions can be performed through the use of other
2 mADbs available.
5 CONCLUSIONS
= B0 %% Flow cytometry allows: (1) fast analysis of a
o large number of cells; (2) the sensitivity of a reli-
D =] oATP + ATP b1 able fluorescence detection system; and (3) the pos-
sibility of distinguishing different cell populations
due to the usage and availability of a variety of
57% mAbs bearing distinct specificities. Such points are
- i , P advantages that make flow cytometry distinctive
L A L L L from the all other technologies commonly used to
Fluorescence intensity (EE) detect cell fluorescence, such as fluorescence mi-

, B B - croscopy and fluorometry. Particularly regarding
Fig. 1 dendritic cells are specifically permeabilized by/P ne stydy of purinergic receptors, this strategy has
P2X; purinoceptor activation. Dendritic cell suspension WasD duall d by diff t
treated with exogenous ligand ATP (5 mM) (C), or with the ecome gradually more use y ',eren ,grouDS'
synthetic B,/P2X, specific agonist BzATP (1 mM) (B), and Yet flow cytometry-based studies involving the
incubated with ethidium bromide (10 uM) for 15 min &#G?  analysis of 5>Z/P2X7 receptor expression, its modu-
g;ﬂt’e%%-itﬁ'zﬁénat/“@'g’{ ‘:r?tgeggirs'i'g ;Z'i'zztés'f\?gs('g%"ﬁ)‘s(é%%“'Iation and functionality are still underexplored.
mM) (D) for Z%r, bei7ng thgn treated with ATP (5 mM) andVVIth the ava”ab”'?y of the specific ant'ZEyPZXY
incubated with ethidium bromide in the same conditions. ThENAD, the generation of new fluorescent dyes and
fluorescence intensity was detected by flow cytometry (moddhe accessibility to flow cytometry apparatus
EPICS ELITE - Coulter Eletronics/USA). The fluorescence in'COUp|ed to two or more laser systems, different
tensity of the dendritic cglls submitted to these different treg?rotoco|s could be envisioned for the investiga-
ments was compared with that of control untreated dendriti .
cells (A). M1 marker delimits the positive cells, which percent- ion of _more complex systemic paramgters, such
age are also shown in each histogram. The debris were ga@8& the involvement 0f£/P2X7 receptor in bone
out based on low side scatter and forward scatter. marrow cell differentiation and on thymocyte dif-

ferentiation, including the intrathymic selection of

the T cell repertoire.
study demonstrated indirectly the presenceof P It must be emphasized that the P2 receptor char-
P2X; receptor in different cell types in the follow- acterization based on classical pharmacological
ing decreasing expression sequence: spCD8-studies with the exclusive analysis of agonists and
thCD8+> spCD4+>thCD4+ >thCD4+CD8+ antagonist effects is nowadays considered incom-
(sp:spleen; th:thymus). Persechini et al. (1998) amglete, due to the cloning of many different new P2
Alves-Neto and Persechini (pers. commun.) haveeceptors and the lack of specific pharmacological
used flow cytometry to determine the expressiotools. The investigation of B/P2X; is not a ex-
of the B,/P2X; receptor in different peripheral ception, despite its unique hallmark properties. Its
blood mononuclear cell (PBMC) populations. Theanalysis must involve different techniques such as
three color analysis of PBMC showed that T lymthose described here as well as molecular biology
phocytes (CD3+) and monocytes (CD14+) becama&pproaches. Only the adoption of such procedures
permeable to the TO-PRO-1 dye after ATP treatwill clarify the precise characterization of thg,P
ment. The same occurred with natural killer cell®2X; receptor in cells of different systems and dis-
(CD16/CD56"), thus evidencing the,P2X; ex-  tinguish the possible existence of different/P
pression. Interestingly, among these PBMC popWP2X; subtypes. This is the case of the P2 receptor
lations monocytes presented the highest degreedaifaracterized or just suggested in erythrocytes,
permeabilization. gastric smooth muscle cells of toad, hepatocytes,
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Fig. 2: dendritic cells do not become permeabilized when treated with other P1 or P2 agonists. Dendritic cells werettreated wit
mM of adenosine (B), AMPc (C), ADP (D), UTP (E), or ATP (F) and incubated with ethidium bromide (10 uM) for 15 i@ at 37

- 5% CQ,. The fluorescence intensity of the dendritic cells submitted to these different treatments was compared with that of
control untreated dendritic cells (A). M1 marker delimits the positive cells, which percentage are also shown in each. histogram
The debris were gated out based on low side scatter and forward scatter. The peak of positive cells with high labektlg seen in
untreated and treated cells, represents the basal dead cells.

rat pancreatic ducts, Leydig cells, supraoptic elicited by nucleotides in macrophagégiol Chem
neurones and schwann cells (Parker & Snow 1972, 268 18640-18647. _

Foresta et al. 1996, Zoeteweij et al. 1996, Ugur #fves LA, Coutinho-Silva R, Savino W 1999. Extracel-
al. 1997. Christoffersen et al. 1998. Grafe et al, 'ular ATP:afurther mod_ulatorin neuroen_docrine con-
1999, Shibuya et al. 1999). In these cells the chay;, trol of the thymusieuroimmunomodulatioh 81-9.

; ola E, Pérez-Etxebarria A, Kabré E, Fogarty DJ,
acterized P2 receptor shared some, almost all, of Métioui M. Chaib N, Macarulla JM, Matute C.

even all B,/P2X; pharmacological properties, but — pepaye 3, Marino A 1998. Activation by P2X7 ago-
it was not able to induce the formation of the large  nsts of two phospholipases A2 (Pyn ductal cells
non-specific pore. In some cases such point was of rat submandibular gland Biol Chem 27330208-
not investigated. This point also involves the con- 30217.

troversy if the B,/P2X; receptor and the linked Ballerini P, Rathbone MP, Di lorio P, Renzetti A, Giuliani
pore are really the same or distinct entities. Fur- P, D'alimonte I, Trubiani O, Caciagli F, Ciccarelli R
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tions 7. 2533-7.
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