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ABSTRACT. Influence of photoperiod on body weight and depth of burrowing in larvae of Chrysomya megacephala
(Fabricius) (Diptera, Calliphoridae) and implications for forensic entomology. Blowflies use discrete, ephemeral breeding
sites for larval nutrition. After exhaustion of the food supply, the larvae disperse in search of sites to pupate or to seek
other sources of food in a process known as post-feeding larval dispersal. In this study, some of the most important
aspects of this process were investigated in larvae of the blowflies Chrysomya megacephala exposed to a variety of
light: dark (LD) cycles (0:0 h, 12:12 h and 24:0 h) and incubated in tubes covered with vermiculite. For each pupa, the
body weight and depth of burrowing were determined. Statistical tests were used to examine the relationship of depth of
burrowing and body weight to photoperiod at which burrowing occurred. The study of burial behavior in post-feeding
larval dispersing can be useful for estimating the postmortem interval (PMI) of human corpses in forensic medicine.
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RESUMO. A influéncia do fotoperiodo no peso corpéreo e na profundidade de enterramento em larvas de Chrysomya
megacephala (Fabricius) (Diptera, Calliphoridae) e as implicacBes para entomologia forense. Moscas-varejeiras usam
substratos discretos e efémeros para nutrigdo larval. Apos a exaustdo do suprimento de comida, as larvas dispersam na
procura por locais para pupagdo na outros recursos de alimento em um processo conhecido como dispersdo larval pds-
alimentar. Nesse estudo, alguns dos aspectos mais importantes desse processo foram investigados em larvas de moscas-
varejeiras Chrysomya megacephala expostas a uma variagéo de ciclos luz: escuro (LD) (0:24h, 12:12h e 24:0h) e
incubadas em tubos cobertos com vermiculita. Para cada pupa, o peso corporeo e a profundidade de enterramento foram
determinados. Testes estatisticos foram usados para examinar a relagéo entre profundidade de enterramento e o peso
corporeo e o fotoperiodo a que esse enterramento ocorreu. O estudo do comportamento de enterramento na disperséo
larval pés-alimentar pode ser Util para estimar o intervalo pds-morte (IPM) em cadaveres humanos em medicina

forense.

PALAVRAS-CHAVE. Crime; medicina legal; moscas-varejeiras.

Photoperiod regulation is widespread in terrestrial
organisms, including flowering plants, fungi, birds, mammals,
molluscsand arthropods (Hastings 2001). Among insects, such
seasonality has been recorded in over 500 species from 17
orders(Nishizukaet al. 1998). Thiswide occurrence suggests
that the phenomenon is very common, especially among
insects from temperate regions with well marked seasonal
changes. Most attention has been given to the important
phenomenon of diapause, although many other seasonally
important strategies are known (e.g. aspects of cold tolerance,
migration and growth) (Saunders 2002).

Insect development isaffected by many factors, particularly
environmental conditions. Temperature and photoperiod is
the most important factor affecting the rate of development
(Myskowiak & Doums2002; Feng et al. 2002a) and, inforensic
medicine, an understanding of blowfly development is
important for estimating the time elapsed since death (the
postmortem interval or PMI) (Feng et al. 2002b; Grassberger
& Reiter 2003; Lefbvere & Pasquerault 2004; Gomes & Von
Zuben 2004a; Gomeset al. 2005).
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Blowflies belonging to the family Calliphoridae are
ecologically diverse and occupy various habitats. Theseflies
develop in various substrates, from decomposing organic
matter to live animal tissues (Zumpt 1965).

Blowflies of the genera Chrysomya are of considerable
medical and sanitary importance since they carry
enteropathogens such as viruses, bacteria and helminths
(Furlanetto et al. 1984; Lima& Luz 1991) and may causemyiasis
inanimalsand men (Zumpt 1965; Guimaraes 1983). Theseflies
are also important in forensic entomology since they can be
used to determine the decomposition time of human cadavers
PMI (Smith 1986; Greenberg 1990; Von Zuben 1996; Gomes &
\Von Zuben 2004b).

The substratesin which blowflies devel op are discrete and
ephemeral (Backer 1969; Backer 1971; Atkinson & Shorrocks
1981; Ives1989; Ives 1991), so that thelarval stageisthemain
period in which blowflies face limited food resources. Since
these substrates are normally saturated with insects of one or
more species, thereis often intense competition for resources
(Hanski 1987). The competition for theseresourcesisgeneraly
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of the exploitativetype (Levot et al. 1979; Reiset al. 1994) in
which each larva attempts to feed as much as possible before
thefood supply finishes (Ullyett 1950; de Jong 1976; Lominicki
1988). Following this competition, the larvae leave to search
for aplaceto pupate, or for another source of food if they are
not heavy enough to pupate. This process is known as post-
feedinglarval dispersal (Gomeset al. 2002; Gomes& Von Zuben
2003; Gomeset al. 2003). During thisdispersal, thelarvae have
to deal with various environmental factors, the most important
being temperature (Gomes & Von Zuben 2004a) and
photoperiod.

Several laboratory studies have investigated post-feeding
larval dispersion in blowflies (Greenberg 1990; Gomeset al.
2002; Gomes & Von Zuben 2003; Gomeset al. 2003). Although
somefield studies have also been reported (Greenberg 1990),
most have suffered from theinability to control environmental
variables as easily as in the laboratory. This is a critical
consideration since one of the most important questions is
how climatic conditions can affect post-feeding larval dispersal
and the subseguent burrowing of the larvae prior to pupation.
To address this question, in this study, we used a simulated
natural environment to examine the burrowing capacity of C.
megacephal a larvae and to determine the rel ationship between
the depth of burrowing and environmental factors such
photoperiod.

MATERIAL AND METHODS

Specimens of C. megacephala were collected closeto the
campus of the Universidade Estadual Paulista, Rio Claro, S&o
Paulo, Brazil. Adult blowflieswere maintained in thelaboratory
at 25+ 1°Cincages (30 x 30 x 30 cm) covered with nylon and
were fed water and sugar ad libitum. Adult females were fed
fresh beef liver to allow complete development of the
gonotrophic cycle. Newly hatched larvae of both specieswere
obtained from adult flies kept at 25°C and 60 + 10% relative
humidity, and were raised in vials containing 50 g of ground
beef.

Three hundred third instar (L,) larvae (grew in the same
experimental conditionsof thisstudy) of C. megacephalawere
used for these experiments. The larvae (100 per treatment
group) were placed individually in dark test tubes (20cmx 1.5
cm) containing vermiculite and incubated at 60 £ 10% relative
humidity at 25°C onlight: dark (LD) cyclesof 0:24 h, 12:12h
and 24:0 h. These conditions, including tube size, were used
to ensurethat any movement of the larvae was directed towards
burrowing. Previous work (Gomes & Von Zuben 2004a)
demonstrated that, regardless of the type of substrate available
for pupation, the larvae did not bury themselves deeper than
an average of 20 cm.

After they had pupated, the larvae were located and
removed from the vermiculite. The depth of the pupation site
was measured with a ruler. Each pupa was then placed
separately in aplastic flask and wei ghed on an Ohaus analytical
balance before emerging as an adult. Pupal weight was
measured in milligrams, with aprecision of 0.01 mg, assoon as
the pupae were located. After weighing, each pupa was

returned to its flask for sexing following emergence of the
adult.

The results were expressed as the mean + standard
deviation (S.D.). ANOVA was used to compare the means of
variables(Zar 1999). A value of p < 0.05indicated significance.

RESULTSAND DISCUSSION

Table | show the body weight and the depth of burrowing
for C. megacephala larvae, respectively, in relation to the
photoperiod. The depth of burrowing varied considerably with
the photoperiod, in spite of inside the substrate for pupation
it didn’t happen.

In this species, the depth of burrowing significantly
increased with increasing photoperiod (ANOVA, F, .= 30.92,
P<0.0001) but no significant effect of photoperiod on larval
body weight were detected (ANOVA, F, ,..= 0.10, P<0.0001).

The boxplots (Figs. 1, 2) shows the relationship between
the depth of burrowing and the photoperiod and the effect of
photoperiod on body weight in larvae of C. megacephala
respectively. These plots help to visualization the variations
in larval weight and depth of burrowing in the different
photoperiods. In photoperiod O h, the depth of burrowing
was broadly distributed above and below the median value,
athough the variability (distance between the maximum and
minimum) was not very big. A similar situation was seenwith
a photoperiod of 12 h. In contrast, for the 24 h photoperiod,
therewas much greater variability in depth of burrowing, with
thelarvae digging deeper than the median and dispersing more
(7 to 13 cm from the site). Therewaslittle variation in larval
weight in the various photoperiods, particularly in the 24 h
photoperiod, during which thisweight was more uniform.

Inrelation to depth (Figure 1), when the photoperiod is 24
h: 0 h (totally illuminated), the median don’t superposeto the
intervals from other photoperiod, what justify the high
significance found in the difference between averages
(ANOVA), what doesn't happened with in relation with weight.

Considering the sex, it was observed that the weightiest
larvae were femaleswhen compared with the males (Tablell),
and it wasasignificant effect (ANOVA, F, ..= 0.01, P<0.0001)

when compared withthedepth (ANOVA, F, ,.,= 0.10, P<0.0001).

The photoperiod didn’t affect the weight of burrowing to
a similar extent in this species, whereas temperature had

Table |. Body weight and depth of burrowing for C. megacephala
larvae in different photoperiods.

Photoperiod

Parameter (light hours) Mean SD.
Body weight 0 100 38.3 7.1
12 100 38.0 6.9

24 100 38.6 35

Total 300 383 6.0

Depth of burrowing 0 100 31 19

12 100 4.3 3.0
24 100 8.0 3.6
Total 300 5.1 3.6
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Fig. 1. Relationship between the depth of burrowing and the photoperiod
for larvae of C. megacephala. The corresponding boxplot for each
photoperiod consists of five parts: 1) the horizontal bar below the box
indicates the lowest value recorded (e.g. the lightest larva), 2) the lower
horizontal bar of the box represents the first quartile (25% of the larvae
weighed less than this value), 3) the horizontal bar in bold in the middle of
the box represents the median (50% of the larvae weighed less than this
value), 4) the upper horizontal bar of the box corresponds to the third
quartile (75% of the larvae weighed less than this value), and 5) the
horizontal bar above the box represents the highest value recorded (e.g.
the heaviest larva). The points or circles indicate extreme values.
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essentially opposite effects on this parameter (Gomes & Von
Zuben 2004a). Meanwhile, the effect of photoperiodin larvae
of C. megacephala wasthat the depth of burrowing increased
with increasing photoperiod and no significant effect of
photoperiod on larval body weight were found.

Studies of post-feeding larval dispersion areimportant for
criminal investigationsin forensic medicine sincethe presence
of larvae and pupae in and around human cadavers can be
helpful in estimating the PMI. Estimation of the PMI is a
fundamental aspect of legal medicine (Smith 1986), but can be
seriously compromised by an inadequate consideration of
post-feeding larval dispersal (Gomeset al. 2002; Gomeset al.
2003) and of the environmental factors involved in such
dispersal, including temperature and photoperiod (Feng et al.
2002a; Grassberger & Reiter 2003). However, in PMI
evaluations, great caution must be applied when using data
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Fig 2. Relationship between the weight of burrowing and the photoperiod
for larvae of C. megacephala. The corresponding boxplot for each
photoperiod consists of five parts: 1) the horizontal bar below the box
indicates the lowest value recorded (e.g. the lightest larva), 2) the lower
horizontal bar of the box represents the first quartile (25% of the larvae
weighed less than this value), 3) the horizontal bar in bold in the middle of
the box represents the median (50% of the larvae weighed less than this
value), 4) the upper horizontal bar of the box corresponds to the third
quartile (75% of the larvae weighed less than this value), and 5) the
horizontal bar above the box represents the highest value recorded (e.g.
the heaviest larva). The points or circles indicate extreme values.

collected by researchers form other countries. Changes in
range and precipitation, which may lead species to change
their time of hatching, length of life cycle, photoperiod and
diapause, must al betaken in consideration (Turchetto & Vanin
2004).

This is a critical consideration since one of the most
important questionsis how climatic conditions can affect post-
feeding larval dispersal and the subsequent burrowing of the
larvae prior to pupation. An analysis of environmental factors,
particularly photoperiod, can be helpful when searching for
dispersing larvae around cadavers, e.g., in closed locations
withan LD cycleof 0:24 h, or intotally illuminated locations

Table Il. Depth and weight of larvae of C. megacephala considering the sex.

Descri pt| ves 95% Confidence
Interval for Mean
N Mean  Std. Deviation Std. Error  Lower Bound Upper Bound Minimum  Maximum

F 158 4.988 3.2454 4261 4.135 5.841 1.0 135

Depth M 142 5.054 3.7359 5181 4.014 6.094 4 135

Total 300 5.019 3.4697 .3308 4.363 5.675 4 135

F 158 39.155 5.5504 .7288 37.696 40.615 20.7 50.6

Weight M 142 37.090 6.6826 .9267 35.230 38.951 20.7 50.6

Total 300 38.179 6.1707 .5883 37.013 39.345 20.7 50.6
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with an LD cycle of 24:0 h could be helpful in detecting the
effect of interval of photoperiod at which the maximum depth
of burrowing occurs and at which the number of burrowing
larvaeisalso maximal (Gomes & Von Zuben 20044).

Furthermore, it can be underestimated if older dispersing
larvae or those that disperse father, faster and deeper are not
taken into account (Gomes et al. 2002; Gomes et al. 2003;
Gomes & Von Zuben 2005). Because of this, it isnecessary to
investigate the pattern of larval dispersal on the pupation site
and the burial behavior after this process, as demonstrated in
this study with larvae of C. megacephala, regardless the
environmental conditions, such photoperiod.
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