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SUMMARY

The region of greatest variability on soil maps is along the edge of their polygons,
causing disagreement among pedologists about the appropriate description of soil
classes at these locations. The objective of this work was to propose a strategy for
data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training
map were shrunk by 100 and 160 m. This strategy prevented the use of covariates
located near the edge of the soil classes for the Decision Tree (DT) models. Three
DT models derived from eight predictive covariates, related to relief and organism
factors sampled on the original polygons of a soil map and on polygons shrunk by
100 and 160 m were used to predict soil classes. The DT model derived from
observations 160 m away from the edge of the polygons on the original map is less
complex and has a better predictive performance.

Index terms: choropleth map, pedometrics, soil survey, decision tree.

RESUMO: MAPADIGITAL DE SOLOS: ESTRATEGIAS PARA PROCESSAMENTO
DE DADOS

Mapas de solos tém na borda dos poligonos a regido de maior variabilidade, o que leva os
peddlogos a divergir quanto ao delineamento das classes de solos nesses locais. O objetivo deste
estudo foi propor uma estratégia de pré-processamento de dados aplicada ao mapeamento
digital de solos. Poligonos de solos em um mapa de treinamento foram deslocados para seu
interior em 100 e 160 m. Essa estratégia possibilitou que covariaveis localizadas préximas a
borda das classes de solos no fossem utilizadas na geracdo dos modelos de Arvore de Decis&o
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(AD). Trés ADs geradas a partir de oito covariaveis preditoras, ligadas aos fatores relevo e
organismos, amostradas nos poligonos originais de um mapade solos e em poligonos deslocados
em 100 e 160 m para o seu interior, foram utilizadas para predizer classes de solos. O modelo
de AD a partir de observagdes distantes 160 m da borda dos poligonos no mapa original é
menos complexo e tem melhor desempenho preditivo.

Termos de indexacéo: Mapa coroplético, pedometria, levantamento de solos, &rvore de decisao.

INTRODUCTION

Soil maps can be predicted from pre-existing soil
information. The ‘scorpan’ model (McBratney et al.,
2003) assumes that existing information about soil
classes and properties can assist in the prediction
and digital soil mapping (DSM) in areas where spatial
information of soils is missing or unavailable at the
scale required. According to Qi & Zhu (2003), the
basic idea of formalization of the soil-landscape
relationships contained in choropleth soil maps
consists of recovering pedological knowledge
contained in the map by application of data mining
techniques. The information of the soil polygons on
choropleth maps has proven to be applicable to DSM
(Crivelenti etal., 2009; Giasson et al., 2011; ten Caten
etal., 2011a).

In conventional soil mapping, the map units are
delineated by visual interpretation of stereoscopic aerial
photo pairs at a scale compatible with the objective
(Dalmolin etal., 2004). The spatial position of the soil
polygons implies knowledge of relationships among
different soil classes and the environmental conditions
present in the landscape. When delineating the
boundaries of the polygons, pedologist are guided by
their implicit knowledge of the relationships among
the multiple information layers that reflect the local
soil genesis, such geology, relief and land use (Qi &
Zhu, 2003).

A certain degree of subjectivity is intrinsic to the
conventional method, whether due to the scale of the
basic material used, or due to the nature of spatial
variation of the soil itself, where transitions between
classes are not abrupt. For these reasons, tiny or
gradual variations in environmental conditions are
difficult to locate through the conventional method
(Zhu etal., 2001), which raises an uncertainty with
regard to the real location of limits between soil classes
in the landscape. The use of these polygons as a
reference for training of predictive models will imply
the addition of deviant information. They, for their
part, will have different effects on the predictive quality
of the models (Qi, 2004).

In an attempt to improve the quality of the database
used to predict soil classes, Qi & Zhu (2003) used only
the information that was near the mode of each
predictive covariate. Through the construction of a
histogram for each covariate, the authors discarded
the data outside the mode of the data set. The accuracy
of the models developed by the decision tree in the set
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of filtered data reached 86 %, whereas models using
the total data set obtained a mean value of 75 %. For
these authors, the filtering method was effective as a
strategy of pretreatment of data applied to the DSM.
Nevertheless, Schmidt et al. (2008) warned that the
histogram method has the disadvantage of requiring
the construction of a histogram for each predictive
covariate, creating difficulties in studies with a high
number of covariates and observations.

Methods for selection of observations are used when
a large number of samples are available. Strategies
appropriate for selection of the observations lead to
better results if compared to models which are
adjusted with the total number of observations
available (Schmidt et al.; 2008). The challenge is in
“doing more with less” (Liu & Motoda, 2002), in other
words, extracting part of the data set which should
be representative of the original data and could be
more easily handled by the algorithms. In this case,
there may be a gain in accuracy and speed in data
processing.

Studies in DSM seek to evaluate the quality of the
covariates and of the observations aiming into
achieving a higher accuracy of the predictions
(Schmidtet al., 2008). Among the studies that consider
the observations used in the DSM are those that seek
to define the best sampling density (Moran & Bui,
2002; Scull et al., 2003; Grinand et al., 2008; Schmidt
etal., 2008), although studies that are concerned with
patterns of the observations within each soil class to
be predicted are rare (Qi & Zhu, 2003; Qi, 2004).

Evaluating the application of multiple logistic
regressions for prediction of soil classes, ten Caten et
al. (2011b) observed the failure of the models to
distinguish among nearby classes in the landscape.
It was observed that the greatest percentages of
prediction confounding occurred among the four
distinct suborders of Haplic Acrisol, since these soil
classes occupy very similar positions in the landscape.
For the authors, this difficulty of the models may arise
from the map design itself that served for training,
since in the landscape there are no abrupt limits
between the soil classes as represented on the original
map (with choropleth polygons), or, due to very tiny
differences among the terrain attributes
(environmental covariates), which may present no type
of gradient at all at the boundary of the soil class

polygons.

The influence of the transition areas among
different soil classes was also registered in a study of
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Carvalho et al. (2009). According to these authors,
due to the practice of cartography based on polygons
(Boolean) adopted in the conventional soil mapping
method, the application of fuzzy logic for digital soil
mapping will imply in the appearance of areas that
would be related to transition zones among two or
more soil units, which would lead to the emergence of
non-existent delineations on the original map used
for model training.

Definition of the exact position of the boundaries
of the polygons is a controversial matter among
pedologists. Legros (2005) evaluated the quality of
delineation of mapping units performed by 20 different
pedologists in the same area. It was observed that the
polygons tend to overlap. However, small deviations
in delineation are induced by the perception of each
pedologist of the information contained in the aerial
photos. These deviations of delineation allow definition
of a region of uncertainty with regard to the most
adequate location for the boundary of the polygons. In
this region of uncertainty, the contribution of the
predictive covariates to the quality of the predictive
models may be doubtful.

The objective of this work was to propose a strategy
for pre-processing of data applied to the DSM,
evaluating the effect of non-use of information derived
from predictive covariates present at the boundaries
of the soil polygons in decision tree models for
prediction of soil classes. The sampling method
proposed excludes deviant samples and selects
observations that contain only the characteristics of
the predictive covariates in each soil class.

MATERIAL AND METHODS

Soil map used

The semi-detailed soil survey at a scale of 1:50,000
by Klamtet al. (2001) of the municipality of S&o Pedro
do Sul in the central region of the state of Rio Grande
do Sul, with an extension of 874 kmz2, was used as
test map for this study. The soil classes at the suborder
level contained on the test map were vectorized using
ArcGIS 9.3 (ESRI, 2008).

The proposal of this study consists of displacing
each soil class polygan present on the original map
inwardly to the polygon defined by the pedologist.
Therefore, the regions of greatest uncertainty with
regard to the real position of the edges of the soil class
polygons are not sampled for use of the predictive
models. To check the effect of the method on the data
set to be generated, the distances of 100 and 160 m
were used in relation to the original position of each
soil class (Figure 1). As all soil polygons are displaced
inwardly, the width of the strip of effectively discarded
data was 200 and 320 m on the edges of neighboring
polygons. The values of 100 and 160 m were defined
based on an analysis of gradients of values occurring
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in the predictive covariates near the edge by the
polygons. The new polygons were created by the Buffer
function of the program ArcGIS 9.3. The proposed
sampling method did not prevent any soil class from
being sampled by the reduction of the total area covered
by each soil class.

Predictive covariates

In this study, covariates of the ‘scorpan’ model
(McBratney et al., 2003) were used related to the soil
relief (r) and organism (o) formation factors. The
organism factor was represented by the standard
deviation covariate of the Normalized Difference
Vegetation Index (NDVI), hereinafter called STAN.
The STAN covariate was used rather than the NDVI
due to the fact that the latter presents different values
throughout the year as a result of different
agricultural uses.

To calculate the STAN covariate, images taken
between February 2004 and January 2005 were used.
This period was selected due to greater availability of
images with absence of clouds in that year. The STAN
predictor was generated using data of eight different
dates of the period obtained by the platform Landsat
5 Thematic Mapper with a spatial resolution of 30 m.
AlI NDVI calculations were performed according to

184000 187000

6729000

Soil polygons
[Joirginal
[]100m

160 m

300 m
—

Figure 1. Sampling strategies of the predictive
covariates adopted in the study using the original
soil map, with a displacement of 100 and 160 m
from the edge of the polygons. Acric Planosol
(Albic, Epiarenic)/Haplic Gleysol (Dystric, Siltic)
[PLac/GLha], Haplic Cambisol (Dystric,
Chromic)[CMha], Lithic Leptosol (Humic,
Eutric) [LPIi] and Haplic Acrisol (Profondic,
Chromic) [AChal]. Coordinate system
SIRGAS2000/UTM zone 22.
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Jensen (2009). The NDVI value of each date was
calculated individually and then the standard
deviation of the NDVI value was computed among
the eight dates for each pixel on the ArcGIS 9.3
program in the Raster Calculator function.

The relief factor was represented by the covariates:
elevation (ELEV), slope (SLOP), topographic wetness
index (TWI), sediment transport capacity (STC), plane
curvature (PLAN), profile curvature (PROF), and
terrain roughness index (TRI). The covariates were
generated according to Wilson & Gallant (2000), based
on adigital elevation model (DEM). The DEM (spatial
resolution 30 m) was derived from topographic map
contour lines at a 1:50,000 scale. The contour lines
for the matrix format were interpolated by the Topo
to Raster tool of the ArcGIS 9.3 program, using the
spline technique (Wahba, 1990). In the SAGA-GIS
program, the attributes ELEV, SLOP, PLAN, PROF,
and TRI were derived by the standard terrain analysis
tool, and TWI and STC with the grid calculator tool.

These attributes were tabulated from the soil
polygons, creating three separate data sets to construct
the decision tree models: original, 100 and 160 m.

Decision tree (DT)

Digital soil mapping uses the DT technique to split
the set of original data into smaller blocks containing
increasingly homogeneous data. The data partitioning
occurs in the form of a tree where a criterion of
segregation among the data is tested at each node of
the tree, creating new data sub-blocks. A no longer
partitioned data set is a leaf of the tree (Giasson et
al., 2011).

In the three data sets used to develop the models,
all soil classes were sampled proportionally to their
area. The DTs were developed on the data mining
program WEKA 3.6.3 (Hall et al., 2009). For data
processing, algorithm J48 was used, which presented
the best results in a study of Giasson et al. (2011).
The minimum number of observations per leaf
(minNumObj - WEKA) for each data set was
determined after analysis of the percentage of
incorrectly classified observations. This analysis
was performed with a series of values for the
minimum number of observations in each one of the
three data sets. The pruning method that mitigated
the error on the derived tree was also selected
(reducedErrorPruning = True - WEKA). During the
phase of creating the tree, each data set was partitioned
in 70 % for creation of the model and 30 % for
validation of the tree (Percentage split - WEKA).

Soil map

After analysis of the complexity of the DT created
and of the number of wrongly classified observations,
the DTs were implemented in ArcGIS 9.3 with the
Raster Calculator function. The information derived
from the tree was converted by the conditional function
con (condition, if true,if false) of the program. This
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function allows the raster files of the environmental
covariates to be processed according to the set of rules
derived from the DT. Since the intended publication
scale is 1:50,000, in each soil map created, isolated
pixel regions with a minimum mappable area of less
than one hectare were merged with a neighbor class.

Quality of models and maps

The quality of the DT models was evaluated based
on the percentage of wrongly classified observations
in the tree. This value is one of the outputs of the
WEKA program after the model created was validated
in the set of 30 % of the reserved data. For its
calculation, the program adds up all wrongly classified
observations and divides them by the total
observations of the test set, multiplying the result by
100 to indicate the percentage value (Hall et al., 2009).
The soil maps created based on the three distinct sets
of data were compared to each other by calculating
the Kappa coefficient. The Kappa coefficient is used
to attest the quality of predictive mappings (Giasson
etal., 2011). The error matrix for calculation of the
Kappa coefficient was established according to
Congalton (1991).

RESULTS AND DISCUSSION

The proposed pre-processing method resulted in a
reduction of the total number of observations available
for creating the models by a decision tree. In the data
set derived from the original map, 100 % of the
information used in this study is present. The data
set created from displacement of the polygons by 100
m retained 60 % of the original data. In the event of
displacement of 160 m of the soil polygons, 43 % of
the original data were tabulated to create the decision
tree. These data percentages were greater than the
30 % used by Grinand et al. (2008), and the 25 % used
by Moran & Bui (2002) to adjust the decision trees
applied to digital soil mapping.

The descriptive measurements of the data sets
derived from Lithic Leptosol polygons displaced by 100
and 160 m, used as example here, were different from
the original data set (Figure 2). Among the
observations most distant from the central
characteristics of each predictive covariate are the
outliers. With the exception of the elevation, the
covariates contained outliers in the data sampled from
the original polygon. With the application of the
shifting of the soil polygons, observations near the
polygon edges were discarded and there were no distant
values in the covariates. Pre-processing led to similar
changes in the data pattern originated in the other
soil classes (not represented here).

Visual analysis of the graphs indicates that the
pre-processing did not change the data distribution.
The position of the mean value in relation to the set of
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Figure 2. Boxplot of the predictive covariates created from the data sampled for the Lithic Leptosol class in
the three situations of polygon positions. a) elevation (m), b) sediment transport capacity, c) topographic
wetness index, d) slope (°), e) terrain roughness index, f) standard deviation of the NDVI, g) plane
curvature (1/m) and h) profile curvature (1/m). Units of each covariate in parentheses. The outlier limit
was calculated from the height of the central box of the boxplot multiplied by 1.5. Outliers were defined

as the values beyond the outlier limit.

50 % of the total of data indicated that the data did
not have normal distribution. This pattern was
repeated for the data derived from the 100 and 160 m
shifts, although data dispersion decreased; the
distance of the data from the mean value was reduced.
This performance is less noticeable in the data coming
from the standard deviation covariate of the NDVI
(Figure 2f). This may be attributed to the fact that in
the study area, the Lithic Leptosol areas are situated
on slopes covered by native forest. From the position

of the polygons on the original map, even the polygons
shifted by 160 m indicated no notable changes in land
use at the location.

Decision Trees (DTs) obtained by the three sets of
data have distinct performance with regard to the
number of incorrect classified observations (Figure
3). The DT created from the total data set resulted in
the classification of the observations with aminimum
error of 38.5 %; in other words, the DT created from
the totality of the samples of the test area allowed
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that in 61.5 % of the cases, the soil class present in
the training set was attributed to the predictive map.
The other data sets resulted in minimum errors of
32 and 28 % for displacements of 100 and 160 m,
respectively. This indicates a benefit of data pre-
processing for a better adjustment of the DT model.
Nevertheless, even both trees adjusted to the data
with less deviant observations misclassified around
one third of the data. This may be due to the
complexity of spatial distribution of soils at the
location, not represented by the eight predictive
covariates chosen for this study, or, moreover, it may
be related to characteristics of the conventional map
used for training of the DT, such as the scale and
the arrangement of the polygons, which may have
led to a generalization of the soil information.

In the three data sets, the error percentage was
lowest with trees with a greater number of nodes and
terminal leaves. The number of wrongly classified
observations remained practically unaltered insofar
as the program was allowed to group a greater number
of observations in the terminal leaves. Nevertheless,
near the number of 30 leaves, the three data sets
showed an increasing tendency for the number of
misclassified observations. It is believed that as of this
limit, the tree is overly simplified and becomes
incapable of predicting the complexity present in the
data.
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Figure 3. Relationship between the number of leaves
and wrongly classified observations per decision
tree. Sets of data without displacement (original)
and with displacement of 100 and 160 m from
the edge of the polygons. The numbers near the
vertical bars indicate the minimum number of
leaves to ensure that all soil classes would be
predicted with that data set. The dashed vertical
line indicates that the number of 30 leaves is the
limit above which there is a sudden increase in
the number of incorrectly classified observations
in the three data sets.
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The predictive power of the DTs created from the
data distant from the edges of the soil polygons was
greater. With regard to the minimum number of
leaves so that the decision trees would still map the
seven soil classes of the study area, it was observed
that for the data derived from the 100 m shift, the
minimum number of leaves was 37. When the
displacement performed was 160 m, the minimum
number of leaves was 29. On the other hand, with the
use of the totality of observations of the study area,
only with trees of greater complexity (above 103 leaves),
it was possible to predict all soil classes. These results
indicate that the presence of deviant observations
demands more complex trees to capture the data
pattern. In a study of Giasson et al. (2011), based on
1,333 randomly distributed observations, the authors
observed that among the trees tested, only the more
complex were capable of predicting all soil classes.

The results do not allow conclusions on the adequate
displacement distance from the edges of the soil
polygons. This distance will be a function of various
factors, such as scale, complexity of the elements that
control soil distribution, and the experience and ability
of the pedologist that mapped the region used to create
the models. Possibly in a single map, different
distances could be adopted since the transitions of the
soil classes present a range of complexity.
Nevertheless, an analysis of our results (Figure 3)
shows that the pre-processing by displacement of the
soil polygons, avoiding use of the observations located
in the regions of greatest uncertainty on the map,
allows more precise and less complex DTs.

Soil maps were created by DT with a minimum
number of 30 leaves based on the three sets of data
(Figure 4). This number was adopted for being the
value resulting in the best cost-benefit ratio between
complexity and predictive power of the models (shown
in Figure 3). Nevertheless, as previously indicated,
this minimum number of leaves means that the trees
created from the original set and shifted by 100 m do
not predict all soil classes.

Visually, the Acric Planosol (Albic, Epiarenic)/
Haplic Gleysol (Dystric, Siltic) [PLac/GLha] were
spatialized similarly to the training map. In the three
predictive maps, the Haplic Acrisol (Sombric,
Abruptic, Profondic) [ACha3] class was spatialized in
an intermediate position on the landscape between
the floodplain areas and the more elevated hillswhere
the Haplic Acrisol (Profondic, Chromic) [AChal] soils
are located. This is in disagreement with the extract
of the original map (Figure 4a), possibly due to the
fact that in the region the characteristics are nearly
indistinguishable for the perception of the pedologists,
but nevertheless identified by the predictive model as
being adequate for the formation of ACha3 at those
locations. In this case, the predictive model is consistent
with the known soil landscape relation for the study
area, where the soils of the ACha3 class occupy a
transition strip between the floodplain areas and the
hills where the AChal class is found.
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Figure 4. a) Extract of the soil map used for training; b) Predicted based on the totality of the data; c)
Predicted based on displacement of 100 m in the polygons; d) Predicted based on displacement of 160
m in the polygons. Acric Planosol (Albic, Epiarenic)/Haplic Gleysol (Dystric, Siltic) [PLac/GLha], Haplic
Cambisol (Dystric, Chromic)[CMha], Lithic Leptosol (Humic, Eutric) [LPIi], Haplic Acrisol (Profondic,
Chromic) [AChal], Haplic Acrisol (Profondic, greyic)[ACha2] and Haplic Acrisol (Sombric, Abruptic,
Profondic)[ACha3].Coordinate system SIRGAS2000/UTM zone 22.

The model created by the data set based on the
shifting of 160 m allowed a spatialization of the Haplic
Acrisol (Profondic, greyic) [ACha2] class (Figure 4d),
although this class, present in other regions of the
original map, is not located in the area of the extract
delineated by the pedologist and used to show the
results (Figure 4a). In the same way as for the ACha3
class, the use of an automated method for delimitation
of the soil classes may have captured very small
variations of the local environmental conditions, and,
in accordance with the model created, those more
favorable for the occurrence of the ACha2 class.

Comparisons of the three soil maps created and
the original map allowed the observation of a degree

of agreement among them. In approximately 60 % of
the points (pixels) on the landscape, the same class
existing on the original map was attributed by the
models to the predictive maps (Table 1). This value is
greater than the values found in the literature of
43 % (Crivelenti et al., 2009), 38.6 % (Coelho &
Giasson, 2010) and 51.8 % (Giasson et al., 2011). In
spite of a greater prediction quality obtained in this
study in relation to the studies found in the literature,
it may be observed that with the displacement of 100
m, the class ACha2 was not predicted. This probably
occurred due to the fact that the limitation of a
maximum number of 30 leaves is a very strong
restriction in view of the complexity of the information
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in the data arising from positions on the landscape
where ACha2 occurs. In this case, there is the need
that, for the most disperse sets of data, more complex
trees should be created for prediction of all soil classes.

Comparisons of the three soil maps indicated a high
degree of similarity among them (Table 1). The three
predicted maps were identical to each other in around
90 % of the points of the landscape, although it must
be considered that one of the soil classes (ACha2) was
not mapped by the DT, created by two of the data sets
(original and 160 m). The Kappa coefficient of 59.34
% in relation to the original map was reached with
an amount of data to be handled that was
approximately 60 % less than the original volume,
and with all classes present in the original map being
predicted. If we consider that the pre-processing of
the data resulted in a reduction of the volume of
observations, the data set derived from displacement
of 160 m at the edge of the polygons made the proposal
of doing more with less viable (Liu & Motoda, 2002).

The Lithic Leptosol (Humic, Eutric) [LPIi] class
was not spatialized by the predictive models as it
occurs in the extract area of the Figure 4a of the
although it was predicted in other regions of the study
area. The predictive potential of the models is related
to the capacity of the environmental covariates used
in representing the complexity that governs the spatial
distribution of the soils in the landscape. In thisstudy,
the three models created did not adjust to 40, 35 and
33 % of the test set data used in the creation phase of
the predictive models (Figure 3). This leads to a lack
of prediction of determined classes where they possibly
occur, or to their prediction in areas where they are
not naturally present, as | the case of the AChal class
(Figures 4b, ¢, d). Improvement of the predictive
potential of the digital soil mapping technique will
require research seeking predictive covariates by
which a maximum of the soil formation factors that
determine soil spatial distribution can be captured.

Pre-processing of the data presented here differs
from the method used by Qi & Zhu (2003), in which
the histogram and mode concept are used in two main
aspects. The first is linked with the fact that the
selection of the observations based on their relationship

Table 1. Kappa coefficient indicating the degree of
agreement among the maps created from three
data sets of this study and the training map

Training map Original* 100 m*
Original* 60.64 - -
100 m* 60.16 90.5 -
160 m 59.34 87.6 88.85

* The Haplic Acrisol (Profondic, greyic) [ACha2] soil class was
not predicted.
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with the mode of a covariate may represent the
exclusion of relevant information. Situations may
occur in which a covariate presents multimodal
characteristics in a single soil class such that it is
difficult to determine how many and which are the
modes present in the data. The other aspect is related
to the volume of processing required; shifting the soil
polygons is an automatic procedure, while building
up and analyzing the histograms will be more time-
consuming.

CONCLUSIONS

1. Pre-processing the observations reduces the data
volume to be handled in DSM.

2. Observations from the edges of soil polygons
increase the number of misclassified observations by
the decision tree.

3. Decision trees created from observations distant
from the edges of the soil polygons are less complex
and have greater predictive power in DSM; although
in this study it was not possible to specify the
minimum distance, results indicate that for
environmental covariates with a pixel size of 30 m, a
shift of 160 m from the polygon edges should be
observed.

4. The soil map obtained by decision trees based
on unbiased observations has greater similarity to the
training map.

5. The method presented here is easily
implemented and is more easily applied to DSM than
the observation selection method based on histograms.
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