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SUMMARY

The structural modeling of spatial dependence, using a geostatistical
approach, is an indispensable tool to determine parameters that define this
structure, applied on interpolation of values at unsampled points by kriging
techniques.  However, the estimation of parameters can be greatly affected by the
presence of atypical observations in sampled data.  The purpose of this study was
to use diagnostic techniques in Gaussian spatial linear models in geostatistics to
evaluate the sensitivity of maximum likelihood and restrict maximum likelihood
estimators to small perturbations in these data.  For this purpose, studies with
simulated and experimental data were conducted.  Results with simulated data
showed that the diagnostic techniques were efficient to identify the perturbation
in data.  The results with real data indicated that atypical values among the sampled
data may have a strong influence on thematic maps, thus changing the spatial
dependence structure.  The application of diagnostic techniques should be part of
any geostatistical analysis, to ensure a better quality of the information from
thematic maps.

Index terms: local influence, maximum likelihood, restricted maximum
likelihood.
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RESUMO:   TÉCNICAS DE DIAGNÓSTICO UTILIZADAS EM GEOESTATÍSTICA
PARA ANÁLISE DE DADOS AGRÍCOLAS

A modelagem da estrutura de dependência espacial pela abordagem da geoestatística é
de fundamental importância para a definição de parâmetros que definem essa estrutura e que
são utilizados na interpolação de valores em locais não amostrados, pela técnica de krigagem.
Entretanto, a estimação de parâmetros pode ser muito alterada pela presença de observações
atípicas nos dados amostrados.  O desenvolvimento deste trabalho teve por objetivo utilizar
técnicas de diagnóstico em modelos espaciais lineares gaussianos, empregados em geoestatística,
para avaliar a sensibilidade dos estimadores de máxima verossimilhança e máxima
verossimilhança restrita a pequenas perturbações nos dados.  Foram realizados estudos de
dados simulados e experimentais.  O estudo com dados simulados mostrou que as técnicas de
diagnóstico foram eficientes na identificação da perturbação nos dados.  Pelos resultados
obtidos com o estudo de dados reais, concluiu-se que a presença de valores atípicos entre os
dados amostrados pode exercer forte influência nos mapas temáticos, alterando, assim, a
estrutura de dependência espacial.  A aplicação de técnicas de diagnóstico deve fazer parte de
toda análise geoestatística, a fim de garantir que as informações contidas nos mapas temáticos
tenham maior qualidade.

Termos de indexação: influência local, máxima verossimilhança, máxima verossimilhança
restrita.

INTRODUCTION

In the last few decades, concepts of monitoring and
management of the process of agricultural production
have been widely discussed and applied, generating
great amounts of information on yield-related factors.

Some of these concepts take the spatial variability
of the geo-referenced variable into consideration,
mainly those related to the soil, such as soil physical
and chemical properties.  According to Cressie (1993),
not taking the spatial variability into consideration
can prevent the perception of real differences, which
would make a differentiated treatment according to
the local requirements impossible.

The geostatistics, based on the theory of
regionalized variable, is a method that considers the
spatial distribution of measures, to determine the ray
of spatial autocorrelation between its elements and,
accordingly, the maximum distance up to which the
samples are considered spatially dependent.

For modeling data with spatial structure,
according to Mardia & Marshall (1984), a Gaussian
random process {Z(si), si∈S} is considered, with
S ⊂ ℜd; where ℜd is the Euclidean space, d-
dimensional (d ≥ 1).  It was assumed that the data
set Z(s1), ..., Z(sn) of this process is registered in known
space locations, si (i = 1,..., n), and generated by the
following model:

Z(si) = μ(si) + ε(si) (1)

where the terms deterministics μ(si), and random
ε(si), can depend on the spatial location where Z(si)
was obtained.

It was assumed that the mean of the random error
ε (.) is zero, E[ε (si)] = 0, and that the variation between
points in the space is determined by a covariance
function C(si, su) = Cov[ε(si), ε(su)] and that for some
known functions of s, x1(s),..., xp(s), the mean of the
stochastic process is:

(2)

where β1,..., βp are unknown parameters and must
be estimated.

Or equivalent, but expressed in matricial notation:

Z = X β + ε (3)

Then, E(ε) = 0 and the covariance matrix of ε is
∑ = [(σiu)], where σiu = C(si, su).  It was assumed that
∑ is non-singular, that X is of full column rank and
that Z follows a multivariate normal distribution with
mean Xβ and covariance matrix ∑, that is,
Z ~ Nn (Xβ, ∑).

A particular parametric form was considered for
the covariance matrix:

    ∑ = ϕ1In + ϕ2R (4)

where, ϕ1: nugget effect, ϕ2: sill value; R is a
symmetric matrix that depends on ϕ3,
R = R(ϕ3) = [(riu)], in the order n x n with its elements
of the diagonal rii = 1, i = 1, ..., n, where ϕ3 is function
of the range (a) of the model and In is the identity
matrix of the order n x n.
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The parametric form of the covariance matrix,
given in equation (4), applies for several isotropic
processes, where the covariance C(si, su) is defined as
C(hiu) = ϕ2riu, where hiu = ||si–su|| is the Euclidean
distance between the points si and su.  The variance
of the stochastic process Z is C(0) = ϕ1 + ϕ2, and the
semivariance can be defined as γ(h) = C(0) – C(h).

In many situations a data set with aberrant or
discrepant observations can be considered influential,
that is, they induce some type of decision in the
construction of geostatistical models.

The local influence method proposed by Cook (1986)
evaluates the simultaneous effect of observations on
the maximum likelihood estimators without the need
of its elimination from the data set.  Christensen et
al. (1993) studied diagnostic methods based on the
elimination of cases in linear spatial models.  The
local influence technique has become known as a
procedure to carry out sensitivity analyses of statistical
models and has been widely used in linear models
and nonlinear regression.

For an observed data set, let l(θ) be the log-likelihood
function of the proposed model, given in equation (3),
where θ = (βT, ϕT)T, β = (β1,..., βp)T and ϕ = (ϕ1,..., ϕθ)T,
and let ω be a perturbation vector belonging to a space
of perturbations Ω. Let l(θ/ω) be the log-likelihood
function corresponding to the perturbated model for
ω ε Ω.  It was assumed that there is ω0 ε Ω such that
l(θ) = l(θ/ω0), for all θ and that l(θ/ω) is twice
differentiable in (θT, ωT)T.

This study is justified by the importance of the
modeling of spatial variability, since this process
supplies parameters of spatial dependence structure
that are used for the spatial interpolation of kriging.

Based on the interpolation of kriging, thematic
maps are generated that could be used for a site-specific
application of special inputs or site-specific soil
management.  The map quality depends on the quality
of the inferences of the adjusted models.  Therefore, to
obtain trustworthy predictions that represent the real
local variability by the interpolation produces, the modeling
process must be very carefully carried out, mainly in
the case of discrepant or influential observations.

The objective of this study was to use diagnostic
techniques in Gaussian linear spatial models to
evaluate the potential influence of atypical data on the
parameter estimates that define the spatial dependence
and to indicate the most robust models.  For this
purpose studies on local influence were conducted
using the methods maximum likelihood and restricted
maximum likelihood, to study the sensitivity of the
models in the presence of influential observations.

MATERIAL AND METHODS

Influence of location

The following perturbation scheme was considered:
Zω = Z + ω, with ω = (ω1, ..., ωn)T vector of perturbation

of the response and ω0 = (0,...,0)T, the point of no
perturbation.  The objective of this scheme of
perturbation was to detect outliers in the data that
affect the maximum likelihood estimator θ.  Then,
the perturbed log-likelihood function l(θ/ω), for the
normal model is given by

(5)

The influence of the perturbation ω on the
maximum likelihood estimator of θ can be evaluated
by the likelihood displacement, defined by:

(6)

where,   is the maximum likelihood estimator of θ in

the postulated model; and   is the maximum
likelihood estimator of θ in the perturbed model.

Cook (1986) proposed to study the local behavior of
LD(ω) around ω0, using the normal curvature Cl of
LD(ω) in ω0 in the direction of a unit vector l and
showed that

Cl = 2|lTΔTL-1Δl| (7)

with ||l|| = 1, where, L is the observed information
matrix, evaluated in ; Δ is a (p + 3)x n matrix
given by Δ = (Δβ

T, Δϕ
T)T, evaluated in   and in

ω = ω0, where, in this case:

Δβ =  XT∑−1 and  Δω = , with  =

, j = 1, 2, 3.

The information matrix L is defined as

, where, Lββ =–(XT∑−1X); ,

with ; Lφβ = LT
φβ and

, with elements; 

+ .

Let Lmax be the eigenvector corresponding to the
largest eigenvalue of B = ΔTL-1Δ.  The graph of the
elements of |Lmax| versus i (data order) can reveal
which type of perturbation has the greatest influence
on LD(ω), in the neighborhood of ω0 (Cook, 1986).

Simulation study

Simulation was carried out by Monte Carlo
experiments, where simulated data sets were arranged
in a regular grid (10 m distance between points),
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totalizing 100 points, with known structures of spatial
dependence, by means of Gaussian stochastic
processes.  The simulation of stationary spatial
processes of second order was carried out by the
Cholesky decomposition method, a matrix operation
which, applied to the vector of random numbers
generated produces another vector with random
numbers with the characteristic of a given correlation
matrix between them (Johnson & Wichern, 1982).

The covariance structures of the models used in
the simulations were exponential, Gaussian and
Matérn, with κ = 0.7 and 3.0.  In all cases, a constant
mean of μ = β = 9.45 was considered.  Four parameter
vectors were used for each model ϕ = (ϕ1, ϕ2, ϕ3)T: 1st

case: ϕ = (0, 10, 10)T; 2nd case: ϕ = (0, 10, 15)T; 3rd

case: ϕ = (0, 10, 20)T; 4th case: ϕ = (0, 10, 60)T.

The perturbation scheme used had been proposed
by Ortega et al. (2002), as presented in the equation
(8) below

 (8)

where, zmax* is the new value maximum of the vector
and zmax is the maximum value of vector z;

.  Consequently, the perturbation vector

ω can be expressed as : ω = (0, ..., , ..., 0)T.

The structure of spatial dependence was modeled
for the simulated data sets, but adding the
perturbation vector ω.  Diagnostic techniques were
applied to evaluate the sensitivity of the models to the
perturbation scheme.

The methods of maximum likelihood and restricted
maximum likelihood were used for the parameter
estimation and in the diagnostic analyses (Mardia &
Marshall, 1984 and Christensen et al. 1993).  Because
the results were very similar, only the graphs based
on maximum likelihood are presented.

Experimental study

The data of the soil chemical properties were
collected in an area of commercial grain production of
71 ha, in the 2006/2007 growing season, in the county
of Cascavel, Western region of Paraná, (lat 24.95 ° S,
long 53.57 ° W, average altitude 650 m asl.  The soil
was classified as dystroferric Red Latosol and the
climate of the region is Temperate mesothermal and
superhumid, climate type Cfa (Köppen), with an
average annual temperature of 21 °C.

A centered systematic sampling with pairs of
adjacent points was carried out (lattice plus close
pairs), with a maximum distance of 141 m between
points.  At some places the sampling was carried out
at distances of 75 and 50 m between points.  All
samples were geo-referenced with a GPS (Global
Positioning System) signal receiver.

In the vicinity of a few points four soil sub-samples
were randomly collected, from the layer 0.0–0.2 m.
The sub-samples of approximately 500 g were mixed
and stored in plastic bags, to compose a representative
sample of the plot.

Initially, an exploratory statistical analysis of the
data was carried out to evaluate the general behavior
and to identify to the presence of discrepant points
and their possible causes.  Among the analyzed
chemical properties, discrepant points were observed
for soil P.  This trait was analyzed in this study.

Thereafter, a spatial data analysis was performed
using geostatistical techniques, identifying the
structure of spatial dependence by means of the
adjustment of some theoretical models, with
parameters estimated by maximum likelihood (ML)
and restricted maximum likelihood (RML).  In this
stage, the criteria of model validation and diagnostic
techniques were applied for the posterior
construction of maps of the study variable.  All
analyses were carried out using software R (Ihaka &
Gentleman, 1996) and the modules: geoR (Ribeiro
Júnior & Diggle, 2001) and Splancs (Rowlingson &
Diggle, 1993).

RESULTS AND DISCUSSION

Local influence on simulated data

Estimates of maximum likelihood (ML) and
restricted maximum likelihood (RML) for 1, j2 and j3 ,
using the exponential, Gaussian and Matérn
covariance functions, are presented in table 1.

The results of the exponential model 0-10-10
(Table 1) show that the methods ML and RML
overestimated the parameters ϕ1 and ϕ3 and
underestimated parameter ϕ2.  A similar behavior was
identified in the parameter estimates of the
exponential model 0-10-60, except for parameter ϕ3
which had been underestimated when it was
estimated by MV.  The variables simulated by the
Gaussian 0-10-10 and Gaussian 0-10-15 model
overestimated the parameters ϕ1 and ϕ3 and
underestimated parameter ϕ2 by the methods of ML
and RML.  By the Matérn model 0-10-15 ê = 0.7, the
estimated ϕ1 values were equal to those supplied in
the simulation and the ϕ3 values were close to the
simulated.  However, the values of parameter ϕ2 were
overestimated.  By the Matérn model 0-10-10, k = 3.0,
it was observed that ϕ2 was clearly overestimated.
Hence, the perturbed values in the simulated variables
with exponential, Gaussian and Matérn (k = 0.7 and
3.0) covariance functions, had a rather strong
influence on parameter estimation, by ML as well as
by RML.
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Figures 1 to 8 present the graphs of diagnostic
techniques to identify perturbed observations.  The
results of the local influence analysis showed that the
index plots of |Lmax| highlighted the perturbed
observations for all variables, in the parameter
estimation by ML as much as RML (not shown here).

Hence, in this simulation study diagnostic
measures were effective to detect all perturbed
observations.

Spatial analysis of influence of discrepant
points on phosphorus content

After sampling, soil samples were sent to the
laboratory for chemical analyses.  In the first analysis,
the P content presented three discrepant values (60.0;
38.6 and 60.0 mg dm-3) in the plots 1, 26 and 45,
respectively (Figure 10a).  The soil chemical analysis
was repeated in these plots and no changes in the
values were observed.  The data of 1, 26 and 45 are
therefore not measurement or laboratory errors; they
represent real values of the local soil conditions.

Graphical diagnostic techniques were applied to
evaluate whether the discrepant points 1, 26 and 45
or others exert some type of influence on likelihood
displacement, on the covariance function and the linear
predictor.  The index plots of |Lmax| were used to
evaluate the influence.

Diagnostic graphs are presented in figure 9 for the
exponential, Gaussian and Matérn (κ = 0.7 and 3.0)
covariance functions, by ML.  The index plots of |Lmax|
indicated the observations 1, 26 and 45 as potentially
influential.

Table 1. Estimates of maximum likelihood (ML) and restricted maximum likelihood (RML) for ϕϕϕϕϕ1, ϕϕϕϕϕ2 and ϕϕϕϕϕ3
using the exponential, Gaussian and Matérn covariance functions

Figure 1. Index plot of |Lmax| for simulated data
using the exponential 0-10-10 (left side) and 0-
10-15 (right side) covariance function.
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Figure 2. Index plot of |Lmax| for simulated data
using the exponential 0-10-20 (left side) and 0-
10-60 (right side) covariance function.

Figure 3. Index plot of |Lmax| for simulated data
using the Gaussian 0-10-10 (left side) and 0-10-
15 (right side) covariance function.

Figure 4. Index plot of |Lmax| for simulated data
using the Gaussian 0-10- 20 (left side) and 0-10-
60 (right side) covariance function.

Figure 5. Index plot of |Lmax| for simulated data
using the Matérn 0-10-10 (left side) and 0-10-15
(right side) covariance function, with k =0.7.
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Influence on descriptive analyses

A descriptive summary of the phosphate content
was presented (Table 2) with all collected data and
without the discrepant observations.  It was verified
that the mean P content (15.80 mg dm-3) is well above
the recommended upper limit (EMBRAPA, 1979).
Furthermore, the data were highly heterogeneous,
since the variation coefficient was very high
(CV = 72.76 %), due to the discrepant values of the
observations 1, 26 and 45, identified for the Box-plot
(Figure 10b).

Since the statistical techniques applied in this
paper assume that the data have normal distribution,
the Box-Cox was transformed with lambda = -0.7.
Also, the descriptive analyses are presented for the
data set without the observations 1, 26 and 45 (P-1-
26-45), verifying the influence in the descriptive
analysis.  Differences were observed between the
means of the variable with all data or when removing
influential observations.  The same behavior was
observed in the standard deviations.  The analysis of
the coefficient of variation (CV) showed that without
the observations 1, 26 and 45 the CV value was much
lower than with all data.  However, as the CV is
> 30 %, the data were still considered heterogeneous
(Gomes, 2000).

Figure 6. Index plot of |Lmax| for simulated data
using the Matérn 0-10-20 (left side) and 0-10- 60
(right side) covariance function, with  = 0.7.

Figure 7. Index plot of |Lmax| for simulated data
using the Matérn 0-10-10 (left side) and 0-10-15
(right side) covariance function, with k = 3.0.

Figure 8. Index plot of |Lmax| for simulated data
using the Matérn 0-10-20 (left side) and 0-10-60
(right side) covariance function, with k = 3.0.
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Table 2. Descriptive statistics for phosphorus content [mg dm-3] with all observations (P) and without the
observations 1, 26 and 45 (P-1-26-45)

N: number of observations; Min: minimum value; Max: maximum value; Q1: first quartile; Med: median; Q3: third quartile; SD:
standard deviation; CV: coefficient of variation; p-value: For the test of normality of Shapiro & Wilks, at 5 %.

Figure 10. (a) Arrangement of sampled points in the study area of 71 ha. (b) Box-plot for P content in full
sample

Figure 9. Index plot of |Lmax| for real data using the exponential (a), Gaussian (b), Matérn- k = 0.7 (c) and
Matérn - k = 3.0 (d) covariance functions.
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Influence on the parameter estimates

The results of the analyses of spatial variability
are presented for the original data and for the data
set without the observations 1, 26 and 45 (Table 3).
The results of the estimation of the parameters β, ϕ1,
ϕ2 and ϕ3, were presented for the exponential,
Gaussian and Matérn covariance functions, using ML
and RML.  The values in brackets stand for the
standard deviations of the estimated parameters.
Overall, the values of the estimators of β, ϕ1, ϕ2
without the influential observations were lower than
when estimated with the original data.  The estimates
ML of ϕ3, without the influential observations were
greater than those obtained with the original data.
This was not the case for parameter ϕ3, when
estimated by RML.

The cross-validation criteria (Faraco et al., 2008)
applied to the models in the study, both with all
observations and without the observations 1, 26 and
45 indicated the Gaussian model using RML as best
fitting.

Influence on the construction of thematic
maps

Figure 11 presents the thematic maps for P content
with original data and without the observations 1, 26
and 45 based on the interpolation by ordinary kriging.
The maps had been constructed using the models
indicated for the cross-validation criteria.  The variation
in the color scale between the maps was considerable.
The map for the original data set (Figure 11a) shows
that the area comprises regions with a P content of
> 18 mg dm-3 (Embrapa, 1997).  In the map, constructed
without the influential observations considered
(Figure 11b) no region has values > 18 mg dm-3.  This
indicates that observations 1, 26 and 45 also exert a
strong influence on the construction of the thematic
maps.

Thus, if the construction of the thematic maps does
not take the diagnostic analyses into consideration,
which detects outliers, the distribution map of the P
content for producers would overestimate P
concentrations in the study area.  Consequently, the

Table 3. Estimates of maximum likelihood (ML) and restricted maximum likelihood (RML) for βββββ, ϕϕϕϕϕ1, ϕϕϕϕϕ2 and
ϕϕϕϕϕ3 using the exponential, Gaussian and Matérn covariance functions, for phosphorus content [mg dm-3]
with all observations (P) and without the observations 1, 26 and 45 (P-1-26-45)

Figure 11. Thematic maps: (a) With original data (P); (b) Elimination of the observations 1, 26 and 45 (P-1-26-45).
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principles of the precision agriculture would be
disregarded, since the soil correction would not be
locally adjusted.

The results showed that the removal of the
influential data led to an increase of 10.14 % of the
area of the first class; an increase of 17.16 % of the
second and a decrease of 7.03 % of the area of the
third class in the map (Table 4).  However, the fourth
and fifth class were not identified in the map when
the influential data had been removed.

Table 4. Percentage of the area that each class
represents in the maps of phosphorus content
(mg dm-3)

CONCLUSIONS

The study with simulated data showed that the
proposed diagnostic techniques were able to identify
the perturbed data.  The restricted maximum
likelihood estimator produced unbiased estimates of
the parameters of spatial dependence.  For the results
obtained with real data, the study concluded that the
presence of atypical cases in the data had a strong
influence on the thematic maps, due to change in the
structure of the spatial dependence.  The use of
diagnostic techniques should be part of all
geostatistical analyses, to ensure the high quality of
the information contained in the thematic maps.  The
elimination of atypical cases can produce maps that
are inappropriate.
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