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A multi-resistant strain of Vibrio parahaemolyticus was isolated from a tropical estuary in Rio de Janeiro, Brazil. Genome 
sequencing was conducted to establish the molecular basis of antibiotic resistance in this organism. The genetic content of this 
strain revealed it to be a non-virulent lineage that nevertheless possesses several antibiotic resistance determinants.
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Virulent strains of Vibrio parahaemolyticus are re-
sponsible for several global outbreaks of gastroenteritis 
caused by the ingestion of contaminated seafood.(1,2) This 
organism is typically found in warm aquatic environments 
and is often associated with invertebrates, either adopting 
a virulent or non-virulent lifestyle.(3,4,5,6) Although sev-
eral antibiotic-resistant strains of V. parahaemolyticus 
have been reported,(4,6,7) little has been done to elucidate 
the genetic basis of resistance among the environmental 
lineages. To tackle this issue, we isolated a multi-resist-
ant strain of V. parahaemolyticus, hereby named strain 
JPA1, from the waters of the Jacarepaguá lagoon system 
situated in the city of Rio de Janeiro, Brazil. The local 
population often comes in contact with the waters at this 
site either directly for recreational purposes or indirectly 
through the consumption of seafood retrieved from the 
lagoon system. Despite this, the Jacarepaguá lagoons re-
ceive massive amounts of untreated sewage daily; a factor 
that contributes to the high abundance and diversity of 
antibiotic-resistant bacteria in this habitat.(8,9) Therefore, 
understanding the diversity of the antibiotic-resistant 
bacteria dwelling in the Jacarepaguá lagoons and their 
molecular mechanisms of resistance can provide insights 
into the potential risks that these organisms pose to the 
local population and elucidate how resistance can spread 
among aquatic bacteria in this habitat.
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The antibiotic susceptibility profile of strain JPA1 
was determined by measuring the minimum inhibitory 
concentration (MIC) of 16 drugs against JPA1. This or-
ganism was resistant to eight out of the 16 tested antibi-
otics (Table I). JPA1 showed resistance or intermediate 
resistance to all the tested beta-lactams, with the excep-
tion of ceftriaxone. However, it tested susceptible to all 
aminoglycosides, tigecycline, and ciprofloxacin.

DNA was prepared for sequencing using the Nextera 
XT DNA library prep kit following manufacturer’s rec-
ommendations. Genome sequencing was conducted using 
the Illumina MiSeq platform that yielded 1,461,209 reads 
(average length = 250 bp and average Phred score = 37). 
Reads were subjected to a hybrid assembly using A5(10) 
and SPAdes.(11) The 5.1 Mbp draft genome of the V. para-
haemolyticus strain JPA1 was assembled into 793 scaf-
folds (N50 = 17,960 bp) and displayed a G+C content of 
45.1%. Gene prediction was carried out using Prokka,(12) 
and the predicted proteins were annotated using Dia-
mond(13) for best-hit classification against the NCBI nr 
database. The assembled genome was deposited in the 
European Nucleotide Archive under project PRJEB31105.

Clinical strains of V. parahaemolyticus often carry 
genes that encode a type three secretion system (T3SS) 
for a thermostable direct haemolysin (TDH) and/or 
TDH-related haemolysin.(1,14) However, neither were de-
tected in the genome of V. parahaemolyticus JPA1, sug-
gesting it to be non-virulent to humans. Yet the JPA1 
genome encoded genes that were involved in resistance 
against several classes of antibiotics (Table II). We did 
not detect these genes in association with any mobile 
genetic elements, which shows that these are intrinsic 
resistance mechanisms. Genes coding for three main re-
sistance mechanisms were identified: multi-drug efflux 
pumps, antibiotic inactivation, and target protection. Ef-
flux pumps confer resistance by pumping antibiotics and 
other drugs out of the bacterial cytoplasm. Among the 
efflux pumps identified in the JPA1 genome, those asso-
ciated with resistance to aminoglycosides, beta-lactams, 
fluoroquinolones, macrolides, streptogramin, and tet-
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racycline were found. JPA1 also possessed genes for 
the assembly of the AcrEF-TolC complex, which is a 
multi-drug efflux pump capable of removing a broad 
array of drugs from the bacterial cytoplasm. Genes for 
the MacAB-TolC complex, which grants resistance to 
macrolides, were also detected. Other cases of efflux 
pumps conferring resistance are as follows: novA, which 
encodes an ABC type III transporter that confers resist-
ance to novobiocin; vgaE, which confers resistance to 
streptogramin; tet34 and tet35, both of which confer re-
sistance to tetracyclines; and sav1866, which encodes a 
non-specific multi-drug transporter.

Three genes encoding proteins capable of antibiot-
ic inactivation were also detected: APH(3’’)-Ib encodes 
an aminoglycoside-3’-phosphotransferase capable of 
inactivating aminoglycosides through phosphorylation, 
CARB-18 encodes a β-lactamase, and catB8 encodes a 
chloramphenicol acetyltransferase that inactivates am-
phenicols. Target protection proteins work by impair-
ing the contact between antibiotics and their targets. 
Gene dfrA3 encodes an alternative dihydrofolate reduc-
tase that is less sensitive to the action of trimethoprim. 
Genes otrA, tetW, and tet32 encode peptides that per-
form non-covalent modifications to bacterial ribosomes, 
rendering them resistant to tetracyclines. Furthermore, 
qnrC and qnrVC5 also contribute to target protection 
mechanisms that confer resistance to quinolones.

Upon infection, human pathogens are often chal-
lenged by antibiotic therapy, which favours strains that 
possess antibiotic resistance determinants. Many po-
tentially pathogenic bacteria possibly have a free-living 
lifestyle that includes surviving in soils, water bodies, 
and associated to non-human hosts. JPA1’s genetic con-

tent indicates that it is non-pathogenic to humans, despite 
possessing a broad array of antibiotic resistance genes. 
Antibiotic resistance genes precede the advent of antibiot-
ic therapy,(15,16) which indicates that these genes may play 
a different role in bacterial physiology under non-clinical 
settings.(17) This particularly explains the prevalence of 
antibiotic resistance genes in the JPA1 genome.

Thus, we conclude that the JPA1 genome has a broad 
array of antibiotic resistance genes that confer upon it a 
multi-resistant phenotype. Horizontal gene transfer has 
been implicated as a mechanism for the acquisition of 
virulence(18) and antibiotic resistance(19) genes in V. pa-
rahaemolyticus. In the environment, horizontal gene 
transfer is often mediated by plasmids and other mobile 
genetic elements. However, the resistance mechanisms 
identified in the JPA1 genome were not found to be asso-
ciated with such elements. Nevertheless, horizontal gene 
transfer can also take place through the direct uptake of 
exogenous DNA or via phage-mediated transduction. In 
the advent that antibiotic resistance genes from JPA1 are 
mobilised to other bacteria through the aforementioned 
mechanisms, this strain could play a role in the spread of 
antibiotic resistance genes in aquatic ecosystems.(6) This 
is of particular importance considering that JPA1 shares 
its habitat with many potentially pathogenic organisms 
that are medically relevant such as Vibrio cholerae, Shi-
gella spp., and Pseudomonas aeruginosa.(9)
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TABLE I
Antibiotic susceptibility profile of Vibrio parahaemolyticus strain JPA1

Antibiotic Class MIC (μg/mL) Phenotype

Ceftriaxone Beta-Lactam 8 Susceptible
Meropenem Aminoglycoside 4 Susceptible
Amikacin Aminoglycoside 16 Susceptible
Gentamicin Aminoglycoside 2 Susceptible
Ciprofloxacin Ciprofloxacin < = 0.25 Susceptible
Tigecycline Glycycycline < = 0.5 Susceptible
Piperacillin/Tazobactam Beta-Lactam 64 Intermediate
Imipenem Beta-Lactam 8 Intermediate
Ampicillin Beta-Lactam > = 32 Resistant
Ampicillin/Sulbactam Beta-Lactam > = 32 Resistant
Cefuroxime Beta-Lactam > = 64 Resistant
Cefuroxime Axetil Beta-Lactam > = 64 Resistant
Cefoxitin Beta-Lactam > = 64 Resistant
Ceftazidime Beta-Lactam 32 Resistant
Cefepime Beta-Lactam > = 64 Resistant
Colistin Polymyxin 4 Resistant

MIC: minimum inhibitory concentration.
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