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Phylogeny of the Kinetoplastida: Taxonomic Problems and
Insights into the Evolution of Parasitism
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To further investigate phylogeny of kinetoplastid protozoa, the sequences of small subunit (18S)
ribosomal RNA  of nine bodonid isolates  and ten isolates of insect trypanosomatids have been deter-
mined. The root of the kinetoplastid tree was attached to the branch of  Bodo designis and/or Cruzella
marina. The suborder Trypanosomatina appeared as a monophyletic group, while the suborder Bodonina
was paraphyletic. Among bodonid lineages, parasitic organisms were intermingled with free-living ones,
implying multiple transitions to parasitism and supporting the ‘vertebrate-first hypothesis’. The tree
indicated that the genera Cryptobia and Bodo are artificial taxa. Separation of  fish cryptobias and
Trypanoplasma borreli as different genera was not supported. In trypanosomatids, the genera Leptomo-
nas and Blastocrithidia were polyphyletic, similar to the genera Herpetomonas and Crithidia and in
contrast to the monophyletic genera Trypanosoma and Phytomonas. This analysis has shown that the
morphological classification of kinetoplastids does not in general reflect their genetic affinities and
needs a revision.
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Kinetoplastids are a group of protozoa charac-
terized by the presence of a characteristic organelle,
the kinetoplast (Vickerman 1976). This structure
was observed by early researchers in light micro-
scope as basophilic granules located near the basal
body of a flagellum. This association was thought
to meaningful, and the term ‘kinetoplast’ was
coined by Alexeieff in 1917 (Alexeieff 1917,
Vickerman & Preston 1976). Only in the 60s, after
the first electron microscopic studies of this or-
ganelle conducted by Vickerman and Steinert, had
it become clear that the kinetoplast represents a
portion of a single branched mitochondrion of the
cell containing a large mass of mitochondrial DNA.
The presence of the kinetoplast is easy to deter-
mine by fluorescence with a DNA binding dye
DAPI or by Giemsa staining.

This work was supported by the grant 99-04-49-572 from
the Russian Foundation of Basic Research to SAP, the
grant A6022903 from the Czech Academy of Sciences
to JL and also in part by a Burroughs Wellcome New
Investigator Award in Molecular Parasitology and the
NIH grant AI40634 to DAM.
+Corresponding author. Fax: 909-787-4286.  E-mail:
maslov@ucrac1.ucr.edu
Received 13 November 2000
Accepted 3 January 2001

This group of organisms is usually assigned the
rank of an order – Kinetoplastida, which, together
with two other groups: Euglenida and Diplonemida
– belongs to the phylum Euglenozoa (Cavalier-
Smith 1993, Corliss 1994). This assemblage has
been confirmed by a number of works, mainly
based on the ribosomal SSU RNA phylogenetic
analysis, which showed Euglenozoa as a mono-
phyletic group, well separated from the eukaryotic
crown  (Sogin & Silberman 1998, Maslov et al.
1999; see Philippe & Adoute 1998 for a review of
protein based phylogenies).

The existing taxonomy of kinetoplastids is
based on morphology and life cycles. Tradition-
ally the group is subdivided into two suborders:
Bodonina and Trypanosomatina (Vickerman 1976,
Lom 1976). The first one includes two families:
Bodonidae and Cryptobiidae, members of which
have a relatively large kinetoplast and two flagella:
anterior (always remains free) and recurrent (free
in bodonids and attached in cryptobiids). Bodonids
show a variety of life styles, ranging from free liv-
ing, such as Bodo, Parabodo, Dimastigella,
Rhynchobodo, Cruzella, to parasitic. The latter are
represented by ectoparasites of the fish skin and
gills such as Ichtyobodo, endoparasites of the re-
productive tract of snails (some Cryptobia species)
and gastro-intestinal tract of fish (some other
Cryptobia) and also by digenetic parasites of fish
blood (Trypanoplasma) transmitted by leeches. The
second group of kinetoplastids, the trypano-
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somatids, forms a single family, Trypanoso-
matidae, which includes obligatory parasitic organ-
isms with a single flagellum and a small kineto-
plast. Trypanosomatids parasitize all classes of
vertebrates, as well as some invertebrates, prefer-
entially insects from the orders Diptera and Hemi-
ptera, and also plants. The invertebrates can either
represent hosts, as in monogenetic parasites, such
as  Crithidia, Leptomonas, Herpetomonas and
Blastocrithidia, or serve as vectors, as in digenetic
genera Trypanosoma, Leishmania and in bug-trans-
mitted parasites of plants, Phytomonas.

The system of the trypanosomatid genus assign-
ment was largely developed by Hoare and Wallace
(1966) on the basis of the observed morphotypes
(Molyneux & Ashford 1983). The morphotypes are
defined by the relative position of the nucleus and
the kinetoplast and the overall body shape. At least
two morphotypes are observed in each genus, de-
pending on a life cycle stage and physiological
conditions of the cells. Some morphotypes are
unique to a certain genus, while others, such as
promastigotes, are shared by many genera. This
system has been criticized in the past as potentially
misleading.

A novel genus, Wallaceina has recently been
proposed to include monogenetic insect parasites
with an ‘endomastigote’ morphology, character-
ized by a long curved flagellar pocket (Podlipaev
et al. 1990).

With the progress of molecular biological stud-
ies of kinetoplastids it has become increasingly
clear that existing taxonomy does not reflect the
true genetic affinities in these organisms, calling
for the application of molecular phylogenetic meth-
ods (McGhee & Cosgrove 1980, Camargo et al.
1982, Wallace et al. 1983, Kolesnikov et al. 1990,
Podlipaev et al. 1991, Dollet 1994, Vickerman
1994, Podlipaev & Lobanov 1996, Hollar et al.
1998, Wright et al. 1999). The phylogenetic tree
can also be used as a framework to study the ori-
gin and evolution of parasitism and a number of
unique molecular and biochemical mechanisms
seen in this group, such as the kinetoplast DNA
networks, uridylate-insertional/deletional type of
RNA editing, tRNA importation in the mitochon-
drion, antigenic variation and the others (recently
reviewed in Donelson et al. 1999, Simpson et al.
2000).

In the first phylogenetic reconstructions, a rela-
tively small number of available trypanosomatid
and only two bodonid SSU sequences were em-
ployed (Fernandes et al. 1993, Du et al. 1994,
Landweber & Gilbert 1994, Maslov et al. 1994,
1996, Maslov & Simpson 1995). The root of the
tree was established using Euglena gracilis as the
outgroup and was found to be attached in bodonids.

The trypanosomatids formed a so-called
paraphyletic tree, according to the topology of try-
panosomes. The lineage of Trypanosoma brucei
and other trypanosomes were not monophyletic,
with T. brucei representing the earliest divergence
in the family. Other trypanosomes diverged later
as a sister-clade to all non-trypanosome genera. The
paraphyletic tree was conflicting with the protein-
derived trees which all showed trypanosomes as a
monophyletic assembly. However, in 1997 it was
shown that the paraphyletic topology was a tree
reconstruction artefact caused by unequal rate ef-
fects (Lukeš et al. 1997). Due to a high rate of se-
quence divergence in T. brucei and the outgroup,
the level of accidental similarities (homoplasies)
became very high resulting in a placement of these
lineages together on a tree. After subdividing the
lineages  of T. brucei and outgroups by addition of
the new trypanosome and bodonid species, the sup-
port for paraphyly of trypanosomes disappeared
and support for their monophyly became very
strong. This result was later confirmed by other
works which utilized a larger number of trypano-
some sequences (Haag et al. 1998, Stevens et al.
1999).

The updated trypanosomatid tree published in
1998 was composed of five major clades (Hollar
et al. 1998). Only two of them, the clade of Trypa-
nosoma and the clade of Phytomonas, represented
examples of consistency between phylogeny and
taxonomy. The genera Herpetomonas and
Crithidia  were polyphyletic: the endosymbiont-
containing members of these genera formed a sepa-
rate monophyletic clade, while the endosymbiont-
free members were found elsewhere on the tree.

The question concerning the status of remain-
ing trypanosomatid genera has been addressed in
a more recent work (Merzlyak et al. 2001).  The
emphasis has been made on isolates from insects
identified as Leptomonas, Blastocrithidia and
Wallaceina according to their morphology in in-
sect host.  In this reconstruction, as in the previous
work, the root of the tree was attached between the
clade of trypanosomes and the clade of all non-
trypanosomes (Fig. 1). Interestingly, among the
latter, Blastocrithidia triatoma, was the earliest di-
verging lineage. Additional analysis has shown that
the tree topologically constrained for an earlier
divergence of B. triatoma is not significantly dif-
ferent from the best unconstrained tree. This indi-
cates that a blastocrithidia-like organism might
have been a progenitor of all trypanosomatids, in-
cluding trypanosomes.  This finding is intriguing,
because earlier Hoar and Baker hypothesized that
such an organism, which they called an
“epimastigote” stock, was an ancestral form to most
trypanosomes (Baker 1963, Hoare 1972).
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The tree showed that the genus Blastocrithidia
is polyphyletic. Two bona fide blastocrithidias, B.
culicis and B. triatoma, were unrelated. The situa-
tion with B. gerricola is not clear – this isolate was
represented by epimastigotes in the host while only
pro- and choanomastigote were observed in cul-
ture. It is possible that a mixed infection occurred
in the original host. The tree also clearly showed
that the genus Leptomonas is polyphyletic as well.
This finding was not completely unexpected, taken

into account a large extent of genetic variability
among the Leptomonas isolates (Camargo et al.
1992) and the lack of truly distinguishing charac-
ters for this genus.

With at least four genera of trypanosomatids
being polyphyletic (Crithidia, Herpetomonas, Lep-
tomonas and Blastocrithidia), it has become obvi-
ous that the morphological taxonomy of trypa-
nosomatids does not reflect their genetic affinities
and should be revised in the future. However, there

Fig. 1: the maximum likelihood  consensus tree of insect trypanosomatids inferred from the small subunit ribosomal RNA
sequences (Merzlyak et al. 2001). T- trypanosomes, E - endosymbiont-containing trypanosomatids, P - Phytomonas spp., H -
endosymbiont-free Herpetomonas spp., SE - trypanosomatids with slowly-evolving SSU rRNA sequences. From Merzlyak et al.
(2001) with permission
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is no need to rush. It is clear even from this rela-
tively modest expansion of the number of analyzed
isolates that the natural diversity of trypanosomatid
is much greater than currently expected. Only af-
ter completion of a more satisfactory survey of this
group, will it be possible to propose a comprehen-
sive taxonomic system for this group.

The phylogeny of bodonids was investigated
in another recent work, which included nine addi-
tional bodonid species (Dole• el et al. 2000). The
root of the tree (Fig. 2) was determined to be at-
tached to the lineages of free-living organisms
Cruzella marina and Bodo designis, thus making
bodonids a paraphyletic assembly in contrast to
trypanosomatids which separated from bodonids
relatively late as a monophyletic group.

As in trypanosomatids, the tree indicated the
conflict between taxonomy and phylogeny. It is
best exemplified by the polyphyly of the genus
Bodo, the members of which are found in the dif-
ferent parts of the tree. Another discrepancy is that
the subdivision of the suborder Bodonina onto two
families, Bodonidae and Cryptobiidae (Vickerman
1976, 1978), as both members mingle with each

other on the tree. A separation of the fish parasites
onto the genera Cryptobia and Trypanoplasma,
supported by some researchers (Lom 1976, Becker
1977, Brugerolle et al. 1979), and challenged by
the others (Bower & Margolis 1983, Woo 1994),
is also not supported.

An interesting feature of the bodonid tree is that
free-living species often mingle with parasitic ones.
In general, such topology suggests occurrence of
the multiple transitions to parasitic life style in the
kinetoplastids. Moreover, it seems that this pro-
cess still continues and different steps of it can be
observed in the existing clades. The examples of
C. marina and D. trypaniformis, for which both
endocommensal and free-living strains have been
described, may reflect the very early stages of tran-
sition towards endoparasitism. A next step in this
direction is illustrated by the endoparasitic C.
helicis which is likely to have evolved from a free-
living bodonid such as related species B. caudatus,
P. nitrophilus and B. sorokini. An independent tran-
sition to parasitism occurred in the lineage of T.
borreli – fish Cryptobia spp. In this case, the evo-
lution reached the stage of transition from intesti-
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Fig. 2: majority consensus maximum likelihood ribosomal RNA tree of bodonids (Dole• el et al. 2000). Indication of the lifestyle
and the hosts is shown on the right. From Dole• el et al. (2000) with permission
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nal parasites to hemoparasites, as this compact
group contains both types of organisms. The fact
that none of the bodonid groups illustrates the en-
tire evolutionary process should not be surprising.
The intermediate stages might have become ex-
tinct, in addition the present survey of extant
kinetoplastids is incomplete.

Thus the tree topology provides a support to
the ‘vertebrate first’  hypothesis of Minchin (1908)
who postulated that the hemoparasites of verte-
brates evolved from their endoparasites, which in
turn were derived from the free-living species. The
results also indicate an independent origin and evo-
lution of parasitism in trypanosomatids. If the evo-
lution in this case had also followed Minchin’s
scenario, then organisms representing the interme-
diate stages, such as endoparasitic trypanosomatids
of vertebrates, might remain unknown or have be-
come extinct. Alternatively the evolution here
might have followed the ‘invertebrate first’ sce-
nario of Leger (1904) who outlined that original
parasites were those infecting the gut of inverte-
brates (insects) while hemoparasites of vertebrates
evolved later.

Finding a monogenetic trypanosomatid, such
as B. triatoma, branching off early would support
the ‘invertebrate first’ hypothesis for this case.
Therefore, the century-old conflict between the
‘vertebrate-first’ and ‘invertebrate-first’ hypotheses
might end in a tie, with different routes towards
parasitism taken in different evolutionary lineages.
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