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Angiostrongylus costaricensis (Morera & Cespedes 
1970) is a nematode that causes abdominal angiostrongyli-
asis (AA), a human helminthiasis characterized by abdom-
inal eosinophilic ileocolitis. Adult worms live inside the 
mesenteric arteries of rodents (definitive hosts). Eggs laid 
by females hatch to release first-stage larvae (L1), which 
migrate into the intestinal lumen and are eliminated with 
the faeces. The L1 larvae infect mollusks (intermediate 
hosts) and further develop into infective third-stage larvae 
(L3), which subsequently develop into adult worms in the 
mammalian hosts. Humans are incidental hosts and may 
become infected through the ingestion of infected mol-
lusks or unwashed vegetables (Morera 1973). This para-
sitic disease has been reported throughout Central and 
South America (Morera & Cespedes 1971, Incani et al. 
2007, Palominos et al. 2008). In endemic areas, such as 
the southern region of Brazil, epidemiological and clinical 
features are used as diagnostic indications of AA (Agosti-
ni et al. 1983, 1984, Ayala 1987, Graeff-Teixeira et al. 1991, 
2005, Bender et al. 2003, Mesen-Ramirez et al. 2008, Ben 

et al. 2010, Abrahams-Sandi et al. 2011). However, AA is a 
disease with unspecified clinical manifestations. To date, 
the only way to achieve an accurate diagnosis is through 
surgical intervention to find intra-arterial worms or eggs 
trapped in small capillaries in histological sections. More-
over, an effective pharmacological treatment for AA does 
not currently exist (Morera & Bontempo 1985, Terada et 
al. 1993, Tungtrongchitr et al. 1993). Previous studies us-
ing noninvasive tools to diagnose AA have shown that 
available serological tests are not effective due to both 
nonspecific cross-reactivity issues and the diversity of hu-
moral responses (Graeff-Teixeira et al. 1997, Geiger et al. 
2001). A published method based on a polymerase chain 
reaction may eventually improve our ability to diagnose 
the disease, although the results are still preliminary (da 
Silva et al. 2003). Moreover, many studies have assessed 
different types of therapies with limited success, such as 
treatment with anthelmintic drugs (Morera & Bontempo 
1985, Mentz & Graeff-Teixeira 2003, Bohrer Mentz et al. 
2007), anti-inflammatory drugs (Fante et al. 2008) and 
antithrombotic agents (Rodriguez et al. 2011). The present 
consensus is that anthelmintic drug administration is not 
recommended given that it usually induces the erratic mi-
gration of worms instead of killing them (Morera & Bon-
tempo 1985). Therefore, new targets for the diagnosis and 
treatment of this helminthic disease are urgently needed.

Proteases are interesting biomarkers for the detec-
tion of diseases and account for roughly 10% of all cur-
rent pharmacological targets (Lim & Craik 2009). They 
catalyze the cleavage of peptide bonds in proteins and, 
based on their mechanism of catalysis, are classified into 
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Angiostrongylus costaricensis is a nematode that causes abdominal angiostrongyliasis, a widespread human 
parasitism in Latin America. This study aimed to characterize the protease profiles of different developmental stages 
of this helminth. First-stage larvae (L1) were obtained from the faeces of infected Sigmodon hispidus rodents and 
third-stage larvae (L3) were collected from mollusks Biomphalaria glabrata previously infected with L1. Adult worms 
were recovered from rodent mesenteric arteries. Protein extraction was performed after repeated freeze-thaw cycles 
followed by maceration of the nematodes in 40 mM Tris base. Proteolysis of gelatin was observed by zymography and 
found only in the larval stages. In L3, the gelatinolytic activity was effectively inhibited by orthophenanthroline, in-
dicating the involvement of metalloproteases. The mechanistic class of the gelatinases from L1 could not be precisely 
determined using traditional class-specific inhibitors. Adult worm extracts were able to hydrolyze haemoglobin in 
solution, although no activity was observed by zymography. This haemoglobinolytic activity was ascribed to aspartic 
proteases following its effective inhibition by pepstatin, which also inhibited the haemoglobinolytic activity of L1 and 
L3 extracts. The characterization of protease expression throughout the A. costaricensis life cycle may reveal key fac-
tors influencing the process of parasitic infection and thus foster our understanding of the disease pathogenesis. 
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six distinct classes: serine, cysteine, metallo, aspartic, 
glutamic and threonine proteases (Lopez-Otin & Bond 
2008, Rawlings et al. 2012). Proteolytic enzymes have 
been implicated in several aspects of helminth develop-
ment (Tort et al. 1999), including moulting (Hong et al. 
1993, Rhoads et al. 1998), hatching (Xu & Dresden 1986) 
and excystment (Chung et al. 1995). Moreover, parasite-
derived proteases are key elements in the process of host 
colonization by the infective larval stages of several 
helminths. In addition to assisting in connective tissue 
invasion and feeding, these enzymes help parasitic or-
ganisms to evade the host immune response and prevent 
blood coagulation (McKerrow 1989, Dzik 2006). They 
are major virulence factors because they play a variety 
of roles establishing, maintaining and exacerbating the 
infection (McKerrow et al. 2006). Proteases of differ-
ent mechanistic classes may be expressed in the parasite 
intestines or may constitute their excretory-secretory 
products. They are presently considered to be potential 
targets for the next generation of antiparasite interven-
tions (Dalton 2003). The aim of this study was to evalu-
ate the presence of proteases in crude extracts of A. cos-
taricensis nematodes at different developmental stages. 
We hypothesize that, as is true for other helminth nema-
todes, proteolysis is most likely involved in the nutrition, 
development and pathogenicity of A. costaricensis.

MATERIALS AND METHODS

Chemicals - Protease inhibitors [pepstatin A, L-
trans-epoxysuccinyl-L-leucylamido-(4-guanidino)-
butane (E-64), orthophenanthroline, 4-(amidinophenyl) 
methanesulphonyl fluoride (APMSF), ethylenedi-
aminetetraacetic acid (EDTA) and ethyleneglycol bis(2-
aminoethyl ether)-N,N,N’,N’ tetraacetic acid (EGTA)], 
dithiotreitol (DTT), human haemoglobin and Coomassie 
R-250 were purchased from Sigma-Aldrich (St Louis, 
USA). The Sample Grinding kit, 2-D Quant kit and pro-
tein low molecular weight standards for sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
were from GE Healthcare (Chalfont St Giles, UK). All 
other chemicals were of analytical reagent grade.

Ethics - All procedures with animals were approved 
by the Animal Ethical Committee at Oswaldo Cruz Foun-
dation (license # P0246/05) and conducted in accordance 
with the International Guiding Principles for Biomedical 
Research Involving Animals, as issued by the Council for 
the International Organizations of Medical Sciences.

Parasite life cycle - Adult and larval stages of A. 
costaricensis nematodes were obtained from the nor-
mal life cycle of the parasites, which were kept in the 
laboratory through their successive passages in mollusks 
Biomphalaria glabrata (intermediate hosts) and rodents 
Sigmodon hispidus (definitive hosts), as previously de-
scribed (Mota & Lenzi 2005).

 L1 - Three-month-old rodents were used after 30 
days of being orally infected with L3 of A. costaricensis 
per animal. Faeces collected from these animals were 
added to 50 mL of water. L1 was decanted from the fae-
ces suspension using a modified Baermann apparatus. 
The modification consisted of a funnel directly connect-

ed to a haemolysis tube through a latex hose (Barcante 
et al. 2003). After 12 h, 50 mL of the sediment contain-
ing L1 were recovered and centrifuged at 2,000 g for 10 
min at room temperature (RT). The supernatant was dis-
carded and the remaining pellet was resuspended in 10 
mL of water. After gentle agitation, suspension aliquots 
(100 µL) were transferred to Petri dishes for counting 
and evaluation of the morphology of the larvae using an 
inverted light microscope. A discontinuous Percoll gra-
dient was then used to separate L1 from small debris and 
bacteria as previously described (Graeff-Teixeira et al. 
1999). This method takes advantage of the change in den-
sity that occurs when A. costaricensis larvae are killed, 
allowing for the separation of dead L1 from live ones. 
Following the purification step, the Percoll was removed 
by five cycles of phosphate buffered saline (PBS) wash-
ing and centrifugation at 2,500 g for 10 min at 20ºC.

L3 - The infective L3 were obtained from mollusks 
previously infected with L1. Briefly, mollusks were 
crushed and the tissues were homogenized and digested 
in an acid-pepsin solution (0.5% pepsin and 0.2% HCl) 
for 2 h at 37ºC (Wallace 1969, Mota & Lenzi 2005). Host 
cellular debris was removed from the digests by centrif-
ugation at 2,000 g for 10 min. The infective larvae were 
then isolated according to Baermann’s modified tech-
nique and counted as previously described for L1.

Adult worms (male and female) - Adult worms were 
recovered by dissection of the mesenteric arteries of S. 
hispidus rats 40 days after the infection (Wallace 1969, 
Mota & Lenzi 2005). They were extensively rinsed in 
PBS, segregated according to gender (Rebello et al. 2011), 
weighted and then stored at -80ºC until further use. 

Protein extraction – Samples containing 80,000 L1 
or 30,000 L3 were resuspended in 300 µL of 40 mM Tris 
base in 1.5 mL microcentrifuge tubes containing abra-
sive resin (Sample Grinding Kit). Protein extraction was 
performed by a combination of 10 freeze-thaw cycles in 
liquid nitrogen followed by grinding for 2 min. Adult 
worms (13 males or 7 females) were separately ground 
for 5 min in 1.5 mL microcentrifuge tubes containing 
abrasive resin and 150 µL of 40 mM Tris base. The 
optimization of the protein extraction procedures was 
performed on female samples only and included sample 
grinding in two additional extraction solutions: 40 mM 
Tris base with 1% Triton X-100 or 40 mM Tris base with 
1% SDS. Cell debris was removed by centrifugation at 
16,000 g for 10 min and the protein content of the su-
pernatants was measured using the 2-D Quant kit and 
bovine serum albumin as the standard. 

Zymography - The proteolytic activity of crude ex-
tracts of larvae and adult worms was analyzed by zymog-
raphy using 12% T SDS-PAGE (T = total concentration 
of acrylamide and bis-acrylamide) (Laemmli 1970), con-
taining 0.1% copolymerized gelatin (Heussen & Dowdle 
1980). Protein extracts (2 µg) were diluted (v/v) in sample 
buffer without ß-mercaptoethanol and loaded onto gels. 
The gels were run at 12 mA and 4ºC. After electropho-
resis, the gels were incubated for 1 h at RT in 2.5% (v/v) 
Triton X-100 for SDS removal and enzyme renaturation. 
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The effect of pH on the proteolytic activity was deter-
mined by incubating Triton X-100-treated gels for 12 h 
at 37ºC in the following buffers: 0.1 M sodium citrate 
containing 1 mM CaCl2 (pH 3.0 or 5.5), 0.1 M sodium 
phosphate containing 1 mM CaCl2 (pH 7.0), 0.1 M Tris 
containing 1 mM CaCl2 (pH 7.4), 0.1 M glycine-NaOH 
containing 1 mM CaCl2 (pH 10) and 0.2 M KCl-NaOH 
containing 1 mM CaCl2 (pH 12). Zymograms were 
stained with 0.2% Coomassie Brilliant Blue (R-250) in 
methanol:acetic acid solution (40:10 v/v) and destained 
in the same solution without the dye. They were scanned 
with the ImageScanner III (GE HealthCare) and analyzed 
by the Image Master 2D Elite software (GE HealthCare).

Haemoglobin proteolysis in solution - Haemoglobin 
hydrolysis was assayed after the incubation of human 
haemoglobin (0.5 mL; 2 mg/mL) with crude extracts of 
larvae or adult nematodes (50 µg) at 37ºC for 1 h, 5 h or 
18 h in the presence of 1 mM DTT. Digestions were con-
ducted in the following buffers: 0.1 M sodium acetate, 
pH 3.0 or 5.0, and 0.1 M sodium phosphate, pH 7.4. The 
reaction was stopped by the addition of sample buffer 
(Laemmli 1970) and boiling for 5 min; the hydrolysates 
were further analyzed by 15% T SDS-PAGE under re-
ducing conditions. Protein extracts (50 µg) from the gut 
tissue of female worms were also tested upon the haemo-
globin substrate as described above (18 h hydrolysis). 

Inhibition of proteolytic activity - The following pro-
tease inhibitors were used to identify the mechanistic 
class of the proteases in protein extracts (molar concen-
trations used are indicated): 10 µM E-64, 10 mM and 
100 mM orthophenanthroline, 10 mM EDTA; 10 mM 
EGTA, 1 µM pepstatin A and 100 µM APMSF. They 
were included in the buffer in which the zymograms 
were incubated overnight following enzyme renatur-
ation. To assay for the inhibition of haemoglobinolytic 
activity in solution, the inhibitors were added to the ap-
propriate digestion buffer. 

RESULTS 

The optimization of protein extraction conditions 
was performed only in female adult worms, which are 
longer and more abundant than male worms (Rebello et 
al. 2011). Equivalent sample amounts (~3.5 mg of worm/
replicate for each condition) were ground in three differ-
ent solutions followed by the estimation of protein recov-
eries by the 2-D Quant kit (Table). Quantitatively, when 
compared to the assumed 100% extraction efficiency 
(obtained with 40 mM Tris base containing 1% SDS), 40 
mM Tris base containing 1% Triton X-100 or 40 mM Tris 
base solutions allowed for the recovery of 81% and 45% 
of total worm proteins, respectively. Although detergents 
did not impair the proteolytic activity, the inhibitory ef-
ficiency of chelating agents was reduced in the presence 
of SDS. Therefore, to avoid interference in the inhibition 
assays, all protein extracts further used in this study were 
prepared in 40 mM Tris base without any detergents, al-
beit with lower efficiency of protein recovery.

The zymographic analysis involves protein separation 
by SDS-PAGE copolymerized with a substrate within 
the polyacrylamide gel matrix. Following renaturation 

by the exchange of the SDS with a nonionic detergent, 
proteolytic activity was visualized in situ as clear bands 
against a dark blue background where the protease had di-
gested the substrate (Wilkesman & Kurz 2009). Calcium 
chloride was included in the hydrolysis buffer to improve 
the detection of calcium-dependent proteases (ex.: met-
alloproteases, serine proteases) which could eventually 
be present in the nematode extracts. This technique has 
proven extremely useful for the detection of a wide range 
of proteases from parasites, animals and plants (d’Avila-
Levy et al. 2001, Santos et al. 2009). A drawback of the 
technique is that some enzymes do not renature correctly 
and hence cannot be detected (Wilkesman & Kurz 2009). 

A pronounced gelatinolytic activity was observed 
for the protein extracts of L1 and L3 larvae, the migra-
tory stages of the parasite. For both larval stages, gelati-
nolytic activity was detected at a neutral and an alkaline 
pH, with optimal activity observed at pH 7.4 (Fig. 1A). 
The SDS-PAGE analysis of the larval extracts (Fig. 2B) 
showed a complex pattern of protein bands, with molec-
ular masses ranging from 97 to less than 14.4 kDa. On 
the other hand, most proteolytic bands showed apparent 
molecular masses greater than 40 kDa (Fig. 2A). To de-
termine the mechanistic class of the gelatinases of A. cos- 
taricensis, their susceptibility to the following protease 
inhibitors was analyzed: APMSF (irreversible inhibi-
tor of serine proteases), E-64 (irreversible inhibitor of 
cysteine proteases), pepstatin (reversible inhibitor of as-
partic proteases), orthophenanthroline, EDTA or EGTA 
(reversible inhibitors of metal-dependent proteases) (Fig. 
3). The gelatinolytic activity of L3 extracts was insen-
sitive to APMSF, E-64 and pepstatin, but was readily 
inhibited by orthophenanthroline, EDTA or EGTA, sug-
gesting the major involvement of zinc metalloproteas-
es. The proteolytic activity of L1 extracts upon gelatin 
was only partially inhibited by orthophenanthroline or 
EDTA. On the other hand, EGTA strongly inhibited the 
gelatinolytic activity of L1 extracts; this metal chelator 
has a very high affinity for calcium ions, suggesting the 
presence of calcium-dependent proteases in this sample. 
Given that APMSF, E-64 and pepstatin did not affect 
this enzymatic activity either, the mechanistic class of 

TABLE 
Quantitative analysis of different sample 

preparation methods for female adult worms

Extraction solutions

Extraction yield 
(µg ptn/mg worm)a

Mean SD n

40 mM Tris 23.82 1.98 3
40 mM Tris + 1% Triton X-100 43.25 5.12 3
40 mM Tris + 1% SDS 53.10 1.47 3

a: protein concentration was measured using the 2-D Quant 
kit assay; n: number of independent replicates; SD: standard 
deviation; SDS: sodium dodecyl sulphate.
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the gelatinases of L1 larvae could not be precisely deter-
mined. Worm extracts of male and female adults were 
unable to hydrolyze copolymerized gelatin over the wide 
range of pH values tested (not shown). 

Host haemoglobin is a major substrate for the pro-
teolytic enzymes produced by nematodes that feed on 
blood (Williamson et al. 2003). The present study showed 
that protein extracts from larvae (Fig. 4) or adult worms 
(Fig. 5) of A. costaricensis hydrolyze human haemoglo-
bin in vitro after 18 h and 5 h of incubation, respectively. 
No hydrolysis of haemoglobin was observed after 1 h 
of incubation (not shown). Interestingly, haemoglobin-
degrading activity was also observed in protein extracts 
from isolated gut tissue of adult worms, with optimum 
activity observed at pH 3.0 (Fig. 1B). The same pH be-
haviour was observed in crude extracts from adult worms 

and larvae (not shown). It is possible to observe blood in-
side the intestines of A. costaricensis adult worms, thus 
suggesting that the parasite haemoglobinolytic protease 
may be involved in the degradation of blood components 
of the host. These proteases may be responsible for the 
degradation of haemoglobin and other host proteins 
during intracellular residence, as already observed for 
schistosomes (McKerrow et al. 2006). The haemoglo-
binolytic activity of A. costaricensis extracts was effec-
tively inhibited by pepstatin, while APMSF, E-64 and 
orthophenanthroline had no inhibitory effect (Figs 4, 5). 
These results indicate the presence of aspartic proteases 
in larvae and adult worms.

DISCUSSION

Metalloprotease activity has been already reported in 
several helminths (Lun et al. 2003, Quiñones et al. 2006, 
Williamson et al. 2006), including Angiostrongylus can-
tonensis (Lee et al. 2004, Lai et al. 2005). These enzymes 
belong to a diverse group of enzymes that utilize coordi-
nation to a metal ion (usually zinc) to exert catalysis and 
have a powerful degrading effect on extracellular matrix 
components (Rawlings & Barrett 1995). Because L1 and 
L3 larvae from A. costaricensis do not possess a bucal 
stylet (Ishih et al. 1990), one can speculate that the im-
portant gelatinolytic activity observed by zymography 
may assist in parasite penetration into both the mollusk 
tegument and the intestinal wall. For example, the infec-
tive larvae of Strongyloides stercoralis secretes a metal-
loprotease that is thought to be involved in the invasive 
process, facilitating the tissue penetration of the host 
skin (McKerrow et al. 1990, Gomez Gallego et al. 2005). 
Similarly, the secreted metalloproteases of Ancylostoma 
caninum appear to trigger the activation of the third-
stage infective larvae, including ecdysis and penetration 
of host tissues (Hotez et al. 1990, Hawdon et al. 1995, 
Williamson et al. 2006). Metalloproteases have also been 
identified in extracts and excretory-secretory samples of 
A. cantonensis and may be associated with parasite dis-
semination and/or pathogenesis (Lai et al. 2005).

Fig. 2A: comparison of zymographic and electrophoretic profiles 
of protein extracts of first (L1) and third (L3) stage larvae of An-
giostrongylus costaricensis nematodes. Samples (2 µg) were loaded 
onto 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) copolymerized with 0.1% gelatin. After the electropho-
retic separation, the zymograms were incubated for 18 h at 37ºC in 0.1 
M Tris containing 1 mM CaCl2, pH 7.4. They were stained with Coo-
massie Brilliant Blue R250. B: SDS-PAGE (12%) analysis of crude 
extracts (2 µg) stained with silver nitrate. Molecular mass standards 
are shown on the left side of the gel. 

Fig. 1: A: gelatin zymograms showing the proteolytic activity of 
the protein extracts of first (L1) and third (L3) stage larvae of An-
giostrongylus costaricensis nematodes. Samples (2 µg) were loaded 
onto 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) copolymerized with 0.1% gelatin. After the electropho-
retic separation, the zymograms were incubated for 18 h at 37ºC at 
different pHs (see Materials and Methods for the description of buf-
fers composition). The zymograms were stained with Coomassie 
Brilliant Blue R250; B: SDS-PAGE (12%) analysis of haemoglobin 
degradation by protein extracts (50 µg) from the gut tissue of female 
worms (18 h hydrolysis) tested at different pHs; 1: haemoglobin (nega-
tive control); 2: haemoglobin + protein extract (positive control). Gels 
were stained with Coomassie Blue. Molecular mass standards are 
shown on the left side of the gel. 
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Several aspartic proteases have also been described 
in different parasitic nematodes, including hookworms 
(Williamson et al. 2004), S. stercoralis (Gallego et al. 
1998), Haemonchus contortus (Longbottom et al. 1997) 
and Onchocerca volvulus (Jolodar et al. 2004) and in 
the free-living nematode Caenorhabditis elegans (Geier 
et al. 1999). In the hookworms, these proteases play an 
important role in haemoglobin digestion in the intestine 
and in tissue degradation during the larvae migration in 
the mammalian host (Williamson et al. 2003). A recent 
study showed that the expression level of the aspartic 
protease gene in A. cantonensis varies during the life 
cycle of the nematode and differs between male and fe-
male adult worms (Hwang et al. 2010). Some nematodes 
express aspartic proteases in eggs and in early stages of 
development, but a clear function has not yet been as-
cribed to these enzymes (Yang et al. 2009).

Aspartic proteases are proteolytic enzymes character-
ized by the presence of two catalytic aspartic acid residues 
at their active site. These enzymes play a key role in the 
digestion of haemoglobin by schistosomes (Brinkworth 
et al. 2001, Koehler et al. 2007), Plasmodium falciparum 
(Francis et al. 1997, Banerjee et al. 2002), Necator ameri-
canus (Brown et al. 1995, 1999) and A. caninum (Wil-
liamson et al. 2003). Interestingly, cysteine protease ac-
tivity was not detected under the experimental conditions 
tested. This type of protease is the most widely reported 
class of protease in parasitic nematodes and has been 
shown to hydrolyze gelatin in addition to other substrates 
(Yatsuda et al. 2006, Kasny et al. 2007, Liu et al. 2010). 
Cysteine proteases are associated with several biological 

processes, such as tissue penetration, feeding and evasion 
of host immune response (Sajid & McKerrow 2002).

From a biological point of view, it is interesting to note 
that L1 extracts showed stronger gelatinolytic activity than 
L3 extracts. L1 larvae penetrate mollusks through oral 
(Morera 1973) and/or percutaneous infections (Thiengo 
1996, Mendonca et al. 1999) and moult twice inside the 
intermediate host. We hypothesize that the ability of ge-
latinases to hydrolyze extracellular matrix components is 
important for tissue invasion. The stronger gelatinolytic 
activity of L1 larvae may ensure its successful penetra-
tion through the mollusk’s surface and muscular layers. 
However, L3 larvae may also make use of gelatinolytic 
enzymes to penetrate the vertebrate intestinal wall and 
reach the circulatory system, as already described for the 
infective stage of several parasite nematodes (Hotez et al. 
1990, Zhan et al. 2002, Lai et al. 2005, Lee & Yen 2005). 
L3 become adult worms inside the blood vessels, where 
these last will live their entire lives. L1 may be eventually 
found in the systemic circulation, although this results 
from an alternative migratory route in rodents (Mota & 
Lenzi 2005, Fontoura et al. 2007). Therefore, it was not 
surprising to find that the proteolytic activity against hae-
moglobin was more pronounced in L3 larvae and adult 
worms. These developmental stages of the parasite remain 
in direct contact with blood most of their lifetime.

In summary, in this study we investigated the presence 
of proteolytic activity in crude protein extracts from dif-
ferent life cycle stages of A. costaricensis. Several met-
alloproteases with gelatinolytic activity were observed in 
the protein extracts from L1 and L3 larvae, but not in adult 

Fig. 3: effect of protease inhibitors on the zymographic profiles of the protein extracts of first (L1) and third (L3) larvae of Angiostrongylus cos- 
taricensis nematodes. L1 or L3 samples were loaded onto 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis copolymerized with 
0.1% gelatin. After the electrophoretic separation, the zymograms were incubated for 18 h at 37ºC in 0.1 M Tris containing 1 mM CaCl2, pH 7.4. 
The proteolytic activity was assayed in the absence (-) or presence (+) of each one of the protease inhibitors [A: 100 μM 4-(amidinophenyl) meth-
anesulphonyl fluoride (APMSF); B: 10 μM L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)-butane (E-64); C: 1 μM pepstatin-A; D: 10 mM 
orthophenanthroline; E: 10 mM ethylenediaminetetraacetic acid (EDTA); F: 10 mM ethyleneglycol bis(2-aminoethyl ether)-N,N,N’,N’ tetraacetic 
acid (EGTA)]. Zymograms were stained with Coomassie Brilliant Blue R250. Molecular mass standards are shown on the left side of the gel. 
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worm extracts. They showed optimal activity at neutral 
to alkaline pH. At low pH, haemoglobinolytic enzymes 
characterized as aspartic proteases were detected both in 
larvae and adult worms. The results suggest that these hae-
moglobin-degrading proteases should ideally exert their 
activity under an acid environment, such as the intestine. 
Although the biological function of the proteases from A. 
costaricensis remains unknown, they represent an attrac-
tive target for the development of diagnostic tests and vac-
cines for the control of abdominal angiostrongyliasis.
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