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SUMMARY

Statistical models allow the representation of data sets and the estimation
and/or prediction of the behavior of a given variable through its interaction with
the other variables involved in a phenomenon.  Among other different statistical
models, are the autoregressive state-space models (ARSS) and the linear regression
models (LR), which allow the quantification of the relationships among soil-plant-
atmosphere system variables.  To compare the quality of the ARSS and LR models
for the modeling of the relationships between soybean yield and soil physical
properties, Akaike’s Information Criterion, which provides a coefficient for the
selection of the best model, was used in this study.  The data sets were sampled in
a Rhodic Acrudox soil, along a spatial transect with 84 points spaced 3 m apart.  At
each sampling point, soybean samples were collected for yield quantification.  At
the same site, soil penetration resistance was also measured and soil samples were
collected to measure soil bulk density in the 0–0.10 m and 0.10–0.20 m layers.  Results
showed autocorrelation and a cross correlation structure of soybean yield and soil
penetration resistance data.  Soil bulk density data, however, were only
autocorrelated in the 0–0.10 m layer and not cross correlated with soybean yield.
The results showed the higher efficiency of the autoregressive space-state models
in relation to the equivalent simple and multiple linear regression models using
Akaike’s Information Criterion.  The resulting values were comparatively lower
than the values obtained by the regression models, for all combinations of
explanatory variables.

Index terms: autocorrelation, cross correlation, linear regression, state-space
model, soil and plant properties.
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RESUMO:     SELEÇÃO DE MODELOS ESTATÍSTICOS PARA A RELAÇÃO
ENTRE PRODUTIVIDADE DA SOJA E ATRIBUTOS FÍSICOS DO
SOLO

Modelos estatísticos permitem representar conjuntos de dados, assim como estimar e
prever o comportamento de uma variável por meio da sua interação com as demais variáveis
envolvidas no fenômeno.  Entre os modelos estatísticos encontram-se modelos autorregressivos
em espaço de estados (AEE) e modelos de regressão linear (RL) que permitem quantificar as
relações entre variáveis do sistema solo-planta-atmosfera.  Neste trabalho, com o objetivo de se
comparar a qualidade dos modelos AEE e RL para a modelagem das relações entre a
produtividade da soja e atributos físicos do solo, utilizou-se o critério de informação de Akaike,
o qual fornece um coeficiente que permite a seleção do melhor modelo.  O conjunto de dados foi
amostrado, em um Latossolo Vermelho distroférrico, ao longo de uma transeção com 84 pontos
espaçados de 3 m entre si.  Em cada ponto, foram coletadas amostras de soja para quantificar
a produtividade e mediu-se a resistência do solo à penetração, assim como retiradas amostras
de solo, nas camadas de 0–0,10 e 0,10–0,20 m, para mensurar a sua densidade.  Os resultados
mostraram que os dados de produtividade da soja e resistência do solo à penetração
apresentaram autocorrelação e estrutura de correlação cruzada.  A densidade do solo, entretanto,
apresentou autocorrelação apenas na camada de 0–0,10 m e não mostrou correlação cruzada
com a produtividade da soja.  Os resultados mostraram a maior eficácia dos modelos
autorregressivos de Espaço de Estados em relação aos modelos equivalentes de regressão linear
simples e múltipla com o emprego do Critério de Informação de Akaike, o qual resultou em
valores comparativamente mais baixos do que os obtidos com os modelos de regressão, para
todas as combinações das variáveis explicativas.

Termos de indexação: autocorrelação, correlação cruzada, regressão linear, modelo de espaço
de estados, atributos do solo e da planta.

INTRODUCTION

The spatial and temporal variability in physical
and chemical properties and their relationship with
crop yield should not be underestimated at the
moment of agricultural management planning (Coelho
et al., 1998; Shuai & Yost, 2004).  Among the
statistical techniques to study relationships among
soil properties and crop yield are autoregressive state-
space and linear regression models (Reichardt &
Timm, 2008).

The state-space models, by means of the Kalman
filter, provide an adequate representation of a spatial
or temporal process of a variable of interest with
coefficients, confidence intervals and model errors if
the observation density supports the identification of
the correlation length (Timm et al., 2003; Nielsen &
Wendroth, 2003).  Thus, this approach may be applied
to identify and represent processes in agricultural
systems aiming to improve the understanding of the
relations of that system (Dourado-Neto et al., 1999).
It may be a more effective research tool in comparison
to other approaches to understand and explain
landscape-scale variation in agricultural systems
(Stevenson et al., 2001).

The objective of this study was to select statistical
models to explain the relationships between soybean
yield and the soil physical properties penetration

resistance and soil bulk density in two layers (0–0.10
and 0.10–0.20 m).

MATERIAL AND METHODS

The field experiment was carried out on the
Fazenda Santo Antonio, Braganey County, State of
Paraná, Brazil (latitude 24 º 54 ’ 44.94 ’’ South;
longitude 53 º 08 ’ 46.03 ’’ West, 750 m a.s.l.).  The
regional climate is temperate meso-thermal and super-
humid.

The soil of the experimental area was classified as
Rhodic Acrudox (Embrapa, 2006), on basaltic
substrate, with a slightly undulated relief.  The crop
was planted on a 6–7 % slope area, under continuous
no-tillage cropping system for 8 years, alternating
summer soybean with winter wheat.  The spacing
between soybean rows was 0.45 m, sown at a density
of 17 seeds per meter.  A spatial transect (length
252 m) was sampled, parallel to the plant rows, with
84 sampling sites spaced 3 m apart and geo-referenced
by the Global Positioning System (GPS).

The following plant and soil properties were
measured at each point: (a) soybean yield (SY, Mg ha-1), as
response variable; (b) soil penetration resistance (SRP,
MPa); and (c) soil bulk density (SD, Mg m-3), measured



SELECTING STATISTICAL MODELS TO STUDY THE RELATIONSHIP BETWEEN SOYBEAN...             99

R. Bras. Ci. Solo, 35:97-104, 2011

in the layers 0–0.10 m and 0.10–0.20 m.  All soybean
plants of each experimental unit were harvested,
threshed and the seeds sieved.  The mass of each
sample was weighed on a 0.01 g precision digital scale
and the results converted to Mg ha-1.

To determine soil bulk density, undisturbed soil
samples were collected (layers 0–0.10 m and 0.10–
0.20 m) at each site along the spatial transect.  In the
laboratory, the soil samples were dried at 105 ºC for a
minimum period of 24 h and the dry mass was
weighed on a 0.01 g precision digital scale.

Soil penetration resistance at each sampling site
was determined by a Soil Control Penetrographer PAT

SC-60 equipment, with four replications per site.
Concomitantly with RSP measurements at each site,
disturbed soil samples were collected to determine the
gravimetric soil water content.  Then, the mean soil
water contents of the spatial transect in the layers 0–
0.10 m and 0.10–0.20 m were calculated, resulting
in 0.256 and 0.274 kg kg-1, respectively.

The sample autocorrelation function among the
variables Zj(xi) at position xi with Zj(xi + h) at position
xi + h may be determined by equations 1 and 2:

(2)

in which Cj(h) is the covariance between the variables
Zj(xi) and Zj(xi + h); n is the number of Zj(xi) and
Zj(xi + h) pairs separated by a specific distance h; j(x)
is the arithmetic mean of variable Zj(xi); rj(h) is the
sample autocorrelation coefficient for pairs of variable
Zj(xi) separated by a specific distance h, ranging from
–1 ≤ rj(h) ≤ 1; and S2 is the sample variance of Zj
(Reichardt & Timm, 2008).  The sample cross
correlation coefficients ( ) for pairs of two different
measured variables Zj(xi) and Zu(xi + h), separated by
a specific distance h, were calculated by equation (3):

(3)

in which C(Zj(xi), Zu(xi + h )) is the covariance between
the variables Zj(xi) and Zu(xi + h);  is the sample

variance of variable Zj(xi); and  is the sample
variance of variable Zu(xi) (Reichardt & Timm, 2008).

To calculate the significant confidence intervals
(CI) to determine whether autocorrelation and cross
correlation coefficients are significantly different from
zero or not, the function of the cumulative probability
(p = ±1.96 for 95 %) was used for a standardized
normal distribution (Davis, 1986; Nielsen &
Wendroth, 2003) and the number of observations n,
as shown by equation 4:

(4)

All data sets for the state-space approach were
transformed by equation 5:

(5)

in which Zj
*(xi) is the transformed data, Zj(xi) the

measured data, m the arithmetic mean of the Zj(xi)
data set and S the sample standard deviation of the
Zj(xi) data set.  The software Applied Statistical Time
Series Analysis (ASTSA) (Shumway, 1988; Shumway
& Stoffer, 2000) was used to apply the state-space
approach.

Applied models

The space-state model is a way of representing a
linear or non-linear system, starting from a system
of two dynamic equations.  The observation vector
Y(xi) of the process is generated as a function of the
non-observed state vector Z(xi), called observation
equation, by equation 6 for i = 1, …, n:

Y(xi) = MiiZ(xi) + vi (6)

in which the observation vector Y(xi) is related to the
state vector Z(xi) by an observation matrix Mii and
an observation error (or noise) vi.

The dynamic evolution of the non-observed state
vector Z(xi), called state equation, is given by equation
(7), for i = 1,…, n:

Z(xi) = φiiZ(xi-1) + wi (7)

in which the state vector Z(xi) at position xi is related
to its value at position xi-1 by a matrix of state
coefficients φii (transition matrix) and an error (or
noise) wi associated to the state.  According to Hui et
al. (1998), when all data sets are transformed by
equation 5, the magnitudes of the state coefficients of
the matrix φ are directly proportional to their
contribution to each state variable used in the
analysis.

The mean of the noise values, which are not
autocorrelated and normally distributed with constant
variances, is assumed to be zero.  If these Z variables
were observable, this would be the usual structure of
a vector autoregressive model, in which the coefficients
of matrix φ  could be estimated by multiple regression
techniques, taking Z(xi) and Z(xi-1) as dependent and
independent variables, respectively.  The formulation
of a linear regression model may be theoretically
represented by equation 8:

Y(xi) = β0 + β1X1 + β2X2 + ei (8)

where Y(xi) is the explanatory variable; β0, β1 and β2
are the regression coefficients, X1 and X2 are the
explanatory variables and ei is the model error.
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Criterion for model selection

A way to compare the quality of different models
is defined by Akaike (1973), cited by Shumway &
Stoffer (2000), and may be adapted to regression
techniques.  The criterion is based on the calculation
of the residual sum of square (RSSavg) between
observed (Y(xi)) and estimated (Y(xi)*) values,
calculated by equation 9:

(9)

Akaike’s Information Criterion (AIC) considers the
number of regression coefficients k and the number
of observations n, and is given by equation (10):

(10)

To correct Akaike’s coefficient (AICc) as a function
of the number of samples, equation (11) is used:

(11)

where the term (n + k) (n – k – 2) is the correction
factor for the AIC coefficient.

RESULTS AND DISCUSSION

Table 1 presents the descriptive statistical analysis
of soybean yield data (SY), soil penetration resistance
data (SRP) and soil bulk density data (SD), in the two
studied layers, along the spatial transect.  The
Coefficients of Variation (CV) for SY and SD, in the
0–0.10 m layer and for SRP and SD, in the 0.10–
0.20 m layer, were lower than 20 %, indicating data
homogeneity.  The normality tests of Kolgomorov-
Smirnov and Anderson-Darling showed a trend of the
SY, SRP, and SD data in the 0–0.10 m and 0.10–
0.20 m layers to a normal distribution of probability,
at a level of 5 %.  The normal variable distributions

allow the construction of regression models to explain
variable relations.

The data spatial distribution of soybean yield, soil
penetration resistance, and soil bulk density, in the
0–0.10 m and 0.10–0.20 m layers, is presented in the
figures 1a,bc, respectively.  This figure shows data
oscillation, revealing a trend of addition/decrease
around the mean, along the sampling elements
indicating stationary behavior (Morettin & Toloi,
2004).  Point-to-point fluctuations in all variables can
also be observed due to soil natural spatial variability,
which present local characteristics and may therefore
be better represented by locally adaptable models (e.g.
state-space model).  In this case, global or space-
independent models (e.g.  classical multiple regression
model) based on the assumption that the mean of each
data set is constant along the entire transect,
independent of local spatial variation, fail to express
the soil spatial variability.  These traditional statistical
models to not take the spatial coordinates of the data
of a studied variable into account, assuming that the
coordinates are spatially independent from each other,
randomly distributed over the entire field.  According
to Nielsen et al. (1998), these analyses still lack proven
concepts and strategies to interpret the cause of spatial
patterns, mainly because response functions between
crop yield and different variables are neither constant
nor consistent within an agricultural field.

Figure 2 presents the autocorrelographs of soybean
yield, soil penetration resistance, and soil bulk density
data sets in the 0–0.10 m and 0.10–0.20 m layers.  In
figure 2 it is possible to observe a third-order
autocorrelation for the data set of soybean yield
(Figure 2a) and soil penetration resistance in the 0.10–
0.20 m layer (Figure 2c), indicating spatial dependence
up to a distance of 9 m between adjacent observations
of each variable.  However, for soil penetration
resistance in the 0–0.10 m layer (Figure 2b), a second-
order autocorrelation was observed.

For adjacent observations of soil bulk density, in
the 0–0.10 m layer (Figure 2d), there was a significant
first-order autocorrelation while no autocorrelation was
observed in the 0.10–0.20 m layer (Figure 2e).

Table 1. Descriptive statistical analysis of the variables: soybean yield (SY), soil penetration resistance
(SRP) and soil bulk density (SD)

(1) Normality tests of Kolgomorov-Smirnov or Anderson-Darling at 5 % of significance level.
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Figure 1. Data spatial distributions of all observed variables along the transect of 84 sampling points: (a)
soybean yield; (b) soil penetration resistance in the 0–0.10 m layer; (c) soil penetration resistance in the
0.10–0.20 m layer; (d) soil bulk density in the 0–0.10 m layer; and (e) soil bulk density in the 0.10–0.20 m
layer.

Figure 2. Autocorrelographs: (a) soybean yield data; (b) soil penetration resistance data in the 0–0.10 m
layer; (c) soil penetration resistance data in the 0.10–0.20 m layer; (d) soil bulk density data in the 0–
0.10 m layer; and (e) soil bulk density data in the 0.10–0.20 m layer.
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Cross correlographs for soybean yield versus soil
penetration resistance were designed (Figure 3).  The
cross correlation between soybean yield and soil
penetration resistance in the 0–0.10 m layer
(Figure 3a) is in the order of two lags (6 m in our
study) and in the order of one lag in the 0.10–0.20 m
layer (Figure 3b) (3 m in our study).  Applying the “t”
test at 5 %, there was no cross correlation between
soybean yield and soil bulk density in both studied
soil layers (Figure 3c,d).

Soybean yield was estimated by the autoregressive
state-space equations using soil penetration resistance
data as predictor variables (Table2).  The variable soil
bulk density was not considered, since there was no
spatial correlation with the soybean yield.  For each
model, the values of Akaike’s Information Coefficient
(AIC) and corrected Akaike’s Information Coefficient
(AICc) were provided.

The AIC is based on the estimated variance of a
model to select the best-performing model, since the
smaller the coefficient values the better is the model
performance, once the variance is also lower (Nielsen
& Wendroth, 2003).  Partial autocorrelation
coefficients (PACF) for each studied variable were also
calculated, which indicated that the PACF coefficients
are significant up to 1 lag, i.e.  autoregressive models
of the order of 1 lag can be applied.

The model with the lowest AIC was the one that
measured the contribution of the variables in the 0–
0.10 m layer, in which the coefficients AIC and the
AICc were -4.604 and -3.576, respectively.  In this
model, soybean yield and soil penetration resistance
measurements at site i-1 contribute with 0.8727 and
0.1143, respectively, to soybean yield estimates at site i.

The AIC values were highest in the model that
considered soil penetration resistance in the 0–0.10 m
and 0.10–0.20 m layers.  In this model, measurements
at site i-1 of soybean yield, soil penetration resistance
(0–0.10 m layer) and soil penetration resistance (0.10–
0.20 m layer) contributed with 0.8578, 0.3374 and
0.1952 to the soybean yield estimates at site i.

For a better understanding of the spatial relations
between SY and SRP, the state-space analysis and
the classical multiple regression were compared using
the same state variables.  Classical multiple regression
is based on mean values of each variable across the
space under study, in which only the difference
between a variable at a given location compared to its
respective value at a previous location is considered.
The simple and multiple linear regression models
(Table 3) were combined with soybean yield estimates
as a function of soil penetration resistance
measurements in both soil layers.

The variance was lowest in the model with AIC
and AICc coefficient values of -1.717 and -0.687,
respectively, with a R2 of 0.090, so that no more than
9.0 % of the variance of the SY data along the spatial
transect was explained by the SRP values in both
studied layers (Table 3), independent of their position.
Regression-estimated values are much less variable
than the measured values and consistently
underestimate larger and overestimate lower
measured values.  In this model, each addition/
decrease of one unit resulted in a contribution of -
0.1130 to the soil penetration resistance in the 0–
0.10 m layer and of -0.1180 in the 0.10–0.20 m soil
layer. The AIC and AICc coefficient values were
highest in the model considering the variable soil

Figure 3. Cross correlograph between: (a) soybean yield and soil penetration resistance in the 0–0.10 m
layer; (b) soybean yield and soil penetration resistance in the 0.10–0.20 m layer; (c) soybean yield and
soil bulk density in the 0–0.10 m layer; and d) soybean yield and soil bulk density in the 0.10–0.20 m layer.
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penetration resistance in the 0–0.10 m layer, with a
R2 of 0.063.  In this model, at each addition/decrease
of one unit in soil penetration resistance, soybean yield
was reduced by -0.680.  The better performance of
state-space models compared to classical multiple
regression models was also reported by Timm et al.
(2004).  These authors observed a better estimation of
the soil water content by state-space than by the
equivalent linear regression equations.

The benefit of a state-space analysis of the spatial
processes of crop-dependent variables is that each
variable is treated statistically as random and the
spatial association and variation as a function of the
distance between measurements.  In our study, the
variations in soil penetration resistance in the layers
0–0.10 m and 0.10–0.20 m across the spatial transect
were most strongly related to the spatial distribution
of soybean yield.  From the agronomic point of view,
this result is similar to findings of Beutler &
Centurion (2003), among others.  A spatial soil process
is the change of a variable or a vector consisting of
several variables across a spatial domain due to local
conditions, e.g., the spatial process of soybean yield
considered across a field can be mainly influenced by
spatial changes in soil management, type, topography,
and by rainfall.  In other words, the state-space
analysis could provide “site-specific” and/or “time-
specific” management information without the
disadvantage of considering the very general average
values of an entire area or year.  As a result, crop
management practices could be more precisely adapted
to be more effective and sustainable, with less
deleterious effects on soil and water resources.

CONCLUSIONS

1. There was autocorrelation and cross correlation
between soil penetration resistance in the two studied
layers (0.0–0.10 and 0.10–0.20 m) and soybean yield
measurements along the spatial transect. Soil bulk
density was not auto and cross correlated with soybean
yield.

2. The autoregressive state-space models described
variations in soybean yield along the spatial transect
better than the equivalent simple and multiple linear
regression models using Akaike’s Information
Criterion.

3. In the application of the state-space analysis
under field conditions, it was possible to consider the
underlying processes between soybean productivity
and soil resistance to penetration in every local
neighborhood along the transect.  It was also possible
to identify the local relations between soybean
productivity and soil resistance to penetration
measurements and quantify this relationship,
stochastically, taking measurement and model errors
into account.  The model represents a  possibility of
investigating the effect of values of crop yield and soil
physical properties from adjacent sampling points in
heterogeneous fields.
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