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SUMMARY

Modeling of water movement in non-saturated soil usually requires a large

number of parameters and variables, such as initial soil water content, saturated

water content and saturated hydraulic conductivity, which can be assessed

relatively easily. Dimensional flow of water in the soil is usually modeled by a

nonlinear partial differential equation, known as the Richards equation. Since

this equation cannot be solved analytically in certain cases, one way to approach

its solution is by numerical algorithms. The success of numerical models in

describing the dynamics of water in the soil is closely related to the accuracy

with which the water-physical parameters are determined. That has been a big

challenge in the use of numerical models because these parameters are generally

difficult to determine since they present great spatial variability in the soil.

Therefore, it is necessary to develop and use methods that properly incorporate

the uncertainties inherent to water displacement in soils. In this paper, a model

based on fuzzy logic is used as an alternative to describe water flow in the vadose

zone. This fuzzy model was developed to simulate the displacement of water in a

non-vegetated crop soil during the period called the emergency phase. The

principle of this model consists of a Mamdani fuzzy rule-based system in which

the rules are based on the moisture content of adjacent soil layers. The

performances of the results modeled by the fuzzy system were evaluated by the

evolution of moisture profiles over time as compared to those obtained in the

field. The results obtained through use of the fuzzy model provided satisfactory

reproduction of soil moisture profiles.

Index terms: fuzzy rule-based model, Mamdani model, soil water dynamics.
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RESUMO: LÓGICA FUZZI APLICADA PARA MODELAR A DINÂMICA DA ÁGUA
NUM LATOSSOLO NA REGIÃO NORDESTE DO BRASIL

A modelagem do movimento da água na região não saturada do solo requer normalmente
um grande número de parâmetros e variáveis, como a umidade volumétrica inicial, a umidade
volumétrica saturada e a condutividade hidráulica saturada, que podem ser avaliadas de
forma relativamente simples. O fluxo monodimensional da água nessa mesma região do solo
é normalmente modelado por meio de uma equação diferencial parcial não linear, conhecida
como a equação de Richards. Desde que essa equação não possa ser resolvida analiticamente
em alguns casos especiais, uma maneira de aproximar sua solução é por meio de algoritmos
numéricos. O sucesso dos modelos numéricos em descrever a dinâmica da água no solo está
intimamente relacionado com a precisão com que os parâmetros físico-hídricos são
determinados. Esse tem sido o grande desafio no uso dos modelos numéricos, pois, em geral,
tais parâmetros são difíceis de determinar e apresentam grande variabilidade espacial no
solo. Portanto, fazem-se necessários o desenvolvimento e a utilização de métodos que incorporem,
de maneira apropriada, as incertezas intrínsecas ao deslocamento da água nos solos. Neste
trabalho, um modelo com base na lógica fuzzy foi usado como solução alternativa para
descrever o fluxo de água na zona não saturada do solo. Esse modelo fuzzy foi desenvolvido
para simular o deslocamento da água em um solo cultivado ainda não vegetado, durante o
período chamado fase de emergência. O princípio desse modelo consiste de um sistema com
base em regras fuzzy do tipo Mamdani, em que as regas se baseiam no teor de umidade das
camadas adjacentes do solo. O desempenho dos resultados modelados pelo sistema fuzzy
foram avaliados pela evolução dos perfis de umidade, ao longo do tempo comparado com os
obtidos em campo. Os resultados pelo uso do modelo fuzzy apresentaram uma reprodução
satisfatória dos perfis de umidade volumétrica.

Termos de indexação: regras fuzzy, modelo de Mamdani, dinâmica da água.

INTRODUCTION

Water consumption and the indiscriminate use of
chemicals (fertilizers and pesticides) have been
increasing in agricultural activities so as to meet
growing demands for food, thus contributing to the
degradation in the quality of surface water and
groundwater. Within this context of environmental
pollution, urban areas also stand out, with their
wastewater, solid waste and storm drain systems that
carry along waste from various sources and pollution
from industrial effluents, both inorganic and organic.
In the face of this problem of pollution from various
sources, it is important to develop tools to understand
integrated management of the water cycle in different
scales of time and space. This fact has drawn attention
to the importance of modeling processes that involve
the soil for better monitoring of systems and the
groundwater. One of the most important physical
processes in the soil is the movement of water through
the vadose zone, especially through the layers near
the surface (Hillel, 1998).

The success of numerical models in describing the
dynamics of soil water is closely related to the precision
with which the water-physical parameters are
determined. This has been the greatest challenge in
the use of numerical models since, according to
Bárdossy & Duckstein (1995), the modeling of soil
physical processes usually requires a large number
of variables and parameters. Because of the complexity
of these processes and the soil system, it is very

laborious to estimate many of these variables and
parameters. Therefore, it is necessary to develop and
use methods that properly incorporate the
uncertainties inherent to water displacement in soils.

Fuzzy Logic based on the fuzzy sets theory (Zadeh,
1965) is the logic that underpins modes of reasoning
which are approximate rather than exact. The concepts
of fuzzy logic can be used to translate the inaccurate
information contained in sentences expressed in
natural language (such as “slightly damp,” “very hot”,
etc.) into mathematical terms. It provides a
mathematical tool for processing information of an
imprecise or vague character (Tanscheit, 1998).

An alternative approach to numerical models based
on fuzzy logic and fuzzy sets can be expressed in a
non-probabilistic sense to assess the inaccuracies in
determination of parameters related to water transfer
and transport of solutes in soils. Due to production
capacity calculations and inferences from fuzzy
information, use of the fuzzy sets theory has been
disseminated within the soil sciences (McBratney &
Odeh, 1997). Bárdossy (1996) and Dou et al. (1999)
affirm that a model based on fuzzy rules constructed
to describe the dynamics of water and solutes in a
given region with a particular type of soil can easily
be extrapolated to describe these phenomena in other
regions with another type of soil. This extrapolation
depends only on determination of parameters which
are relatively easy to obtain, such as saturated
hydraulic conductivity, Ks, and saturated soil-water
content, θs.
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This work aims to develop a fuzzy rule-based model
as an alternative approach to numerical models using
a simpler method to describe and calculate water
movement in the vertical direction in an unsaturated
Oxisol, analyzing the error in comparison of the values
obtained in the field and the solution provided by the
fuzzy model.

Mathematical formulation of unsaturated
water flow

Richards equation

Darcy’s equation (Darcy, 1856), developed for the
water flow in saturated porous media, has been
generalized by Buckingham (1907) to describe the
water flow in unsaturated porous media (q = vertical
flow) through introduction of the concepts of matric
potential and unsaturated hydraulic conductivity,
described by:
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where K(θ) is the unsaturated hydraulic conductivity
as a function of soil moisture θ, ψ is the total potential
of soil water, and z is the vertical coordinate position.

The continuity equation expresses the principle of
conservation of the mass of water contained in a
representative elementary volume (REV) of soil. For
a given REV of soil, the flux density entering the
volume element as a vector can be decomposed in three
orthogonal directions, x, y and z. Thus, considering
only the z direction, the continuity equation can be
expressed as:
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where S is the sink term and t is the time.

Richards (1931) combined Buckingham-Darcy’s
equation (Equation 1), with the continuity equation,
(Equation 2), resulting in:
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Richards equation is the most used mathematical
expression to describe the phenomenon of water flow
in a non-saturated soil. Equation 3 is a nonlinear
partial differential equation that requires knowledge
of the relationships ψm (θ) and K(θ).

Various functional relationships are found in the
literature; among them, the relationship:

m
n

m

rs
r

úû
ù

êë
é +

-
+=

ay

qq
qq

1

(4)

where equation 4 represents the soil-water retention
curve, which represents the relationship between
matric potential and soil moisture defined by van
Genuchten (1980). In this equation, θr is the residual

water content, θs is the saturated water content, α
represents the inverse of the bubbling pressure (cm-1)
at which the water begins to be drained from the soil
which was previously saturated, ψm is the matric
potential, and m and n are the shape parameters,
which may be related by the assumption of Mualem
(1976) described as:

n
m 11 -= (5)

Among the various functional relations for the
hydraulic conductivity curve that highlights the
equation described by van Genuchten (1980) with the
hypothesis of Mualem (1976) is:
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where Ks is the hydraulic conductivity of the soil and
Se is the effective saturation given by equation 7:
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In the literature, there are several ways to
estimate Ks; one of them is by conducting infiltration
tests with a single ring infiltrometer (Lee et al., 2006),
using the method proposed by Haverkamp et al.
(1994).

Fuzzy Logic

In the 1980s, fuzzy logic (Zadeh, 1965) began to
attract attention with the opening of the automatic
operating system for the Sendai Subway in Japan.
Modeling the characteristics of the trains, the fuzzy
system was used to control speed, acceleration and
braking without human supervision, i.e., there was
no driver to control these variables during the trip
made by the train between two stations. This can be
regarded as a milestone for the widespread use of
controllers based on fuzzy logic.

Fuzzy logic is one of the current techniques for
successful development of sophisticated systems that
control processes (Lee, 1990; Dutta, 1993; Castro, 1995).
With its use, complex systems can be implemented in
simple controllers, with easy maintenance and low cost.
The use of systems built this way, called fuzzy systems,
is especially applicable when the mathematical model
is subject to uncertainties (Karr & Gentry, 1993; Sandri
& Sibertin-Blanc et al., 2008).

The application of fuzzy theory is also found in the
literature for detection of cases involving the resolution
of differential equations of dependent parameters, thus
approximating their solutions, such as those that
require knowledge of water movement in the soil (Dou
et al., 1999).

Fuzzy sets

The technological capabilities available when fuzzy
logic was developed were unable to automate activities
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related to problems that encompass ambiguous
situations, not subject to processing by Boolean logic.
We need something more than just two possible true
values. In conventional sets there are sharp boundaries
between the elements belonging to the set and those
outside it. In a fuzzy set the transition between the
member and the non-member is in a progressive band,
with an associating degree ranging from “0” (complete
non-member) to “1” (full member) (Camargos, 2002).

A fuzzy set A in a universe U is defined by a degree
of membership µA(x): U g [0,1] and is represented by
a set of ordered pairs:

}/))(,{( UxxxA A Î= m

where the degree of membership µA(x) indicates the
degree of compatibility between x and the concept
expressed by A, such that µA(x) = 1 indicates that x is
completely compatible with A, µA(x) = 0 indicates that
x is completely incompatible with A, and 0 < µA(x) <1
indicates that x is partially compatible with A by µA(x).

The support of a fuzzy set A is the set comprising all
the elements that have some degree of membership with
a value greater than zero. It is represented as follows:

}0)(/{)( >Î= xUxASu Am

In the study of fuzzy sets, fuzzy numbers are worth
mentioning. They are special cases of fuzzy sets. A
fuzzy subset A derived from a set of real numbers is
called a fuzzy number if there is at least one number
z such that µA(z) = 1, in which for every real number
a, b, c with a <c <b, we get:
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A fuzzy number A = (a1, a2, a3) with a1  a2  a3
is considered a triangular fuzzy number if its degree
of membership is written as follows:
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Fuzzy rules

Fuzzy rules can be provided by experts in the
linguistic form of sentences, and they constitute a
fundamental aspect in the performance of a fuzzy
inference system. In this regard, one important aspect
is the definition of the fuzzy sets corresponding to
input variables (antecedents) and output variables
(consequents) because system performance will depend
on the number of fuzzy sets and their form (Tanscheit,
2003).

The fuzzy rule-based model is created by structures
such as “IF ... THEN ...”, as shown below in a generic
way and for a set of n rules:

Rj: IF x1 is A1j and . . . and xn is Anj, THEN yj is Bj (8)

j = 1, 2, ..., n

in which Rj is the jth rule; x1, x2, ..., xn are input
variables; A1j, A2j, ..., Anj are fuzzy sets corresponding
to the input variables; yj is the output variable; and
Bj is the set corresponding to the fuzzy output variable.
Figure 1 illustrates a fuzzy rule.

A fuzzy system will only have a better performance
if the rules which define the control strategy are
consistent. Extracting rules from experts in the form
of sentences such as “IF ... THEN” may not be an
easy task, no matter how knowledgeable they are about
the problem in question. As an alternative to the use
of experts in defining the basis of the rules, there are
methods for extracting rules from numerical data.
These methods are particularly useful in problems of
classification and forecasting of time series.

Fuzzy systems

Fuzzy systems are robust and highly adaptable,
thus incorporating knowledge that other systems
cannot always accommodate (Guerra, 1998). They
are also versatile, especially when the physical model
is a complex and difficult mathematical
representation. Moreover, even in systems where
uncertainty is present in an intrinsic way, they add
a feature of robustness. The fuzzy systems found in
the literature are the classic models, such as those
of Mamdani & Larsen, and the interpolation
models, including the models of Takagi-Sugeno &
Tsukamoto (Lee, 1990; Driankov et al., 1993). The
models differ in their form of representation in terms
of premise, as well as in the representation of
control and the operators used for implementation
of the system.

The Mamdani model is a fuzzy inference method
that was for many years a standard for the use of
concepts of fuzzy logic in knowledge processing. The
production a fuzzy rule-based model of Mamdani is
fuzzy relationships, both in their background and in
their consequences. The semantic rule traditionally
used for processing of inferences for the Mamdani
model is called maximum-minimum inference. To
mathematically model the fuzzy rules, Mamdani &
Assilian (1975) proposed a fuzzy binary relationship
(M) between inputs x outputs (u), with the degree of
membership being described as follows: in each of the
rules that form the basis of fuzzy rules, the minimum

m

1 1

A1j A2j

+

1

Bj

Centroid

m m

+

Figure 1. A fuzzy rule.
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mathematical operator and the logical connector “and”
are adopted, and so is the maximum operator and the
logical connector “or”, since the sentences “IF ...
THEN ... “ are modeled by applying the minimum
operator.

In formal terms, the fuzzy relation M is the fuzzy
subset x ! U in which the degree of membership is
given by:

[{ ]}uxux
jBjAnjM fff ),( )(minmax),( 1 ££=

where n is the number of rules φAj (x) and φBj (u) are
the degrees to which x and u belong to the fuzzy sets
Aj and Bj , corresponding to the input and output
variables, respectively.

Figure 2 illustrates the maximum-minimum
inference for the Mamdani model with only two
general rules.

Once the output fuzzy set is established by means
of a process of inference in the stage of defuzzification,
an interpretation is made of this information. This is
necessary because, in practical applications, accurate
outputs are generally required. There are several
methods for defuzzification in the literature. Two of
the most used are the Center of Gravity and the
Maximum Average method, in which the output
needs are obtained by taking the average between
the two extreme elements in the universe that
correspond to the highest values of the degree of
membership of the consequent. As for the Center of
Gravity, the output is the value in the universe that
divides the area under the curve of the degree of
membership into two equal parts (Tanscheit, 2003).
An example of the defuzzification adopted is the Center
of Gravity, which can be seen in figure 3.

The Center of Gravity method (Jager, 1995;
Babuska, 1996) is similar to the arithmetical means
for data distribution, taking into account that the
weights are values fB(ui) that indicate the degree of

compatibility of the value of ui with its concept modeled
by the fuzzy set output B. The defuzzification B for a
discrete domain is given by:
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And for a continuous domain:
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MATERIALS AND METHODS

Study area and measurement period

The experimental data were obtained on the Chã de
Jardim farm, a 4.0 ha area belonging to the Agricultural
Science Center (CCA) of the Universidade Federal de
Paraiba [Federal University of Paraíba] (UFPB), located
in the Brejo microregion of Paraiba, in Areia, State of
Paraiba (6o 58' 12'’ S and 35o 42' 15'’ W). The altitude
is about 620 m asl. The climate in the region, according
to Köppen, is of the As’ type (hot and humid), with a
rainy season during autumn-winter and the occurrence
of heavy rainfall in June and July (Brasil, 1972).
According to data from the meteorological station of
the CCA UFPB (30-year average), the average annual
temperature is 24.5 oC, the annual relative humidity
is 85 % and the total annual rainfall is 1,400 mm.
The soil in the region is classified as an Oxisol -
Latossolo Amarelo (Embrapa, 2013), characterized as

m m
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Figure 2. Maximum-minimum inference for the Mamdani model.

Source: Saboya Jr. et al. (2006).
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deep, well structured, well drained, highly weathered
and leached, with clusters of high stability.

The experimental measurements were made in the
field during the phenological cycle of the cowpea crop
[Vigna unguiculata (L.) Walp], from March 13 to May
30, 2003.

Instrumentation

Six TDR (Time Domain Reflectometry) sensors
from Campbell Scientific CS 615 were set up at the
depths of 20, 40, 60, 80, 100 and 120 cm. These sensors
were connected to a datalogger from Campbell
Scientific CR 10X, with readings taken every minute
and the averages stored every half hour (Lee et al.,
2006). For the TDR sensors used, the calibration curve
was applied according to manufacturer instructions
(Campbell Scientific, 1996).

Case study

The experimental data were obtained in the field
with bare soil, over the period of March 13 to March
23, 2010, during the emergence of cowpea. Therefore,
the simulations carried out here seek to reproduce
the phenomenology occurring in this interval.

Determination of the fuzzy rules

A fuzzy rule-based model adapted to soil conditions
was developed, consisting of 27 rules. Up to definition
of this final number, several tests were used to
determine which rules were not exerting any
contribution to the system.

Just as in Bárdossy & Disse (1993), Bárdossy et
al. (1995), Bárdossy (1996) and Dou et al. (1999), the
main purpose made for the creation of rules that
describe soil water dynamics, which is the vertical
movement of soil water at a given time and at a certain
point along the profile, depends almost exclusively on
the soil moisture of the region immediately close to it.
In general, the fuzzy rules developed to describe the
soil water dynamics used in this paper have the
following configuration:

“IF the soil moisture at a point (A) is high, and the
soil moisture in an adjacent section (B) low is high,
THEN the flux density qv between the two points is
high.”

A fuzzy rule consists of two premises, which are
the relative soil moisture of the upper cell (θ/θs)up,
and the relative moisture of the adjacent lower cell
(θ/θs)low. The consequence of the rule consists of the
vertical flow qv between the two cells. The premises
and its consequences are in the form of fuzzy sets.
For the present model, triangular fuzzy numbers are
chosen.

Fuzzy model based on Richards equation

The procedure for using a fuzzy rule-based model
for the vertical dynamics of water in an unsaturated
soil profile was carried out in the same way as the
work of Bárdossy & Disse (1993), Bárdossy et al. (1995)
and Bárdossy (1996). The difference is that this study
highlights the construction of the fuzzy rule-based model
and was based on data obtained from experimental
measurements performed in the field, which were used
as a training set. The outputs of the fuzzy model were
generated for The outputs of the fuzzy model were
generated for a time intervals of 12 h, for a total of
240h. The vertical resolution was 5 cm.

The fuzzy model has two equal entries in the form
of fuzzy sets, corresponding to the degree of saturation
of the profile between two points of a given
homogeneous soil. The output of the system, also in
the form of fuzzy sets, is given by the flow between
adjacent layers of the same ground. From the flow
values measured by the fuzzy system, the indices
recalculate volumetric water content step by step. The
results of this model are compared with results
obtained from experimental measurements performed
in the field. The following sequence of steps shows
greater details of how this was accomplished by
applying the fuzzy rule-based model for the Richards
equation:

1. The degree of saturation is determined by the ratio
between soil water content and water content at
saturation:

sq
qQ = (12)

2. The degrees of saturation of the adjacent layers Θj
and Θj+1 are provided as inputs to the fuzzy system.

3. The output of the fuzzy system, which is the
defuzzified value, represents the flow Qj,j+1 between
adjacent layers, and this is obtained by the center of
gravity defuzzification method:
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Source: Saboya Jr. et al. (2006).
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where qi is the relative flow corresponding to role i.
The saturated hydraulic conductivity Ks is a
proportional parameter in the model and the flow
generated by the rules is multiplied by the ratio Ks/
Ks

* to get the actual flow.

4. The actual flow is then converted into corresponding
values of the soil moisture layer.

5. Steps 1-4 are repeated for each time step.

As in Bárdossy (1996), a specific Ks value is selected
for which the rules are specified. As the flow is
proportional to the Ks value, a simple multiplication
makes the rule applicable in the case of a Ks different
from the selected reference value. Figure 4 illustrates
a rule adopted in the fuzzy model.

In the stage of inference, we used the Mamdani
inference method since, according to Dou et al. (1999),
this method stands out for its effectiveness and
simplicity. Initially, the Mamdani inference method
combines the degrees of membership associated with
the input values through the minimum operator (min)
and adds the rules by the maximum operator (max).
The Mamdani fuzzy set provides a unique response,
called fuzzy topology (Barros & Bassanezi, 2001). The
defuzzified value is calculated by combining all the
rules. The calculation is performed for all layers of
the flow field at each time step. The new values of soil
moisture in each layer are calculated by applying the
continuity equation (Equation 2).

According to Bárdossy et al. (1995), the fuzzy model
indicated contains the two parameters, Ks and θs, i.e.,
it is not necessary to specify the nonlinear functions
K(ψ) and ψ(θ) when applying the model. During the
process of rule derivation, these nonlinear functions
are used, i.e., the nonlinear behavior is implicitly
incorporated in the rules.

RESULTS AND DISCUSSION

Rainfall was measured at the meteorological
station, corresponding to an interval of ten days
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Figure 4. A fuzzy rule adopted for the vertical flow

between two soil layers.

(Figure 5). During this period there was rainfall of
96.7 mm.

The fuzzy rule-based model was developed and
adapted to the conditions observed from the analysis
of experimental data. With the help of the fuzzy model,
soil moisture profiles were simulated. Figure 6
compares the results of these simulations with
experimental data obtained in the field. This figure
illustrates the evolution of the moisture profile for the
period under study. The correlation between the
estimated results and experimental data can be
observed; in general, the fuzzy rule-based model
provided excellent agreement with the experimental
profile of soil moisture.

This fact can be easily observed with the aid of
figure 7, which compares the evolution between the
experimental soil moisture and the soil moisture
calculated by the fuzzy model for the depths of 20, 60
and 100 cm. Over the 240 h, the values simulated by
the fuzzy model agreed well with those measured in
the field.

For each soil moisture profile simulated, the
Percent Error (PE) between the experimental values
of soil moisture and the values obtained from the fuzzy
model was calculated by means of equation 14:
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Figure 7. Comparison between the measured

volumetric water content (symbols) and that

calculated by the model based on fuzzy rules

(solid lines) for three different depths.
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Figure 8 shows the PE for each time step. According
to the figure, one can observe that the PE grows
rapidly and then fluctuates between very close values
around a mean value until the end of the simulation.
This can be explained by fitting of the fuzzy system to
the processes and its development into a condition of
stability. The PE showed maximum and minimum
values of 1.275 and 0.009 %, respectively, and their
average value was 0.878 %. These figures indicate
that the fuzzy model worked satisfactorily.

In order to compare the experimental data with
the simulation results presented in figure 6, the Root
Mean Square Error (RMSE) was used as another tool
of analysis, defined as follows:

å
=

=
n

i

ix
n

RMSE

1

21
(15)

Where xi is the difference between the observed data
and the fitted model for the i-th sample. Values of
RMSE close to zero indicate perfect fitness and

calibration of the model is considered satisfactory only
when RMSE <3.0 (Kourgialas et al., 2010). The RMSE
value used was 0.0092. This result is of the same order
of magnitude as approximations by fuzzy models in
the literature, as in Kukolj (2002). Therefore, this
result likewise confirms that fuzzy modeling generated
values in close agreement with those obtained in the
field, and so the simulation can be considered quite
satisfactory.

It is noteworthy that in this study the rainfall data
were of great importance for proper fit of the fuzzy
model presented. With proper use of this information
in equation 2, it was possible to fit both membership
functions, and certain rules were adapted to correct a
few points of the moisture profiles simulated for the
rainiest days. This fitting was also performed intuitively,
using the inference system (Mamdani), and taking the
analysis and judgment of experts into account.

Studies that also showed good approximations
using fuzzy rule-based models, but using different
tools, are found in the literature, for example, the work
of Bárdossy et al. (1993), Bárdossy et al. (1995),
Bárdossy (1996), and Vernieuwe et al. (2006; 2007),
who achieved satisfactory results in simulations
similar to those in this work. However, all the authors
cited built systems using the fuzzy inference method
of Takagi-Sugeno.

According to Bárdossy et al. (1995), models based
on fuzzy rules should not be thought of as a way of
replacing models of partial differential equations based
on numerical solutions, but rather should be used to
simplify them. This study confirmed some advantages
associated with the fuzzy models presented. Their
simplicity, low computational cost, versatility and
flexibility allow them to be adapted to new patterns
by modifying the parameters that define the fuzzy
inference system (FIS), i.e., the shapes of membership
functions and their parameters, rules, and weights,
as well as implication methods, aggregation and
defuzzification.

This conclusion confirms the possibility of modeling
other cases from the use of fuzzy logic, adopting the
same methodology proposed and applied in this study.
The use of fuzzy set theory is of interest and is useful
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for further research of this nature. It allows fluctuation
of the parameters, obtaining results that agree with
the rules established by experts.

CONCLUSIONS

1. According to the results, it was possible to assess
the evolution of moisture profiles for the soil under
study, using this fuzzy rule-based model. The results
from fuzzy modeling were very satisfactory when
compared with data from experimental measurements.
This was confirmed by the results from calculation of
Percent Error (PE) and Root Mean Square Error
(RMSE) for the modeling.

2. The way in which membership functions were
appropriate and the use of defuzzification method
chosen (Center of Gravity) were of paramount
importance to achieve the results presented by fuzzy
rule-based model.

3. From the analysis of the results discussed above,
it appears that fuzzy rule-based models provide an
alternative for calculating water dynamics and for
modeling different hydrological processes. They have
the advantage of applying a few parameters instead
of numerical models, and are also considerably faster
and more robust.
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