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REVIEW

Peeling the onion: the outer layers of Cryptococcus neoformans
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Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a 
deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related 
deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique 
characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures 
that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We re-
view current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the 
field, with the goal of stimulating further investigation that will advance basic knowledge and human health.
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Cryptococcus neoformans is an opportunistic fungal 
pathogen that causes severe infection of the central ner-
vous system. Inhalation of this microbe, as either a spore 
or desiccated yeast cell (Giles et al. 2009), causes a pul-
monary infection that in immunocompetent individuals 
is minimally symptomatic, although it may remain latent 
for extended periods of time (Kwon-Chung et al. 2014, 
Ballou and Johnston 2017). In severely immunocom-
promised individuals, however, C. neoformans can dis-
seminate from the lungs and cross the blood-brain barrier 
(Santiago-Tirado et al. 2017), causing an often-lethal me-
ningoencephalitis. Close to 220,000 cases of cryptococ-
cal meningitis are reported annually. These result in over 
180,000 deaths worldwide, including 15% of all AIDS-
related deaths (Rajasingham et al. 2017). Mortality rates 
range from 10 to 75% (Day et al. 2013, Jarvis et al. 2014), 
even with carefully developed treatment regimens (Per-
fect et al. 2010), due to challenges that include drug toxic-
ity, efficacy, cost, and availability. Increasing drug resis-
tance has also been reported (Sionov et al. 2013, Chen et 
al. 2015, Smith et al. 2015). Clearly, improved therapies 
are needed to combat this infection.

The outer layers of C. neoformans have unique features 
that may offer directions for drug discovery. These consist 
of three concentric structures: the capsule, cell wall, and 
plasma membrane (Fig. 1A, left). The outermost layer, the 
polysaccharide capsule, is the hallmark of this organism 
and is required for virulence. This highly dynamic struc-
ture modulates fungal interactions with immune cells. 
Capsule components are also shed into the environment, 
where they further influence the host response and may 
be exploited for diagnosis and monitoring of cryptococ-
cal infection (Alspaugh 2015). Both capsule thickness and 

shedding are tightly regulated in response to environmental 
conditions (Kumar et al. 2011, Maier et al. 2015).

Below the capsule, and anchoring it, lies the fungal 
cell wall. This complex structure surrounds the plasma 
membrane and helps the cell withstand environmental 
challenges such as osmotic and mechanical stress. It is 
composed of glucans, chitin, chitosan, and glycosylated 
proteins (Gow et al. 2017). Melanin pigment associated 
with the cell wall further helps C. neoformans resist en-
vironmental stress and antifungal drug toxicity.

The innermost of the three layers we will consider 
is the plasma membrane. Unique features of fungal 
membranes are already the targets of several important 
classes of antifungal drugs, the polyenes and azoles. The 
plasma membrane is also the site of multiple proteins 
implicated in fungal virulence and has been implicated 
in the production of extracellular vesicles with potential 
roles in virulence (Rodrigues et al. 2014, Brown et al. 
2015, Joffe et al. 2016, Rella et al. 2016).

The unique features of the cryptococcal capsule, cell 
wall, and plasma membrane demonstrate fascinating 
fundamental biology that may potentially be exploited 
for therapy. Below we review current knowledge of these 
structures and their synthesis, and highlight some open 
questions in the field. We do not address the regulation 
of these structures in this short article, but refer interest-
ed readers to recent reviews that address this important 
topic (Doering 2009, Gilbert et al. 2011, O’Meara and 
Alspaugh 2012, Bahn and Jung 2013, Kwon-Chung et 
al. 2014, Srikanta et al. 2014, Alspaugh 2015, Rella et al. 
2016, Gow et al. 2017).

The capsule - The polysaccharide capsule is a major 
cryptococcal virulence factor, which impedes the host im-
mune response and is required for fungal survival within 
the host. This structure is composed of two polymers, 
glucuronoxylomannan (GXM) and glucuronoxyloman-
nogalactan (GXMGal), along with trace mannoproteins 
(Cherniak et al. 1998, Doering 2009). GXM, which typi-
cally has a molecular weight in the millions, consists of 
an a-1,3-linked mannose backbone substituted with gluc-
uronic acid and xylose (Cherniak et al. 1988, Cherniak et 
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al. 1998, Heiss et al. 2009). GXMGal, roughly an order of 
magnitude smaller, is a galactan with galactomannan side 
chains bearing a variable number of xylose residues; the 
galactose backbone also bears galactofuranose (all sugars 
are pyranose where not specified) (Heiss et al. 2013, Pre-
viato et al. 2017). Mannose residues of both polymers may 
also be O-acetylated (Gates-Hollingsworth and Kozel 
2009, Previato et al. 2017). Based on analysis of shed 
capsule, GXM constitutes ~90% of the capsule mass and 
GXMGal the remainder (Cherniak and Sundstrom 1994), 
although this may differ for surface-associated capsule.

The reactions that incorporate individual monosac-
charides into complex polysaccharides like those of the 
capsule or cell wall use activated sugar molecules, usu-
ally in the form of nucleotide sugars, as donors. These 
compounds are mainly synthesized in the cytosol, al-
though most glycan biosynthesis, including the forma-
tion of capsule polysaccharides (Yoneda and Doering 
2006), occurs in the lumen of the secretory pathway. 
For this to occur, the precursors must be moved into 
the synthetic compartment by specific nucleotide sugar 
transporters (NSTs) (Caffaro and Hirschberg 2006, Had-
ley et al. 2014). C. neoformans transporters have been 
identified for all of the predicted capsule precursors: 
GDP-mannose (Cottrell et al. 2007, Wang et al. 2014), 
UDP-galactose (Cottrell et al. 2007, Moyrand et al. 2007, 
Wang et al. 2014, Li et al. 2017), UDP-galactofuranose 
(Li et al. 2018a), UDP-glucuronic acid (Li et al. 2018b), 
and UDP-xylose (Li et al. 2018a).

Once nucleotide sugars are transported into the lu-
men of secretory organelles, they serve as substrates for 
specific glycosyltransferases, which mediate the synthetic 
reactions that form capsule polysaccharides. The complex 
structures of GXM and GXMGal suggest the involvement 
of multiple such enzymes. However, only a single glyco-
syltransferase, Cxt1, has been directly implicated in cap-
sule synthesis. This β-1,2-xylosyltransferase is required 
to produce fully xylosylated GXM and GXMGal (Klutts 
et al. 2007, Klutts and Doering 2008). Two other cryp-
tococcal glycosyltransferases have been biochemically 
characterized (Sommer et al. 2003, Reilly et al. 2009, 
Reilly et al. 2011), but only one of them has specificity 
appropriate for a role in capsule production, and deletion 
of the corresponding gene does not alter capsule compo-
sition (Sommer et al. 2003). It remains to be determined 
whether this reflects the presence of compensating activi-
ties or indicates that this enzyme does not participate in 
capsule synthesis. The many other activities required for 
capsule synthesis (Bose et al. 2003, Klutts et al. 2006, Do-
ering 2009) are likely encoded by some of the ~70 putative 
glycosyltransferase genes observed in the C. neoformans 
genome (Cantarel et al. 2009, Lombard et al. 2014); future 
work will be required to identify them.

Most glycan synthetic machinery is localized to the 
Golgi, where elaboration of core glycans on lipids and 
proteins occurs and capsule is synthesized (Yoneda and 
Doering 2006); Cxt1 also resides in this compartment 
(Klutts et al., unpublished observations). From here, the 
classical secretory pathway transports capsule material 
to the cell surface (Yoneda and Doering 2006). There 
are several models for the subsequent incorporation of 

newly synthesized polysaccharides into the existing 
capsule, which propose that this material is incorporated 
either at its inner face, near the cell wall (Pierini and 
Doering 2001, Cordero et al. 2013), or at the outer edge 
of the structure (Zaragoza et al. 2006).

Although capsule polysaccharides are generally 
described as linear polymers, they may also contain 
branches, as suggested by their viscosity and shape fac-
tor (Cordero et al. 2011). Increased branching has been 
reported to confer increased resistance to oxidative 
stress, inhibit nitric oxide production by macrophages, 
and enhance fungal survival in serum (Cordero et al. 
2011). Interestingly, Cryptococcus liquefaciens, which 
has a capsule that is chemically identical to that of C. 
neoformans although with no evidence of branching, is 
not as adept at resisting predation by amoeba, a potential 
environmental host of Cryptococci (Araujo et al. 2012). 
However, this difference in intracellular survival does 
not hold in mammalian macrophages, suggesting that 
the biological activity of capsular polysaccharide may be 
context-dependent (Araújo et al. 2017) or other factors 
may be involved. The details of branch formation and its 

(A) Electron micrographs of Cryptococcus neoformans. Left, quick-
freeze deep-etch image of cells grown in capsule-inducing conditions 
(as in Haynes et al. 2011); right, transmission image of cells grown in 
rich medium (YPD), which yields only thin capsules. C: capsule; W: 
cell wall; PM: plasma membrane; M: mitochondrion; O: outer cell wall 
layer; I: inner cell wall layer. (B) Fluorescent micrograph highlighting 
the cell wall and capsule. Cryptococcal cells were induced to form cap-
sule and stained with florescein (green) to label the cell wall and mono-
clonal antibody 2H1 (blue, generously provided by Arturo Casadevall) 
to label the capsule, as in Pierini and Doering (2001). (C) Quick-freeze 
deep-etch image highlighting the two layers of the cell wall.
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role in host-pathogen interactions are still unclear, but 
promise to be exciting areas of study.

Mannoproteins comprise a small fraction of the cap-
sule mass (Cherniak and Sundstrom 1994). These poly-
peptides appear mainly in the inner region of the capsule, 
close to the cell wall (Jesus et al. 2010); they may repre-
sent an integral part of the capsule or perhaps secreted 
proteins that are in transit through it. These predominant-
ly cell wall proteins are discussed further below.

The cell wall - Moving inward from the capsule, the next 
protective barrier that surrounds C. neoformans is the cell 
wall (Fig. 1B). This structure is essential for cell viability, 
because it protects the fungus from osmotic and other envi-
ronmental stresses; it also serves as a scaffold for the cap-
sule. The cell wall is composed of a- and b-linked glucans 
(glucose polymers), chitin (a polymer of b-1,4-N-acetyl-
glucosamine), chitosan (deacetylated chitin), glycoproteins, 
and, in the presence of appropriate precursors, the pigment 
melanin (Agustinho and Nosanchuk 2017). Because the 
wall contains multiple components that are not shared with 
mammalian hosts, it has been the focus of much research 
for the development of antifungal compounds.

The cryptococcal cell wall is arranged in two layers. 
In quick-freeze deep-etch electron micrographs the in-
ner layer appears more striated and the outer one more 
particulate (Fig. 1C); they also differ in electron density 
on thin section electron micrographs (Fig. 1A, right). 
The inner layer is composed of b-glucans and chitin; 
mannoproteins and melanin are also most abundant in 
this layer although they occur throughout the cell wall 
(Vartivarian et al. 1989, Wang et al. 1995). The outer lay-
er mainly contains a- and b-glucans (Reese et al. 2007).

Each of the wall components has a specific role in 
maintaining cell wall structure and function. b-1,3-glucan 
underlies the cell wall framework. It occurs as long poly-
mers (James et al. 1990), with short b-1,6-glucan branches 
that crosslink the polymers to each other, as well as to chi-
tin and glycoproteins (Reilly and Doering 2009, Gilbert et 
al. 2011, Gow et al. 2017). Chitin and chitosan contribute to 
maintaining the integrity and flexibility of the wall struc-
ture (Banks et al. 2005), while chitin and chitooligomers 
have been implicated in capsule architecture (Banks et al. 
2005, Rodrigues et al. 2008, Fonseca et al. 2009). a-1,3-
glucans are required for tethering the polysaccharide cap-
sule to the cell (Reese and Doering 2003, Reese et al. 2007).

Unlike capsule components, cell wall polysaccharides 
are made at the plasma membrane and extruded through 
it. Once outside the cell, they associate with each other 
and with cell wall proteins that have exited via the se-
cretory pathway. Some of these interactions are directed 
by branching or cross-linking enzymes, which together 
establish the complex wall structure (Gilbert et al. 2011, 
Free 2013, Gow et al. 2017).

b-1,3-glucan is synthesized at the plasma membrane 
from UDP-glucose by Fks1. The antifungal drug caspo-
fungin (Kartsonis et al. 2003) targets Fks1 in other yeasts, 
but notably is not effective against C. neoformans, even 
though it inhibits the cryptococcal enzyme in vitro (Ma-
ligie and Selitrennikoff 2005). The synthases Skn1 and 
Kre6 participate in formation of b-1,6-glucan, although 

their specific biochemical roles are not known; deletion of 
the corresponding genes also perturbs capsular architec-
ture, likely due to disorganization of the underlying cell 
wall (Gilbert et al. 2010). Finally, a membrane-associated 
alpha glucan synthase [Ags1; (Reese and Doering 2003)] 
forms a-1-3-glucan.

Chitin is made at the plasma membrane by a fam-
ily of chitin synthases. Although no individual family 
member is essential for C. neoformans viability, the de-
letion of genes encoding chitin synthase 3 (Chs3) and a 
chitin synthase regulator (Csr2) drastically impairs cell 
wall integrity (Banks et al. 2005). Unlike in other fungi, 
most of the chitin in C. neoformans is deacetylated to 
form chitosan, a polymer that confers extra flexibility on 
the cell wall. Cells from strains lacking all three chitin 
deacetylases (Cda1, Cda2, and Cda3) have no cell wall 
chitosan and exhibit defects in cell integrity (Baker et al. 
2007). Chitosan is also essential for virulence (Baker et 
al. 2011), a feature that has been successfully exploited 
in using a chitosan-deficient strain of C. neoformans to 
induce robust protective immunity in a murine model of 
infection (Upadhya et al. 2016).

Another component of the cell wall that has been 
implicated in virulence is melanin, a negatively-charged 
polymeric and hydrophobic pigment made from phenolic 
or indolic precursors (Nosanchuk and Casadevall 2006). 
This material is associated with the cryptococcal cell wall 
in a chitin-dependent manner (Baker et al. 2007, Camacho 
et al. 2017). Melanization enhances cryptococcal survival 
within natural predators, such as amoebae (Steenbergen 
et al. 2001) or nematodes (Mylonakis et al. 2002). Disrup-
tion of its synthesis during infection reduces cryptococcal 
dissemination (Noverr et al. 2004) and virulence (Salas 
et al. 1996), possibly due to melanin-mediated inhibi-
tion of phagocytosis and modulation of host cell cytokine 
responses (Huffnagle et al. 1995, Mednick et al. 2005). 
Melanization also increases resistance to antifungal com-
pounds such as amphotericin B and caspofungin (Wang 
and Casadevall 1994a, Martinez and Casadevall 2006), 
and to environmental stresses, including host oxidative 
and nitrosative responses (Wang and Casadevall 1994b).

Many proteins are present in the cell wall, most of 
them heavily modified with N- and O-linked glycans 
(Klutts et al. 2006, Levitz and Specht 2006, Doering 
2009, Reilly et al. 2011). The majority of these originate 
as plasma membrane localized glycosylphosphatidylino-
sitol (GPI)-linked polypeptides, which are transferred, 
along with part of their anchor glycan, to covalent link-
age with cell wall b-1,6-glycans (Orlean and Menon 
2007, Muniz and Zurzolo 2014). Computational analy-
sis predicts over 50 GPI-linked proteins encoded by the 
cryptococcal genome (de Groot et al. 2005, Loftus et al. 
2005, Levitz and Specht 2006); some of these have been 
confirmed in studies of the C. neoformans secreted pro-
teome (Eigenheer et al. 2007). Other proteins associate 
with the cell wall via non-covalent interactions, link-
age to b-1,3-glucan (Yin et al. 2008, Karkowska-Kuleta 
and Kozik 2015, Gow et al. 2017), or disulfide bonds to 
polypeptides that are themselves covalently bound to 
structural glycans (de Nobel and Lipke 1994, Jaafar et 
al. 2003); these processes are less well studied.
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Multiple cell wall proteins have key functions in cryp-
tococcal biology. Some have been implicated in the dy-
namic responses of the wall to environmental conditions, 
such as the GPI-linked b-glucanase Gas1 that acts in 
b-1,3-glucan remodeling (Levitz and Specht 2006, Eigen-
heer et al. 2007). Another important GPI-linked protein 
is phospholipase B1 (Plb1), which has been implicated in 
C. neoformans virulence (Siafakas et al. 2007, Maruvada 
et al. 2012). Cell wall mannoproteins, small amounts of 
which can be found in the capsule (see above), are often 
80-90% mannose by mass (Mansour and Levitz 2003). 
They are highly immunogenic (Levitz and Specht 2006, 
Wozniak and Levitz 2009) due to their activation of the 
mannose receptor on dendritic cells and consequent acti-
vation of T-cells, which leads to a protective immune re-
sponse against C. neoformans (Specht et al. 2007, Dan et 
al. 2008a, Dan et al. 2008b). These proteins are being ex-
plored as an adjuvant component of a vaccine for crypto-
coccosis (Chow and Casadevall 2011, Levitz et al. 2015).

Several cryptococcal mannoproteins have been stud-
ied in depth. The first one described, MP98, was shown 
to be involved in T-cell activation (Levitz et al. 2001) 
and turns out to be the same protein as the chitin deacet-
ylase Cda2 discussed above (Gilbert et al. 2012). This 
protein, despite originating as a GPI-anchored mem-
brane protein, associates with the cell wall in a manner 
that is independent of its GPI structure and b-1,6-glu-
cans; the enzymatic activity is associated with the mem-
brane form (Gilbert et al. 2012). Other mannoproteins 
that have been studied include MP88, involved in T-cell 
activation (Huang et al. 2002), and others (MP84 and 
MP115) that have homology to chitin deacetylase and 
carboxylesterase proteins (Biondo et al. 2005). MP84 
has been reported to mediate adhesion of C. neoformans 
yeasts to lung epithelial cells, suggesting a role early in 
infection (Teixeira et al. 2014). Finally, the mannopro-
tein Cig1 participates in iron uptake and contributes to 
virulence in a mouse model (Jung et al. 2006, Cadieux et 
al. 2013). Future studies of these and other cell wall pro-
teins will further illuminate the synthesis and function 
of this complex structure, and may also advance efforts 
to develop vaccines or therapies.

Plasma membrane - Beneath the polysaccharide cap-
sule and cell wall is the plasma membrane (Fig. 1), which 
serves as a barrier to the passage of hydrophilic molecules 
(van der Rest et al. 1995). Fungal membranes are com-
posed of sterols, glycerophospholipids, and sphingolipids 
(Ejsing et al. 2009, Singh et al. 2017), although these dif-
fer in many respects from their mammalian counterparts. 
The plasma membrane also contains proteins, which 
maintain their association with the membrane via trans-
membrane domains, GPI anchors, or various lipid modi-
fications (Santiago-Tirado and Doering 2016). Membrane 
structure and composition are dynamic, and vary with the 
fungal species analyzed and the environmental conditions 
(Singh and Prasad 2011, Xia et al. 2011).

Fungal membranes differ from those of mammals in 
containing ergosterol in place of cholesterol. This fea-
ture has been exploited by two major classes of antifun-
gal drugs, Amphotericin B, which binds ergosterol, and 

the azoles, which inhibit its synthesis. C. neoformans 
also produces glycosylated ergosterols, termed sterylg-
lycosides (SGs) (Weete et al. 2010, Rella et al. 2016). Al-
though the enzyme(s) responsible for SG synthesis has 
not been identified (Warnecke et al. 1999), a glucosidase 
involved in SG degradation (termed EGCrP2 or Sgl1) 
is known. Deletion of the corresponding gene yields 
growth arrest, abnormal budding, and abnormal vacuole 
morphology (Watanabe et al. 2015); it also eliminates 
virulence in a murine model (Rella et al. 2015). Inter-
estingly, inoculation with this mutant protected mice 
against subsequent lethal doses of C. neoformans H99 
and Cryptococcus gattii R265 (Rella et al. 2015).

Yeast glycerophospholipids resemble those of higher 
eukaryotes, although their fatty acid composition may 
vary, while glycosphingolipids are more distinct. One 
of the latter that has been studied in detail in C. neo-
formans is glucosylceramide (GlcCer) (Nimrichter and 
Rodrigues 2011), which influences cryptococcal patho-
genicity and is required for normal growth, resistance to 
alkaline conditions, spore production, and germination 
(Del Poeta et al. 2014). GlcCer is formed by the enzyme 
glucosyl-ceramide synthase 1, which transfers glucose 
from the nucleotide sugar UDP-glucose to a ceramide 
backbone (Rittershaus et al. 2006, Rella et al. 2016); 
disruption of the corresponding gene abrogates growth 
and virulence (Rittershaus et al. 2006). Notably, fungal 
GlcCer differs from that of other eukaryotes by the pres-
ence of a methyl group in the sphingoid base (Rodrigues 
et al. 2000). Eliminating this methylation alters mem-
brane integrity and reduces virulence (Singh et al. 2012, 
Raj et al. 2017). Little is known about GlcCer catabo-
lism, but a cryptococcal glucosylceramidase (EGCrP1) 
may act in GlcCer quality control (Ishibashi et al. 2012).

Within the plasma membrane of eukaryotes, distinct 
microdomains are enriched in ergosterol, GlcCer, other 
sphingolipids, and GPI-proteins. Such ‘lipid rafts’ are 
also found in C. neoformans, although they contain more 
saturated fatty acids (e.g. palmitic and stearic acid), few-
er unsaturated fatty acids (e.g. oleic and linoleic acid), 
and none of the very long chain fatty acids (> 20 car-
bons) found in lipid rafts from mammalian cells and S. 
cerevisiae (Siafakas et al. 2006). Several virulence fac-
tors cluster in these domains, including the phospholi-
pase Plb1 (Maruvada et al. 2012), the antioxidant Cu/
Zn superoxide dismutase (Siafakas et al. 2006), and the 
plasma membrane ATPase (Pma1) (Farnoud et al. 2014).

Final thoughts - The AIDS epidemic allowed the ex-
plosive emergence of opportunistic pathogens such as C. 
neoformans. The death toll caused by this fungus con-
tinues to be an enormous burden, especially in regions 
with limited health care resources. This impact, coupled 
with the challenges of drug cost, availability, toxic side 
effects, lengthy treatment regimens, and resistance, cre-
ates an urgent need for improved therapies.

C. neoformans is protected by concentric surface 
structures, each of which influences multiple aspects of 
pathogenesis. Unique features of these structures may of-
fer targets for new antifungal agents, but many of them 
remain poorly defined. For capsule, we still do not know 
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how GXM and GXMGal are arranged and associate with 
the cell, or most of the glycosyltransferases required 
for their synthesis. The mechanisms of capsule branch-
ing, shedding, and degradation also remain unexplored. 
Fungal cell wall synthesis is fairly well understood and 
has been successfully exploited for antifungal therapy 
by glucan synthase inhibitors, but this class of drugs is 
not effective against cryptococcal infection. Continued 
exploration of wall synthesis and regulation, and of cell 
wall proteins or strains defective in cell wall components 
that may act as vaccines, may help compensate for this 
gap in efficacy. Finally, the plasma membrane is the site 
of unique glycolipids whose synthesis and catabolism is 
yet to be fully elucidated; these and novel membrane pro-
teins may offer targets for drug development or potential 
for diagnostics. Addressing these many fascinating ques-
tions, as we peel away the layers of this fascinating yeast, 
should lead to advances in fundamental biology and point 
the way to new ways to combat a formidable pathogen.
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