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USING NUMERICAL CLASSIFICATION OF PROFILES BASED

ON VIS-NIR SPECTRA TO DISTINGUISH SOILS FROM THE

PIRACICABA REGION, BRAZIL(1)

Rodnei Rizzo(2), José A. M. Demattê(3) & Fabrício da Silva Terra(4)

SUMMARY

Considering that information from soil reflectance spectra is underutilized in

soil classification, this paper aimed to evaluate the relationship of soil physical,

chemical properties and their spectra, to identify spectral patterns for soil classes,

evaluate the use of numerical classification of profiles combined with spectral

data for soil classification. We studied 20 soil profiles from the municipality of

Piracicaba, State of São Paulo, Brazil, which were morphologically described and

classified up to the 3rd category level of the Brazilian Soil Classification System

(SiBCS). Subsequently, soil samples were collected from pedogenetic horizons

and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra

were measured, followed by principal component analysis. Pearson’s linear

correlation coefficients were determined among the four principal components

and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base

saturation, and Al saturation. We also carried out interpretation of the first three

principal components and their relationships with soil classes defined by SiBCS.

In addition, numerical classification of the profiles based on the OSACA algorithm

was performed using spectral data as a basis. We determined the Normalized

Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients

represent the similarity between the numerical classification and the soil classes

from SiBCS. Pearson’s correlation coefficients were significant for the principal

components when compared to sand, clay, Al content and soil color. Visual analysis

of the principal component scores showed differences in the spectral behavior of

the soil classes, mainly among Argissolos and the others soils. The NMI and U

similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good

similarity between the numerical and SiBCS classes. For example, numerical
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classification correctly distinguished Argissolos from Latossolos and Nitossolos.

However, this mathematical technique was not able to distinguish Latossolos from

Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from

other soil classes. The numerical technique proved to be effective and applicable

to the soil classification process.

Index terms: soil reflectance, soil classification, principal component analysis,

OSACA algorithm.

RESUMO: CLASSIFICAÇÃO NUMÉRICA DE PERFIS COM BASE EM
ESPECTROS VIS-NIR PARA DISTINÇÃO DE SOLOS DA REGIÃO
DE PIRACICABA, SP

Atualmente, o espectro de reflectância do solo é uma informação subutilizada em processos
de classificação. Sendo assim, os objetivos deste trabalho foram avaliar as relações entre os
espectros de solos e seus atributos físicos e químicos, identificar padrões espectrais para cada
classe de solo e por fim analisar o uso da classificação numérica de perfis, conciliada a dados
espectrais, na distinção de solos. Para tanto, foram estudados 20 perfis da região de Piracicaba,
SP, sendo descritos morfologicamente e classificados até o 3º nível categórico do SiBCS.
Amostras foram coletadas dos horizontes pedogenéticos e foram submetidas às análises
granulométrica e química. Posteriormente, o comportamento espectral de cada solo foi obtido
e submetido à análise por componentes principais. Os escores dos componentes principais
foram utilizados em análise de correlação linear com pH, matéria orgânica, P, K, Ca, Mg, Al,
CTC, V% e m%. Além da interpretação dos três primeiros componentes principais, foram
estabelecidas relações desses com as classes de solo definidas pelo SiBCS. Ainda, a classificação
numérica dos perfis foi procedida a partir do algoritmo OSACA, utilizando os dados espectrais
como base. A relação entre a classificação do SiBCS e a classificação numérica, foi determinada
pelo índice de Informação Mútua Normalizada (IMN) e o Coeficiente de Incerteza (U). Foram
encontradas correlações significativas entre os escores dos componentes principais e a areia
(0,78), a argila (-0,74), a cor do solo e o teor de Al (0,73). A representação gráfica dos componentes
principais e sua interpretação visual indicou diferenças no comportamento espectral das classes
de solo, principalmente entre os Argissolos e as demais classes. Já a classificação numérica dos
perfis, com base nos espectros dos solos, obteve valores para os índices de informação mútua
normalizada e coeficiente de incerteza de 0,74 e 0,64, respectivamente. Esses valores indicam
que a classificação numérica possui boa relação com a estabelecida pelo SiBCS, sendo capaz,
por exemplo, de distinguir Argissolos de classes como Latossolos e Nitossolos. Além disso,
observou-se que tal técnica não é capaz de diferenciar Latossolos e Nitossolos Vermelho férricos;
no entanto, Cambissolos foram agrupados corretamente. A técnica evidenciou-se eficiente,
demonstrando sua aplicabilidade em processos de classificação de solo.

Termos de indexação: comportamento espectral do solo, classificação de solo, análise por
componentes principais, algoritmo OSACA.

INTRODUCTION

Agriculture is considered one of the foundations of
the Brazilian economy, providing employment and
increasing foreign exchange reserves. However, in
recent decades, authorities and even increasing
community awareness have required production
increases based on sustainable practices. Therefore,
implementation of proper management procedures
and prior knowledge of the agricultural environment
become essential.

Soil is one of the most important constituents of
the environment. It is not only a support for plants
but also supplies water and nutrients. Thus,
knowing the soil properties and their spatial

variability is essential for implementation of any
management technique (Bhatti et al., 1991). Soil
maps are one of the most used sources of information
for evaluating soil spatial variability and, when
available at an appropriate scale, they allow the
user to identify physical, chemical and
morphological properties. Therefore, these maps aid
in the decision-making process for agricultural
planning, e.g., indicating sites with periodic flooding
or variations in soil depth.

According to Mendonça-Santos & Santos (2006),
approximately 35 % of Brazilian territory, which
represents 17 of 26 States, has soil maps in
intermediate scales (1:100,000 - 1:600,000). However,
soil maps covering the whole of national territory are
found only in the exploratory and schematic scales.
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These are called organizational maps and were mainly
developed by the Brazilian Agricultural Research
Organization (Embrapa) and the Agronomic Institute
of Campinas (IAC). They are usually offered free of
charge and made available in digital databases.
Currently, to respond to the demand for more detailed
maps, several private agricultural enterprises have
hired professionals to develop these maps. However,
this information is not available in the public domain.
In addition, there is a lack of interest from
governmental institutions in producing detailed maps,
due to the complexity, cost, and. especially, time
requirements (Ben-Dor et al., 2008).

According to Brown et al. (2006), the cost for
conventional soil characterization, calculated by the
U.S. National Soil Survey Center, is about US$2,500
per pedon and requires 6-12 months to be
accomplished. Giasson et al. (2006) estimated a cost
of approximately US$ 2.21 ha-1 (scale of 1:50,000) and
US$ 0.817 ha-1 (scale of 1:100,000) for mapping the
soil in two municipalities in the state of Rio Grande
do Sul, Brazil. To improve the mapping process,
researchers have developed equipment to provide soil
information in real time at lower costs (Viscarra Rossel
et al., 2009). Since the 1980s, numerous initiatives
have evaluated the potential of spectra in obtaining
quantitative soil data and, in many cases, the results
were promising (Rivero et al., 2007; Ben-Dor et al.,
2008; Viscarra Rossel et al., 2009). Several researchers
(Moran et al., 1997; Ben-Dor et al., 1999) have
recommended the development of methods using
optical sensors, which may lend support to both
laboratory processes and routine fieldwork. Some
studies attempted to use the spectrum through visual
interpretation to describe the soil class (Ben-Dor et
al., 2008; Bellinaso et al., 2010). However, this process
requires knowledge of spectral patterns for each soil
class, as well as good references for comparisons
(complete spectral libraries), a condition that is not
always possible.

In this regard, numerical classification of profiles
could be useful as a technique to support soil
classification based on spectral data. According to
Campbell et al. (1970), numerical classification of
profiles allows application of a numerical procedure
to determinate similarity between soil profiles and
subsequently identify the most representative groups
for the dataset. Various methods are described in the
literature, suggesting the relevance of this technique
and its applicability (Rayner, 1966; King & Girard,
1988; Carré & McBratney, 2005). More recently, Carré
& Jacobson (2009) proposed a method of numerical
classification of soil profiles called the Outil Statistique
d’Aide à la Cartogénèse Automatique (OSACA). To
date, all studies carried out have considered soil
quantitative information obtained from laboratory
analyses or qualitative properties obtained from field
observations. However, no study has been carried out
taking into account soil spectral behaviors as input
data for numerical classification.

Thus, this study tested numerical classification
using only Vis-NIR spectra as input data to distinguish
soil profiles, assessing the potential and limitations
of this information to classify soils. In addition, we
aimed to assess the correlations among principal
component scores of soil spectra and soil properties,
and conduct visual evaluation of soil profile spectral
patterns and their relationship to soil classes in the
Brazilian Soil Classification System (SiBCS).

MATERIAL AND METHODS

Study area and data sampling

The area of study is located between latitudes
22o 42’ 49" and 23o 0’ 15" S, and longitudes 47º 57’ 3"
and 47º 30’ 15" W, corresponding to the municipality
of Piracicaba, São Paulo, Brazil. Soil samples from
20 profiles, previously collected and studied by
Bellinaso (2009), were used in the analyses. The soil
profiles were described and sampled according to
Santos et al. (2005). The samples were analyzed for
soil particle size using a densimeter with
hexametaphosphate as a dispersing agent (Camargo
et al., 1986). The resin method was used to determine
pH (in H2O and KCl), organic matter content (OM),
and P exchangeable, K, Ca, Mg, and Al content. Cation
exchange capacity (CEC), bases and Al saturation were
calculated (Raij et al., 2001). The soil profiles were
classified up to the 3rd category level according to
Embrapa (2013) based on the chemical and soil particle
size data, as well as soil morphological description
and field observations. The profiles were also classified
according to World Reference Base for soil Resources
(WRB) (IUSS Working Group WRB, 2007) and are
presented along with the Brazilian classification. In
this work, the profiles classified as Latossolos (LV and
LVA) (SiBCS) corresponded to Ferrasols (WRB), the
Argissolos (PA, PVA, PV) are related to the Acrisols,
Nitossolos (NV) with the Nitisols and Cambissolos (CX)
are related to Cambisols and Alisols.

Soil color was determined using a Minolta CR-300
colorimeter adjusted for the Munsell color system
(Campos et al., 2003). The values were then converted
to the RGB color system by the COLOSOL software
to use the color as a numerical variable in statistical
analysis (Viscarra Rossel et al., 2006a).

After that, the spectra of soil samples were obtained
using the FieldSpec Pro spectrometer (Analytical
Spectral Devices, Boulder, Colo.), which has spectral
resolution of 1 nm and performs readings in
wavelengths in the spectral range from 350 to 2500
nm. Geometric acquisition of the spectral data was
based on perpendicular positioning of the sensor to
the sample separated by 27 cm. The lighting was
positioned at 61 cm from the sample, forming a zenith
angle of 20°. The absolute reference standard was a
white spectralon plate. To cover the soil surface
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analyzed, the samples were measured in triplicate, and
then an average of these three readings was obtained.

Principal Component Analysis of spectra

Due to multicollinearity in high spectral resolution
data (Chang et al., 2001) and the long time requirement
for computational processing, transformation of
spectra has been necessary. We used Principal
Component Analysis (PCA) (Wold, 1982) carried out
with the Parles 3.1 software (Viscarra-Rossel, 2008)
to summarize the soil spectral data. This software
determines the principal components (PCs), which are
given by the linear combination of the variables X1,
X2, ..., Xj (in this case, the spectral wavelengths):

PCi = ai1X1 + ai2X2 +    + aijXj

in which aij corresponds to the load of the variable j in
the calculation of the principal component i.

The Principal Component (PC) is calculated to
represent the greatest possible variance in the dataset
respecting the restriction applied to the load
calculations:

1a...aa 2
ij

2
2i

2
1i =+++

The process is repeated until the total of the
principal components calculated is equal to the original
number of variables or reaches a pre-established
number of components. At the end of the analysis,
the PCA provides the eigenvectors, eigenvalues and
the principal component scores. The elements of an
eigenvector are the loads aij described above, also
known as loadings (Viscarra-Rossel, 2008). In this
case, a set of loadings is associated with each principal
component and each loading is associated with an
original variable.

The loading value indicates the contribution of
each variable, in this case, the reflectance of each
spectral wavelength for each principal component. This
information is interpreted by observing the proximity
of the loading values in relation to value 0, i.e., the closer
the loading value is to 0, the lower the contribution.
Similarly, the more positive or more negative the loading
value is, the greater the contribution of the variable to
the principal component.

The eigenvalues represent the variance explained
by each principal component, which decrease from
the first to the last principal component, generally
expressed in percentage. Finally, the scores are one
of the most important pieces of data, allowing the
construction of ordination diagrams of samples (scatter
plots). Visual analysis of these scatter plots allows
the similarity between samples to be identified or even
outliers to be located.

Numerical classification of profiles

To perform numerical classification of the soil
profiles, the first four PCs were considered as variables,
explaining more than 98 % of the data variability.

The OSACA algorithm (Carré & Jacobson, 2009) was
used for numerical classification. This algorithm aims
to classify the soil profiles using k-means clustering
(Diday, 1971) by comparing soil characteristics, taking
the position of their respective horizons into account.
First, the comparison of profiles is performed two by
two, i.e., it compares profile “A” and “B”, then “A” and
“C”, and so forth. In these comparisons, the 1st horizon
in profile “A” is compared to the 1st horizon in profile
“B”, the 2nd horizon in “A” with the 2nd horizon in “B”,
and so forth (Figure 1). The values of these
comparisons are given by distance metrics, in this
case, the Euclidean distance (Gauch, 1982). The
average Euclidean distance between each two profiles,
called pedological distance (Dped), is added to the k-
means cluster algorithm to classify the profiles. The
pedological distance is described as follows:

b
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in which Sa and Sb are profiles A and B; hi,j is horizon
j of profile i; Dh (ha,j, hb,j) is the Euclidian distance
between the j horizons of profiles A and B; Ma and Mb
is the number of horizons of profile A and B,
considering that profile B has a higher number of
horizons.

Comparison between numerical and SiBCS
classifications

The Brazilian Soil Classification System is used
to cluster soil profiles with similar properties and
provides important information for soil management
and conservation procedures. Therefore, we checked
for agreement between the OSACA and SiBCS
classifications. Considering that SiBCS takes the
diagnostic horizons into account, while the numerical
method uses the pedogenetic horizons, we do not aim
to validate the numerical method, but rather observe,
from an established system, whether the groups
generated by OSACA are consistent. In this case, soil
classes up to the 3rd categorical level, as well as
information on soil texture and chemistry, were used
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Observed soil pro!le s1
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4 layers of horizon comparisons
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Figure 1. Illustration indicating the profile comparison

method. Source: Carré & Jacobson (2009).
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as a basis for comparison. Although the SiBCS
classification does not take directly this information
into account, it is important in soil management and
conservation procedures. In addition, it is generally
indicated next to the soil classes in maps.

The agreement between the SiBCS and the
numerical classification was determined by the
Normalized Mutual Information (NMI) and the
Uncertainty Coefficient (U) indices. The NMI is used
to describe the degree of dependence between original
classes and numerical groups (Santos, 2009). In other
words, this index is a measure of the disagreement
between the groups obtained and the classes indicated
(Liu & Navath, 2006). Therefore, random groups
would have mutual information worth zero, while
high values of this measurement would indicate high
similarity. One of the possible formulations for NMI
is defined as (Shi & Ghosh, 2003):
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in which Pi represents one of the g groups; Lj is one of
the l classes; Tij is the element of the contingence
matrix that represents the number of profiles
attributed to the Pi group, which are also members of
Lj class; and n is the total number of profiles. In this
case, the NMI value ranges from 0 to 1, and the higher
this value, the greater the relationship between the
original classes and the groups.

The U indicates if the variation of reference
classification can be explained by the groups generated.
Among the positive aspects of this coefficient, it does
not penalize the algorithm if it generates groups that
subdivide a class. Thus, if profiles belonging to a
specific SiBCS class are subdivided into two groups,
the U considers the division correct, without penalizing
U. The index is defined as (Shannon & Weaver, 1963):

( ) ( ) ( )
( )IH

J|IHIH
J|IU

-
=

in which H(I) corresponds to the entropy of distributions
and reference classification; and H(I|J) refers to the
value of the conditional entropy. By applying the index,
we obtain a value between 0 and 1, where higher values
suggest more associated classes and groups.

RESULTS AND DISCUSSION

Soil profiles

The profiles were placed in different landscape
positions, with elevation ranging from 438 to 781 m

(Figure 2). Those located on the east side of the study
area in the highest places are derived from basaltic
rocks. These soils showed high clay and iron oxide
contents and, in some cases, high base saturation.
An example was the profile P52 (Table 1) which
corresponded to a Latossolo Vermelho (LV) férrico with
a heavy clay texture. There were also soil profiles
classified as Nitossolo Vermelho (NV), with clay or
heavy clay texture and, in some cases, high iron oxide
content (18 % < ferric < 36 %). The profiles located in
the hillside areas with intermediate elevation (Figure
2) correspond to Argissolo Vermelho and Argissolo
Vermelho-Amarelo, with texture ranging from clay
to loam. These soils were derived from claystones and
siltstones of the Corumbataí and Iratí formations
(Mezzalira, 1966) and are represented by profiles P26
and P54 (Table 1).

The profiles in the central and western areas
corresponded to the loam textured soils, with color
ranging from Yellow-Red to Yellow. Profiles placed in
flat areas were related mostly to Latossolos, while those
allocated to gentle sloping areas corresponded to
Argissolos. Soils in steeper slopes at lower altitudes
(Figure 2) were classified as Cambissolo Háplico. The
parental materials of these soils are claystones and
sandstones from the same geological formations
described above (Mezzalira, 1966). The representative
profiles of these soils were identified as P32, P37, P40
and P49, which are shown in table 1.

Relationship between soil spectral data and
physico-chemical properties

The relationship between soil properties and
spectral data were evaluated based on Pearson
correlation analysis (Table 2). In this analysis, soil
properties determined in the laboratory were compared
to the PCA scores of the spectral data. In addition,
the PCA loadings were plotted and observed to indicate
which spectral range affected each PC score (Figure
3). By evaluating the PC1 loadings (Figure 3a), we
observed that the scores were affected by the entire
spectral reflectance intensity (albedo) along the
wavelengths after 600 nm. Thus, variability in the
PC1 was related to the spectral albedo, corroborating
results found by Galvão et al. (2001) and Bellinaso et
al. (2010). The correlation between clay content and
PC1 scores showed a value of -0.74 (Table 2).
Considering that PC1 was related to spectral intensity,
this result is in accordance with those obtained by
Bowers & Hanks (1965), Stoner (1979) and Demattê
et al. (2004), which indicated that variations in soil
particle sizes caused changes in the reflectance of the
soil spectral behavior. Sand contents are also related
to PC1, showing a correlation of 0.78 (Table 2). In
this case, reduction in the clay content of the soil
samples leads to a proportional increase in the
percentage of other fractions, e.g., sand.

The loadings showed that PC2 scores were
primarily related to 350-600 nm (Figure 3b).
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Reflectance variations in the visible region (400-700
nm) results from the presence of Fe oxides (Demattê
& Garcia, 1999) which are directly related to
variations in soil color (Fernandes et al., 2004; Chicatti,
2011). This is in agreement with the results observed
in table 2, where the color represented by the values
of R, G and B showed significant correlations with
PC2 of 0.78 (G) and 0.71 (B). In addition to soil color,
we also observed a significant correlation between
exchangeable Al and PC2 (r value of 0.73). According
to Stenberg et al. (2010), cations in the soil do not
have a direct relationship to the spectrum in the visible
and near infrared range. According to them, there is
no specific spectral feature in the Vis-NIR for elements
retained in CEC. Moreover, the authors attribute the
good results in some studies (Chang et al., 2001;
Groenigen et al., 2003; Pereira et al., 2004; Nanni &
Demattê, 2006) to the existence of local covariation
between spectrally active soil properties and the
cations evaluated. In our study, soil color is considered
a spectrally active property, which showed significant
correlation between the Al3+ and R, G and B values of
0.74, 0.82 and 0.80, respectively (Table 2). Therefore,
there was an indirect relationship between oxides and
Al contents.

The most important wavelengths related to the
PC3 (Figure 3c) were around 1,400; 1,900 and 2,200
nm. The features in 1,400 and 1,900 nm are related
to molecular vibration of the hydroxyl group (OH) in
hygroscopic water and 2:1 clay mineral structures
(Lindberg & Snyder, 1972). In contrast, variations in
2200 nm are attributed to kaolinite (Goetz et al.,
2009). Other ranges that had less influence on PC3
scores were from 350 to 600 nm and 850 to 1,100 nm,
both related to the presence of hematite and goethite
in soil samples (Leone & Sommer, 2000). The
significant correlation between PC3 and R and G
values, 0.79 and 0.77, respectively (Table 2),
supported the statement that variations in PC3 were
related to Fe oxides and hydroxides and, consequently,
soil color. According to Viscarra Rossel et al. (2006b),
this spectral range is also affected by OM, although
in our study there was no significant correlation
between the scores and that property. The lack of

correlation between OM contents and reflectance data
(Table 2) is in disagreement with several studies.
Viscarra Rossel et al. (2010) evaluated the correlation
between spectral PCs and OM in the municipality of
Rafard, São Paulo, Brazil, and found significant values
for PC3. Karmanov (1968) suggested that the
interactions between OM and soil spectral properties
are due to the accumulation of humic substances,
which produced reduction of soil spectral reflectance.

The PC4 was affected mainly by the 550-700 nm
and 850-1,400 nm bands (Figure 3d), which were
related to the presence of Fe oxides and hydroxides in
the soil. Given that PC4 showed significant correlation
to sand (r = 0.66) and clay (r = -0.59) contents (Table
2), the iron oxides in the clay fraction were probably
responsible for the correlation between this property
and PC4.

Spectral analysis of soil classes based on
PCA

The determination of dissimilarity of soil classes,
based on spectral reflectance, should be performed
considering the qualitative analysis of both spectra
from the surface horizon (HA) and the diagnostic
subsurface horizons (HB). Despite good results
(Demattê et al., 2004; Ben-Dor et al., 2008), this
method requires knowledge of soil spectra and their
characteristic properties for each soil class, which has
not been established yet. Therefore, we evaluated the
differences in spectral behavior of soil classes based
on the scatter plots of the PCA scores (Figure 4), which
was more easily interpreted. In this case, we considered
the surface and subsurface diagnostic horizons.

Knowing the relationship between soil properties
and the reflectance spectrum, it is possible to draw
inferences about clay content, color and mineralogy
from visual interpretation analysis. In addition,
assessment of soil profile spectra and surface and
subsurface horizons, allows identification of the degree
of weathering and environmental conditions to which
soils have been subjected (Demattê et al., 2004).

In this context, the scatter plots of the scores from
Argissolo profiles (Figure 4 a,b,c) showed distinct
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Figure 2. Profile location and landscape elevation in the survey area.
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values for HA in relation to HB. By analyzing these
graphs, we observed that the values are greater in
samples from horizon A for PC1 and PC2. This
difference was more pronounced in Figure 4c, where
the plot represented the values of PC2 and PC3. In
this case, samples from HA of Argissolos were at the
top left of the figure, while the samples from HB were
found at the bottom right (Figure 4c). The PCA
loadings (Figure 3) showed that the second component
was related to the spectral range from 350 to 600 nm
and, therefore, Fe oxides (Demattê & Garcia, 1999).
Thus, the sample distribution on that scatter plot
indicated variation in Fe oxide contents between the
subsurface horizons and their respective surface
horizons. This is in agreement with Lespch et al.
(1977), who evaluated soils in a toposequence in the
western plateau of São Paulo, Brazil, and found that
Argissolos had a significant variation of Fe2O3 at depth.
According to the authors, this characteristic is related
to iron accumulation in the subsurface horizons
caused by clay degradation in the HA of the profiles.
The PC3 scores (Figure 4c) were higher in samples
from HB than HA, which were influenced by the
features in 1,400, 1,900 and 2200 nm, as evidenced in
the loadings, indicating the presence of 1:1 and 2:1
clay minerals (Lindberg & Snyder, 1972), and therefore
variation in the clay content at increasing depth in
the profile.

The three profiles of Cambissolos showed spectra
with distinct patterns with high values for PC1, PC2
and PC3 (Figure 4d,e,f). For that reason, these profiles

had a distinct position in the PC graph when compared
to the soils of other classes (Figure 4). These soils
presented a lower degree of weathering and tended to
have higher contents of 1:1 and 2:1 clay minerals,
which were identified in the spectra and produced
higher PC3 values. The loam texture soils with
predominantly yellowish color (Table 1) generated
greater values of PC1 and PC2. This was confirmed
by the significant correlation between clay content
and PC1, as well as between soil color and PC2 (Table
2). Moreover, by Figure 4e and 4f, we observed that
surface and subsurface horizons may be distinguished
from the more intense degree of weathering in the
soil surface layer, which led to variations in soil
properties, such as clay type and content, as well as
the presence of Fe oxides (Lepsch et al., 1977). In spite
of a visible spectral distinction between HA and HB,
it was not as pronounced as in Argissolos, thus
excluding the possibility of a mistake between these
soil classes when assessed only for their spectral
reflectance.

In regard to the Latossolos and Nitossolos, the PC
scores of both soil classes showed similar spectral
patterns, in which both PC1 and PC3 showed medium
values, while the PC2 values were generally lower
(Figure 4g,h,i,j,k,l). In addition, the samples from HA
and HB did not show significant differences in regard
to the scores. That similarity indicated homogeneity
in the characteristics of samples at different depths,
which is characteristic for these two soil classes.
Through the scatter plots, we observed close
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positioning of these soil samples at the left (Figure 4
g, j) or closer to the origin of the graph (Figure
4h,i,k,l). Thus, these characteristics did not allow
these soil classes to be distinguished from one another.
However, that aspect could be differentiated from other
soils evaluated in this study. Bellinaso et al. (2010)
evaluated the spectra of 233 soil profiles from
southeastern and Midwestern Brazil and found that
Latossolos and Nitossolos had a similar spectral
behavior. The author also indicated that the
differentiation between these soils should be carried
out through the presence of gibbsite in Latossolos,
which provides a typical and more pronounced spectral

feature in 2,265 nm. The evidence of this mineral is
due to a more advanced weathering process in LVs,
providing a higher content of Fe and Al oxides and a
greater loss of SiO2 (Boul et al., 1997). Thus, we were
able to confirm that the incapability of distinguish
ing LVs and NVs was, in part, related to the fact that
the PCA was not able to represent spectral variations
at 2265 nm as suggested by the loadings (Figure 3).
In this case, it is necessary to observe the spectral
behavior of these soil classes to distinguish them.
However, even in studies with more detailed
information, there is still great confusion between LVs
and NVs (Cezar et al., 2013).

Figure 4. Graphs representing the principal components 1, 2 and 3 of the spectra from the profiles of

Argissolos, Cambissolos, Latossolos and Nitossolos in the surface (lllll) and subsurface (nnnnn) layers.
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Numerical classification of soil profiles
based on soil spectra

Based on numerical classification, seven groups
were identified within the dataset evaluated (Table
3). The method is an unsupervised classification, i.e.,
no previous rules or conditions were established for
the OSACA algorithm. The clustering of soil profiles
was conducted based only on spectral behavior, taking
into account their horizons. This method was used to
investigate if the spectra are able to distinguish
different soil clusters by themselves. In general, the
comparison between the soil groups obtained from the
numerical method and the soil classes from SiBCS
presented similarities (Table 4). It proved that spectra
were relevant to soil analyses and classification.

The SiBCS classification at the first categorical
level generated four soil classes. Considering the
second categorical level, this value was increased to
seven classes. Adding information regarding texture
to the suborder level, 13 different soil classes were
obtained (Table 3). By evaluating the NMI index, we
observed that the relationship between the cluster
generated by OSACA and the classes of the Brazilian
System of Soil Classification corresponded to 0.42 at
the 1st level (Table 3). When these clusters were
compared to the 2nd level + texture, this value
increased to 0.74. The NMI index increased to 0.78
when the comparison was performed with the
classification at the 2nd level plus texture and chemical
properties (Table 3). The U index presented a greater
value when considering the 2nd level + texture, with a
value of 0.64 (Table 3). By soil classification at the 2nd

level + texture + chemistry, the U index showed a
slight reduction, with a value of 0.62 (Table 3). If we
consider both indices in our analyses (NMI and U),
we found better correlations between conventional
classification and numerical clustering at the 2nd level
+ texture (Table 3).

By evaluating the differentiation carried out by
numerical classification, we observed a trend toward
grouping soil profiles with similar clay content (Figure
5a) and color (figure 5b). In general, soils with higher
clay content and red hue were allocated to group 1,
while sandy soils with yellow hue were classified in
group 7 (Figure 5). Groups 2, 3, 4 and 6, however,
ranged from loam textured to clay soils, with hues
from 5YR to 7.5YR (Figure 5b). In contrast, group 5

consisted of one profile with 10YR, which was distinct
from the others (Figure 5b). Considering that the
parameters used by OSACA were the PC scores, and
PC1 is correlated with clay and the second and third
components with soil color, we observed that this
technique was able to cluster soil profiles with
similarities in these properties.

The contingency table (Table 4) indicates the
comparison between the classes obtained in the SiBCS
and the OSACA groups. Overall, we observed that
group 1 corresponded to Latossolos Vermelhos and
Nitossolos Vermelhos. Therefore, the numerical
technique was not able to distinguish soils belonging
to these classes. In part, this was due to the fact that
distinction between these two soil classes by spectral
reflectance is carried out mainly by the absorption
feature in 2265 nm. This feature is related to gibbsite,
which is more pronounced in LVs than NVs (Bellinaso
et al., 2010). In addition, given that these soils have
high clay and iron oxide contents (Table 1) and, in
some cases, the presence of magnetite, the spectral
aspects able to distinguish these two classes might
have been masked by these properties (Formaggio et
al., 1996). Groups 2, 3 and 5 consisted of Argissolo
profiles (Table 4), in which these soil profiles were
divided into several groups, probably related to
differences in clay contents and color, as well as the
distinct variation patterns of these properties in
depth. This may be exemplified by the comparison
between groups 3 and 5 (Table 4). In this case, group
3 had one soil profile with loam texture, Yellow-Red
Munsell color, classified as Argissolo; and soil profiles
with clay texture, Yellow-Red color, classified as
Argissolo. In contrast, group 5 consisted of one profile
with clay texture, Yellow color, also classified as
Argissolo (Table 4).

Group 6 consisted of profiles classified as Latossolo
Vermelho Amarelo and Argissolo Vermelho Amarelo,
both loam-textured (Table 4). These profiles were
clustered in the same group because both were highly
weathered, with a predominance of 1:1 clay minerals
and Fe oxides. In this case, the main factor for
distinguishing both classes is the variation in
intensity of reflectance between surface and
subsurface layers due to the texture gradient in
Argissolos, as well as the feature in 2265 nm, due to
the higher concentrations of gibbsite in Latossolos

Categorical level of classification SiBCS(1) No. of classes SiBCS No. of groups OSACA NMI(2) U(3)

Order 4 7 0.42 0.33

Suborder 7 7 0.61 0.57

Suborder + texture 13 7 0.74 0.64

Suborder + texture + chemical 18 7 0.78 0.62

Table 3. Normalized Mutual Information and Uncertainty coefficient for the Brazilian Soil Classification

System (SiBCS)

(1) According to Embrapa ( 2013); (2) Normalized Mutual Information; (3) Uncertainty coefficients.



USING NUMERICAL CLASSIFICATION OF PROFILES BASED ON VIS-NIR SPECTRA TO...          383

R. Bras. Ci. Solo, 38:372-385, 2014

(Bellinaso et al., 2010). However, the texture gradient
was probably not pronounced enough to be detected
by the spectra. Finally, group 7 was associated with
soil profiles identified as Cambissolo Háplico with loam
texture (Table 4). When compared to the highly
weathered soils, such as Argissolos, Latossolos and
Nitossolos, great differences between them were
observed (Bellinaso et al., 2010). That was reinforced
in this study, where group 7 was exclusively
associated with Cambissolo profiles (Table 4).

CONCLUSIONS

1. The soil spectra do not have features directly
related to soil chemical properties, consequently no
significant correlations are expected between those two
sets of information.

2. Descriptive analysis of soil spectral data, based
on the diagnostic surface and subsurface horizons,
allows different soil classes to be distinguished. It is
observed that variations in PC scores between the
surface and subsurface horizon of Argissolos enable a
satisfactory level of distinction of this soil as compared
to other classes. In this case, graphic representation
of PC2 vs PC3 allows better discrimination of
Argissolos.
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Figure 5. Average clay content and standard deviation

for each OSACA group (a); and frequency of soil

profile hues in the different OSACA groups (b).

SiBCS classif.(1) WRB classif.
OSACA Classif.

Total
1 2 3 4 5 6 7

CX4-5 Haplic Cambisol (Alumic, Dystric) 0 0 0 0 0 0 2 2

CX4-3 Haplic Alisol (Alumic, Profondic, Arenic) 0 0 0 0 0 0 1 1

LV2-1 Haplic Ferralsol (Eutric, Clayic, Rhodic) 1 0 0 0 0 0 0 1

LV2-2 Haplic Ferralsol (Dystric, Rhodic) 1 0 0 0 0 0 0 1

LVA4-3 Haplic Ferralsol (Dystric) 0 0 0 0 0 1 0 1

LVA3-2 Haplic Ferralsol (Dystric) 0 0 0 0 0 1 0 1

LVf1-1 Haplic Ferralsol (Eutric, Clayic, Rhodic) 1 0 0 0 0 0 0 1

NVf1-1 Haplic Nitisol (Dystric, Rhodic) 1 0 0 0 0 0 0 1

NV1-3 Haplic Nitisol (Alumic, Dystric, Rhodic) 1 0 0 0 0 0 0 1

PA1-3 Haplic Acrisol (Alumic, Epieutric, Clayic) 0 0 0 0 1 0 0 1

PVA3-2 Haplic Acrisol (Epieutric) 0 0 1 0 0 0 0 1

PV3-3 Haplic Acrisol (Abruptic, Alumic, Profondic, Arenic) 0 0 0 0 0 1 0 1

PVA1-1 Haplic Acrisol (Epieutric, Clayic) 1 0 0 0 0 0 0 1

PVA2-1 Haplic Acrisol (Abruptic, Arenic) 0 0 2 0 0 0 0 2

PVA3-3 Haplic Acrisol (Alumic) 0 1 0 0 0 0 0 1

PVA4-2 Haplic Acrisol (Abruptic, Epieutric, Profondic, Arenic, Chromic) 0 1 0 0 0 0 0 1

PVA3-3 Haplic Acrisol (Alumic) 0 0 0 0 0 1 0 1

LVA4-1 Haplic Ferralsol (Eutric, Arenic) 0 0 0 1 0 0 0 1

Total 6 2 3 1 1 4 3 20

Table 4. Contingency table of SiBCS classes by OSACA groups

(1) Nomenclature according to Embrapa (2013). The first number following the soil class represents the textural class: (1) heavy
clay: > 60 %; (2) clay: > 35 % and  60 %; (3) clay loam: > 25 % and  35 %; (4) sandy loam: >15% and  25 %; and (5) sand:  15 %.
The second number represents the diagnostic chemical properties: (1) Bsat  50 %; (2) Bsat < 50 %; (3) Alsat  50 %.
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3. Latossolos and Nitossolos have similar spectra
and had PCs with great similarity in the surface and
subsurface horizons. Consequently, distinction
between those classes requires further information,
such as morphological features.

4. Spectral reflectance data associated with the
OSACA algorithm is an efficient methodology for soil
classification. The results show a consistent clustering
of soil profiles, as well as a good relationship to the
SiBCS classes.

5. The similarity between numerical classification
and the Brazilian system were higher when
considering the 2nd categorical level + texture. When
considering the 2nd categorical level + texture +
chemical properties, the similarity decreases. This is
indicative of spectral limitations in the classification
process. Therefore, in situations where some chemical
properties are required to distinguish soil classes
correctly, soil spectra might not be the best option.
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