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SUMMARY

Pedotransfer functions (PTF) were developed to estimate the parameters (ααααα,

n, θθθθθr and θθθθθs) of the van Genuchten model (1980) to describe soil water retention

curves. The data came from various sources, mainly from studies conducted by

universities in Northeast Brazil, by the Brazilian Agricultural Research Corporation

(Embrapa) and by a corporation for the development of the São Francisco and

Parnaíba river basins (Codevasf), totaling 786 retention curves, which were divided

into two data sets: 85 % for the development of PTFs, and 15 % for testing and

validation, considered independent data. Aside from the development of general

PTFs for all soils together, specific PTFs were developed for the soil classes Ultisols,

Oxisols, Entisols, and Alfisols by multiple regression techniques, using a stepwise

procedure (forward and backward) to select the best predictors. Two types of

PTFs were developed: the first included all predictors (soil density, proportions of

sand, silt, clay, and organic matter), and the second only the proportions of sand,

silt and clay. The evaluation of adequacy of the PTFs was based on the correlation

coefficient (R) and Willmott index (d). To evaluate the PTF for the moisture content

at specific pressure heads, we used the root mean square error (RMSE). The PTF-

predicted retention curve is relatively poor, except for the residual water content.

The inclusion of organic matter as a PTF predictor improved the prediction of

parameter ααααα of van Genuchten. The performance of soil-class-specific PTFs was

not better than of the general PTF. Except for the water content of saturated soil

estimated by particle size distribution, the tested models for water content

prediction at specific pressure heads proved satisfactory. Predictions of water

content at pressure heads more negative than -0.6 m, using a PTF considering
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particle size distribution, are only slightly lower than those obtained by PTFs

including bulk density and organic matter content.

Index terms: soil water retention curve, tropical soils.

RESUMO: FUNÇÕES DE PEDOTRANSFERÊNCIA PARA A ESTIMATIVA DE
PARÂMETROS DA CURVA DE RETENÇÃO DE SOLOS DO
NORDESTE BRASILEIRO

Foram desenvolvidas funções de pedotransferência (PTFs) para estimar os parâmetros
(α, n, θr e θs) do modelo de van Genuchten (1980), utilizados para descrever curvas de
retenção de água no solo. Os dados usados foram provenientes de diversas fontes,
principalmente de estudos realizados na Região Nordeste pelas universidades, pela Embrapa
e Codevasf, totalizando 786 curvas de retenção, que foram divididas em dois conjuntos de
dados: 85 %, para desenvolvimento das PTFs, e 15 %, para teste e validação, considerados
como dados independentes. Além do desenvolvimento das PTFs de caráter geral para todos
os solos conjuntamente, desenvolveram-se PTFs específicas para as classes Argissolos,
Latossolos, Neossolos e Planossolos, utilizando técnicas de regressão múltipla, com o uso do
procedimento stepwise (forward e backward), para selecionar os melhores preditores. Dois
tipos de PTFs foram desenvolvidos: o primeiro inclui todos os preditores, densidade do solo,
teores de areia, silte, argila e de matéria orgânica, e o segundo, apenas com os teores de areia,
silte e argila. A avaliação da adequação das PTFs foi com base no coeficiente de correlação
(R) e índice de Willmott (d). Para avaliar as PTFs, para o teor de água em potenciais
matriciais específicos, utilizou-se a raiz do erro médio quadrado (RMSE). A predição da
curva de retenção por PTF é relativamente fraca, exceto para o teor de água residual. A
inclusão do teor de matéria orgânica como preditor da PTF melhora a predição do parâmetro
α de van Genuchten. Não houve melhora de desempenho das PTFs específicas por classe de
solo, em comparação com uma PTF geral. Exceto no caso do teor de água do solo saturado,
estimado pela distribuição granulométrica, modelos para a predição do teor de água em
potenciais matriciais específicos são bons. Predições do teor de água em potenciais matriciais
mais negativos do que -0,6 m, usando uma PTF contendo a distribuição granulométrica, são
somente um pouco inferiores àquelas obtidas por PTFs, que incluem densidade do solo e teor
de matéria orgânica.

Termos de indexação: curva de retenção de água no solo, solos tropicais.

INTRODUCTION

The use of simulation models in agricultural
sciences has increased significantly over the last
decades. However, one of the major bottlenecks
hampering model application is the lack of input data.
In the case of water and solute balance modelling,
data of soil hydraulic properties is the most relevant
information (van Diepen et al., 1991; Pachepsky &
Rawls, 1999). The direct determination of hydraulic
conductivity and water retention characteristics is
time-consuming and depends on expensive laboratory
equipment (Wösten & van Genuchten, 1988).
Therefore, indirect methods have been developed, e.g.,
pedotransfer functions - PTFs (Minasny, 2000;
Cornelis et al., 2001; Rawls & Pachepsky, 2002;
Tomasella et al., 2003) that correlate easily available
information such as grain size distribution and organic
matter content (OM) with soil hydraulic properties.
Vaz et al. (2005) validated the Arya & Paris (1981)

model based on 104 samples of representative soils in
the South and Southeast of Brazil, and concluded that
the estimates of the models of retention curves are
satisfactory for those soils.

In a review on PTFs, Pachepsky & Rawls (1999,
2004) recommended the use of PTFs for regions or soil
types similar to those in which they were developed.
The application of the available PTFs to tropical soils
would be inefficient, since these functions were
developed and tested for soils of temperate climates,
aside from other factors related to the different
mineralogy of the clay fraction and distinct properties
of OM components in tropical soils (Tomasella et al.,
2000). This author developed specific PTFs for the
prediction of soil water retention curves for the tropical
soils of Brazil (Tomasella & Hodnett, 1998; Tomasella
et al., 2000, 2003, 2008). Silva et al. (1990) proposed
PTFs for the estimation of the field capacity and
permanent wilting point of the semi-arid region of
northeastern Brazil. Based on a large dataset, Oliveira
et al. (2002) developed PTFs to estimate the water
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content at field capacity (-33 kPa) and permanent
wilting point (-1500 kPa) for the State of Pernambuco,
in the northeastern region of Brazil. Another important
contribution to knowledge on tropical soils was made
by van den Berg et al. (1997) who developed PTFs to
estimate available water content between pressure
heads of -1 and -150 m based on texture and density of
Oxisols in 10 tropical countries.

Considering the importance of extending the use
of hydrological and agronomic models to tropical
regions, in this paper we developed and validated PTFs
for the prediction of water retention characteristics
from sand, silt, clay, organic matter content and bulk
density data for soils from northeastern Brazil.

MATERIAL AND METHODS

Data

The sampling points were distributed on
representative soils in northeastern Brazil, with
higher concentrations in the States of Pernambuco
and Alagoas (Figure 1).

A total of 786 datasets of soil water retention and
grain size distribution, OM content and bulk density
were selected from studies and reports from

universities, Embrapa (Brazilian Agricultural
Research Corporation) and Codevasf (Corporation for
the Development of the São Francisco and Parnaíba
River Basins). Grain size was classified according to
USDA Soil Taxonomy in clay (< 0.002 mm), loam
(0.002 - 0.05 mm), fine sand (0.05 - 0.20 mm), and
coarse sand (0.2 - 2 mm). Data were selected according
to the similarity of determination methods.
Specifically, only water retention data of undisturbed
samples were used. To improve comparability, only
water retention data corresponding to the pressure
heads -0.6, -1, -3, -5, -10 and -150 m were used. The
saturated water content θs was estimated from bulk
density (ρ) by:

(1)

where ρs is the particle density, assumed as 2700 kg m-3.

Estimation of van Genuchten model parameters

The van Genuchten (1980) model (VG, described
in equation 2), was fitted to soil water retention data
of each of the 786 locations:

(2)

where Se(h) is the effective saturation corresponding
to pressure head h (m); θ, θr and θs are water content,
residual water content and saturated water content
(m3 m-3), respectively; α (m-1) and n are shape-fitting
parameters. Saturated water content θs was estimated
by fitting equation 1, while θr was assumed to be equal
to the observed water content at h = -150 m.

Regression model fitting

Two types of PTFs were fitted and evaluated. The
first (PTF-4v) included four soil variables as candidate
predictors: content of sand (S, kg kg-1), clay (C, kg
kg-1), organic matter (O, kg kg-1) and bulk density ρ
(kg m-3). The second (PTF-2v) used only two predictors,
sand and clay content:

PTF-4v  yi = βi,0 + βi,1S + βi,2C + βi,3O + βi,4r + εi  (3)

PTF-2v          yi = βi,0 + βi,1S + βi,2C + εi                (4)

where yi corresponded to the respective van Genuchten
model (Equation 2) parameters, here treated as PTF
response variables: α = 10y1; n = y2; θr = y3 and θs =
y4; and βi,n represented the linear model coefficients
(parameters): βi,0 the intercept, and βi,1, βi,2, βi,3 and
βi,4 the parameters referring to sand, clay and OM
content and bulk density, respectively. εi was the
random error associated to each observation. As
proposed by Vereecken et al. (1989), the response
variable log(α) was used instead of α directly, to reduce
variability. The response variable y4 (corresponding
to θs) was used only for PTF-2v, whereas for PTF-4v
the θs value was calculated as a deterministic function
of ρ (Equation 1).

Figure 1. Northeastern region of Brazil (inset: Brazil)

showing locations where data of water retention

and PTF estimators sand, clay, organic matter

contents and bulk density were measured
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PTFs were developed for all four soil types together,
as well as specifically for each soil class. The fitting
was performed using software Statistica 8 (StatSoft,
2007). Prior to the analysis, the dataset was divided
into two subsets (subset random procedure in Statistica
8, step 1 in figure 2). Both data subsets were considered
to be independent: Subset 1, containing 85 % of the
data corresponding to 673 locations, was used for PTF
development (Table 1). Subset 2, with 15 % of the
data (113 locations), was used for model validation.
PTFs per soil class were developed for Ultisols, Oxisols,
Entisols, and Alfisols. Cambisols and Luvisols were
also represented in the dataset, but the number of
locations for these soil types was insufficient for specific
PTF fitting.

After fitting of the van Genuchten (1980) model
(Equation 2) to the observed data obtaining 673
(development) + 113 (validation) sets of data containing
S, C, O and ρ  and respective values of α, n, θr, and θs
(step 2 in Figure 2), each PTF predictor and response
variable (VG parameters) was checked for possible
outliers using the graphical exploratory tools of
Statistica 8 (StatSoft, 2007). As proposed by Tukey
(1977), an observation is classified as outlier if it does
not fall in the interval between the cut-offs FL - k(FU

- FL) and FU + k(FU - FL), where FL and FU are the
lower and upper fourth quartiles of the sample and k
is the outlier coefficient, customarily assumed as 1.5.
Values of PTF predictors or response variables
classified as outliers were excluded if consistency
criteria related to soil physical properties were not
satisfied.

Figure 2. Schematic representation of the methods used to perform external validation of pedotransfer

functions.

Soil class Total Development Validation

Oxisols 343 298 45

Utilsols 179 159 20

Entisols 172 141 31

Alfisols 63 51 12

Cambisols 21 * *

Luvisols 8 * *

General 786 673 113

Table 1. Number of locations in the general dataset

and grouped per soil class, used for PTF

development (approx. 85 % of total) and

validation (approx. 15 % of total)

*insufficient data for PTF development and validation.
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Fitting of equations 3 and 4 parameters (PTF-4v
and PTF-2v) for the prediction of each of the parameters
α, n and θr from equation 2 (step 3 in figure 2) was
performed using the stepwise procedure at a significance
level of 5 %. Parameters were estimated for the complete
dataset as well as per soil class.

Goodness of fit (internal validation) and
external validation of fitted PTFs

The agreement between VG parameters estimated
by PTFs (step 4 in figure 2) and original VG
parameters (step 5 in figure 2) was quantified using
the validation subset (step 6 in figure 2). The following
summary measures were adopted: the mean absolute
error (MAE) correlation coefficient (r) and the index
of agreement d (Willmott, 1982), given by the following
expressions:

(5)

(6)

(7)

where Ei is the VG parameter estimated by PTF for
location i from the validation subset and M is the
respective value obtained from the original VG model
fitting. E and M are the respective means. The PTF
performance of estimating water content at specific
pressure heads (0, -0.6, -1, -3 and -150 m) was also
evaluated (Figure 3). At each pressure head, the
original VG model performance was compared by its
RMSE (RMSE Fit x Obs) to the performance of the
VG model arising from the PTF estimation (RMSE
PTF x Obs), calculating the RMSE by:

(8)

Figure 3. Schematic illustration of method to evaluate the pedotransfer functions as estimators of water

content at specific pressure heads.
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RESULTS AND DISCUSSION

Model evaluation

In most soils used for PTF construction in this
study the sand content was high, a common trait in
the Northeast of Brazil, as can be seen in the texture
triangles (Figure 4). Texture classes were
predominantly loam, loamy sand, sandy loam, sandy
clay loam and sandy clay. Some clayey, sandy and
clayey loam textures also occurred.

More statistical information on grain size
distribution, organic matter content and bulk
densities for the two subsets can be found in table
2. The subsets used for PTF development and
validation were very similar, with comparable
means and standard deviations. Clay, silt and sand
mean contents were close to 0.21, 0.15 and 0.64 kg
kg-1, respectively. Average bulk density was almost
1700 kg m-3. Organic matter contents were low

Figure 4. Textural properties of soil samples used

for PTF development (a) and validation (b).

(0.006 kg kg-1 on average), a common feature for
soils with a low clay content from this semi-arid
region. Silt contents are also very low, much lower
than those observed in most soils from temperate
climates. Tomasella et al. (2000) evaluated PTFs
for soils from several Brazilian regions and reported
silt contents between 0.15 and 0.20 kg kg-1, rarely
higher than 0.50 kg kg-1. These low silt contents
are considered one of the reasons that PTFs developed
in temperate climates are inefficient when applied
to tropical soils.

Figure 5 shows box-plots for both subsets of the
observed (measured) water contents at pressure heads
of 0, -0.6, -1, -3, -5, -10 and -150 m, used to establish
the van Genuchten (1980) parameters (Equation 2).
Mean and standard deviation were very similar in
both subsets. Results of statistical analysis of estimates
of the VG model parameters (Equation 2) are presented
in table 3.

Fitted PTFs: predictive capacity for
retention curve parameters

Parameter estimates for PTF-4v (Equation 3) and
PTF-2v (Equation 4) are listed in tables 4 and 5
obtained with the complete dataset (General PTF) and
for each of the soil classes Ultisols, Oxisols, Entisols,
and Alfisols separately (specific PTFs).

Table 6 shows the performance indices for PTF-4v
and PTF-2v. For the General PTF-4v, performance
is worst for parameter n (i=2) and best for θr. The
prediction of log(α) was much better with the General
PTF-4v than with PTF-2v, as shown by all indicators
of predictive capacity. Predictions of n and θr differ
only slightly between PTF-4v and PTF-2v, which
means that there was almost no correlation between
these parameters and OM content or bulk density.
There was no clear advantage in using the soil-specific
instead of the General PTFs, in agreement with
findings by Pachepsky & Rawls (1999) and Hodnett
& Tomasella (2002).

In the case of PTF-2v, the predictive capacity for
θs was poor. A possible explanation is the low OM
content of these tropical soils, not correlated clearly
to soil structure, texture or water retention properties.

Difficulties in finding adequate PTFs for
estimating parameters α and n have been reported
by several other authors (Scheinost et al., 1997;
Wösten et al., 2001; Pachepsky & Rawls, 2004) and
should be interpreted regarding the fact that these
fitting parameters are not real soil properties and their
values are very sensitive to the fitting method and
criteria (Wösten & van Genuchten, 1988).

Fitted PTFs: predictive capacity for water
contents at specific pressure heads

The agreement between water content at specific
pressure heads predicted by PTF-derived VG models
(VGPTF models) and measured water content was
quantified by the root mean square error RMSE (Table
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Subset OM Sand Silt Clay BD

kg kg-1  kg m-3

Development Mean 0.006 0.634 0.149 0.216 1686

Maximum 0.027 0.945 0.406 0.542 1980

Minimum 0.000 0.249 0.002 0.060 800

SD 0.004 0.139 0.079 0.091 138

Validation Mean 0.006 0.648 0.145 0.209 1682

Maximum 0.023 0.910 0.382 0.471 1900

Minimum 0.001 0.288 0.016 0.050 1170

SD 0.004 0.148 0.083 0.080 136

Table 2. Descriptive statistics (mean, maximum, minimum and standard deviation - SD) for organic matter

(OM), sand, silt, clay contents and bulk density (BD), for the PTF development (N = 673) and validation

subsets (N = 113)

Figure 5. Box-plots of water content at specific pressure heads for the development and validation subsets.

Bar minimum and maximum represent the smallest and largest observation respectively, box minimum

and maximum represent the lower and upper water content sample quartile, respectively, and the dot

represents the median value.
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7). In this table, these RMSEs are shown together
with the RMSE from the original fitted VG models.
While the original and the VGPTF-4v models show, by

construction, no error for estimating water content
at h = 0 corresponding to θs (θs was assumed to be
equal to the value for h = 0 calculated from bulk
density), for VGPTF-2v predictions, the error was
highest  at saturation. From 0.6 to 150 m, RMSE
values decreased for both VGPTF models, and were
generally around two to three times higher than those
from the original curves. The range of the RMSE for
VGPTF-4v was 0.02 - 0.046 m3 m-3 and 0.029 - 0.051 m3

m-3 for VGPTF-2v, similar to the range found by
Tomasella (2000) for tropical soils. Tomassela &
Hodnett (1998) reported a range of 0.04 - 0.06 m3 m-3

when using texture information alone. Reference
values for errors in water content estimation for
several parts of the world were reported by Pachepsky
& Rawls, (2004) and Wösten et al. (2001), showing
errors between 0.02 and 0.11 m3 m-3.

Correlations between observed water contents and
predicted water content by the VG models fitted to
the original data and by the retention curves estimated
by PTF-4v or PTF-2v are graphically represented in
figure 6 (external validation) and figure 7 (internal

Subset log(ααααα) n θθθθθ r θθθθθs

α in m-1 (-) m3 m-3

Development Mean 0.523 1.716 0.113 0.380

Maximum 1.816 2.458 0.324 0.563

Minimum -0.725 1.280 0.015 0.274

SD(1) 0.350 0.193 0.053 0.050

Validation Mean 0.574 1.653 0.115 0.372

Maximum 1.495 2.166 0.246 0.567

Minimum -0.110 1.302 0.023 0.285

SD 0.382 0.198 0.052 0.051

Table 3. Descriptive statistics for estimates of

equation 2 parameters a, n, qr and qs of the fitted

original van Genuchten model for the PTF

development (N = 673) and validation subsets

(N = 113)

SD: standard deviation.

Regression model parameter Refers to
van Genuchten parameter (PTF response variable)

I = 1 I = 2 I = 3

log(ααααα), m-1 (n) (θθθθθr)

General PTF βi,0 intercept 2.8118 1.5662 0.0858

βi,1 sand content 0.8861 0.3292 -0.1671

βi,2 clay content -1.1907 -0.4135 0.3516

βi,3 OM content 0 -5.5341 1.1846

βi,4 bulk density -0.0015140 0 0.0000290

Soil-specific PTF

Ultisols βi,0 intercept 3.0739 1.2928 0.0644

βi,1 sand content 1.1474 0.6770 -0.1632

βi,2 clay content -0.8766 0 0.3283

βi,3 OM content 0 -10.6304 0

βi,4 bulk density -0.0017960 0 0.000046497

Oxisols βi,0 intercept 2.6691 2.6394 0.0783

βi,1 sand content 1.8309 -0.6655 -0.1892

βi,2 clay content 0 -2.0951 0.2716

βi,3 OM content 16.14177 -9.21339 1.164808

βi,4 bulk density -0.0020035 0 0.000053056

Entisols βi,0 intercept 4.6653 0.4604 0.0283

βi,1 sand content -1.6290 1.4886 -0.1020

βi,2 clay content -5.4629 1.4886 0.5265

βi,3 OM content -14.3409 0 1.247318

βi,4 bulk density -0.0011875 0 0.000020888

Alfisols βi,0 intercept 0.9107 1.8741 0.1768

βi,1 sand content 2.0321 0 -0.2276

βi,2 clay content 0 -1.0329 0.4761

βi,3 OM content 0 0 0

βi,4 bulk density -0.00107199 0 0

Table 4. Estimates of linear multiple regression parameters for general PTF-4v as well as for soil-class-

specific PTF-4v, obtained from the development subset (N = 673)

OM (organic matter), sand and clay contents in kg kg-1; bulk density in kg m-3.
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vG parameter

PTF-4v PTF-2v

r d(1) r d r d r d

internal external internal external

General
log α (i=1) 0.66 0.77 0.69 0.78 0.40 0.71 0.37 0.45
n (i=2) 0.40 0.52 0.49 0.55 0.38 0.50 0.47 0.52
θr (i=3) 0.94 0.97 0.89 0.94 0.93 0.96 0.89 0.94
θs (i=4) - - - - 0.47 0.59 0.39 0.54

Ultisols
log α (i=1) 0.71 0.80 0.55 0.72 0.34 0.46 0.32 0.46
n (i=2) 0.46 0.53 0.61 0.62 0.41 0.52 0.61 0.62
θr (i=3) 0.95 0.97 0.96 0.98 0.94 0.97 0.96 0.97
θs (i=4) - - - - 0.45 0.59 0.69 0.71

Oxisols
log α (i=1) 0.74 0.84 0.83 0.87 0.41 0.54 0.49 0.47
n (i=2) 0.42 0.55 0.46 0.53 0.41 0.53 0.46 0.53
θr (i=3) 0.94 0.97 0.95 0.97 0.94 0.97 0.94 0.97
θs (i=4) - - - 0.56 0.68 0.32 0.53

Entisols
log α (i=1) 0.60 0.72 0.57 0.65 0.32 0.42 0.30 0.26
n (i=2) 0.55 0.67 0.66 0.71 0.55 0.67 0.66 0.71
θr (i=3) 0.82 0.96 0.86 0.93 0.80 0.95 0.79 0.88
θs (i=4) - - - 0.32 0.38 0.32 0.37

Alfisols
log α (i=1) 0.66 0.78 0.58 0.61 0.50 0.62 0.54 0.52
n (i=2) 0.36 0.51 0.31 0.49 0.36 0.51 0.31 0.49
θr (i=3) 0.90 0.95 0.83 0.86 0.90 0.93 0.83 0.86

θs (i=4) - - - - 0.62 0.74 0.84 0.70

Table 6. Statistical performance (correlation coefficient, r and index of agreement, d  for general PTFs as

well as for soil-class-specific PTFs for each VG parameter (internal validation: development subset,

N = 673; external validation: validation subset, N = 113)

(1) Willmott (1982).

Regression model parameter
van Genuchten parameter (PTF response variable)

i = 1 i = 2 i = 3 i = 4

log(ααααα), m-1 (n)  (θθθθθr)  (θθθθθs)

General PTF βi,0 (intercept) 0.9267 1.5299 0.1286 0.5526

βi,1 (sand content)(1) 0 0.3265 -0.1484 -0.2320

βi,2 (clay content) -1.5958 -0.3957 0.3571 -0.1178

Soil-specific PTF

Ultisols βi,0 (intercept) 0.0344 1.3047 0.1419 0.3106

βi,1 (sand content) 0.8187 0.5528 -0.1537 0

βi,2 (clay content) 0 0 0.3078 0.2723

Oxisols βi,0 (intercept) -0.1451 2.6262 0.1594 0.4804

βi,1 (sand content) 1.0508 -0.7463 -0.1584 -0.1748

βi,2 (clay content) 0 -2.0688 0.2594 0

Entisols βi,0 (intercept) 2.4415 0.4604 0.0747 0.3305

βi,1 (sand content) -1.5168 1.4886 -0.1137 0

βi,2 (clay content) -4.6631 1.4886 0.5552 0.4592

Alfisols βi,0 (intercept) -0.3196 1.8741 0.1768 0.5750

βi,1 (sand content) 1.2254 0 -0.2276 -0.2790

βi,2 (clay content) 0 -1.0329 0.4761 0

Table 5. Estimates of linear multiple regression parameters for general PTF-2v as well as for soil-class-

specific PTF-2v, obtained from the development-subset (N = 673)

(1) Sand and clay contents in kg kg-1.
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Table 7. Root mean square error (RMSE) of different prediction approaches for water content at specific

pressure head values: original van Genuchten (VG) models and VG models derived from parameters

estimated by PTFs (VGPTF-4v and VGPTF-2v, N = 673)

Pressure head RMSE - Original VG RMSE - VGPTF-4v RMSE - VGPTF-2v

m m3 m-3

0 0 0 0.051

-0.6 0.014 0.046 0.050

-1 0.017 0.031 0.038

-3 0.009 0.027 0.034

-150 0.008 0.020 0.029

Mean RMSE 0.012 0.031 0.040

Figure 6. Observed water contents (m3 m-3) at four specific pressure heads versus respective water contents

predicted by the original fitted van Genuchten (VG) model (Equation 2) (left column), with VG

parameters predicted by PTF-4v (middle column) and by PTF-2v (right column) for the development

subset (internal validation).
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Figure 7. Observed water contents (m3 m-3) at five specific pressure heads versus respective water contents

predicted by the original fitted van Genuchten (VG) model (Equation 2) (left column), with VG

parameters predicted by PTF-4v (middle column) and by PTF-2v (right column) for the validation

subset (external validation).
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validation). Similarly to table 7, the correspondence
between PTF predictions and observed values was
reasonably good, except for θs estimated by VGPTF-2v.

Based on model quality summary measures (Table
6), it was observed that the predictive capacity for
water contents at specific pressure heads (r-values
from figures 6 and 7), with the exception of θs
estimated by PTF-2v, was much better than VG
parameter prediction. This is important for the
interpretation of the overall results of PTF
development: although the predictive capacity for
fitting parameters may seem low, water contents
calculated using these parameters agree fairly well
with observed water contents, encouraging the use of
PTF-derived water retention models for soil water
prediction. Generally, PTFs for specific pressure heads
(h) lead to better results than PTFs based on
estimation of parameters of water retention curves
(Pachepsky & Rawls, 2004). Tomasella et al. (2008)
suggested that, even when fitting PTFs for retention
parameters, the water content should be estimated
for specific h and those estimates used to obtain water
retention curves via interpolation methods to reduce
uncertainty.

CONCLUSIONS

1. The PTF prediction of retention curve
parameters is generally relatively poor, with best
estimates for the residual water content.

2. Including organic matter content as a PTF
predictor improves predictions of the van Genuchten
a parameter.

3. The performance of soil-class-specific PTFs is
not clearly better than that of the general PTF.

4. Except for the saturated water content
estimated by grain size distribution alone, the model
performance for water content prediction at specific
pressure heads was good, with r values of 0.89 – 0.94,
versus r of 0.94 – 1 for the original water retention
model.

5. Predictions of water content for pressure heads
more negative than -0.6 m using a PTF based on grain
size distribution alone are only slightly inferior to those
obtained by PTFs including bulk density and organic
matter content.
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