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SUMMARY

Over the past three decades, pedotransfer functions (PTFs) have been widely
used by soil scientists to estimate soils properties in temperate regions in response
to the lack of soil data for these regions. Several authors indicated that little
effort has been dedicated to the prediction of soil properties in the humid tropics,
where the need for soil property information is of even greater priority. The aim
of this paper is to provide an up-to-date repository of past and recently published
articles as well as papers from proceedings of events dealing with water-retention
PTFs for soils of the humid tropics. Of the 35 publications found in the literature
on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the
PTFs are based on an empirical approach, and only 9 % are based on a semi-
physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a
class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial
regression of nth order techniques, and 3 % (one) is based on the k-Nearest
Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are
parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 %
(one) is based on pattern recognition. Additionally, it was found that 26 % of the
tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils
in India, 11 % for soils in other countries in America, and 11 % for soils in other
countries in Africa.

Index terms: physical soil properties, soil hydraulic properties, tropical soils,
data-mining techniques.
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RESUMO: FUNÇÕES DE PEDOTRANSFERÊNCIA PARA PREDIZER A
RETENÇÃO DE ÁGUA DE SOLOS DOS TRÓPICOS ÚMIDOS: UMA
REVISÃO

Durante as últimas três décadas, as funções de pedotransferência (FPTs) foram
amplamente utilizadas pelos cientistas para estimar propriedades de solos em regiões
temperadas para responder à falta de banco de dados deles. Diferentes autores indicaram que
poucos esforços foram dedicados à estimação de propriedades de solo nos trópicos úmidos,
onde a necessidade de informações sobre as propriedades dos solos é ainda mais prioritária.
Este artigo buscou proporcionar um inventário atualizado dos artigos, assim como trabalhos
publicados recentemente em anais de congressos sobre FPTs com retenção de água para solos
nos trópicos úmidos. Entre 35 publicações encontradas na literatura sobre as FPTs para a
estimação da retenção de água dos solos nos trópicos úmidos, 91 % dos FPTs estão com base
num enfoque empírico e somente 9 %, num enfoque semifísico. Das FPTs empíricas, 97 % são
contínuas e 3 % (uma) é uma classe. Das FPTs empíricas, 97 % são com base em regressão
multilinear e polinomial de n técnicas de ordenamento e 3 % (uma), no método k-NN; 84 % das
FPTs contínuas são com base em pontos e 16 %, em parâmetros; 97 % das FPTs contínuas são
baseadas em equação e 3 % (uma), no reconhecimento padrão. Adicionalmente, foi encontrado
que 26 % das FPTs da retenção de água “tropical” foram desenvolvidas para solos no Brasil;
26 % , na Índia; 11 %, em outros países na América; e 11 %, em outros países na África.

Termos de indexação: meteorização de solos, solos dos trópicos úmidos, técnicas de mineração
de dados.

INTRODUCTION

Soil hydraulic properties, e.g., water retention, are
cumbersome, time-consuming, and costly to measure,
and they also change over time. Therefore, soil
scientists and hydrologists have searched alternative
methods for fast and accurate prediction of difficult-
to-measure soil properties. Over the past three
decades, estimation methods, called pedotransfer
functions (PTFs) have been widely used by soil
scientists in temperate regions in response to the lack
of measured soil property information. Bouma (1989)
described the term pedotransfer function as
“translating data we have into what we need”.
Pedotransfer functions are predictive functions that
relate more easily measurable soil data, such as soil
texture (sand, silt, and clay content), bulk density
(BD), organic matter (OM) or organic carbon (OC)
content, and/or other data routinely measured or
registered in soil surveys, to hydraulic parameters,
such as the soil water retention curve, SWRC (Bouma
& van Lanen, 1987; Bouma, 1989; van den Berg et
al., 1997). The most readily available data come from
soil survey reports and soil databases.

A thorough review on the use and development of
hydraulic PTFs was provided by Wösten et al. (2001).
Later, Shein & Arkhangel’skaya (2006) analyzed the
potential, state of the art, and outlook of using PTFs
in soil science. McBratney et al. (2002) reported that
the estimation of soil water retention constitutes the
most comprehensive research topic in development of
PTFs. This may be due to the particular efforts, time,
and cost of measurements of this hydraulic property
and the need to obtain information on this property
for large-scale studies, together with the availability

of large databases containing information on water
retention. However, Schaap (2005) wrote that “with
the exception of a few studies, hydraulic data and
corresponding indirect methods about tropical soils
are a virtual terra incognita”. This situation has not
changed that much today. Minasny & Hartemink
(2011) indicated that little effort is devoted to prediction
of properties of soils of the tropics, where the need for
accurate and up-to-date soil property information is
even more urgent. They published a review paper on
PTFs for predicting physical and chemical properties
of soils in the tropics. First, the authors discussed
the guiding principles of prediction and the type of
predictors, followed by a discussion on PTFs for soil
physical and chemical properties, and they then
discussed infrared spectroscopy, proximal sensing, and
remote sensing. Several authors evaluated the
prediction performance of various tropical as well as
temperate water-retention PTFs on their local soil
datasets (van den Berg et al., 1997; Medina et al.,
2002; Tomasella & Hodnett, 2004; Patil & Rajput,
2009; Nebel et al., 2010; Botula et al., 2012). Actually,
the last review paper exclusively dedicated to published
PTFs that predict water retention in tropical soils
was published by Tomasella & Hodnett (2004).
Therefore, there is a need to provide an up-to-date
repository of past and recently published articles as
well as papers from proceedings of events dealing with
water-retention PTFs for soils of the humid tropics.
Another important contribution of this article is the
categorization of published water-retention PTFs
based on various approaches and their application to
soils of the humid tropics based on data available in
the literature. This will allow identification of the more
common and less common approaches used in
estimating water retention of soils in tropical regions.
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Thus, topics for future research in development of
PTFs for soils of the humid tropics are identified, and
recommendations for future research are formulated.

Categorization of water-retention PTFs

Based on different criteria used by various authors
over the past three decades, PTFs used to estimate
water retention of soils can be categorized as: class
PTFs and continuous PTFs; point-based PTFs,
parameter-based PTFs and pseudo-continuous PTFs;
PTFs based on a specific approach; and equation-based
PTFs and pattern-recognition PTFs.

In the paper, the terminologies point-based PTFs
and parameter-based PTFs are preferred to the more
widely used point PTFs and parametric PTFs to avoid
confusion with the term non-parametric PTFs found
in the literature (Nemes et al., 2006a,b; 2008).

Class and continuous PTFs

Within the PTFs used to generate soil hydraulic
characteristics, Wösten et al. (1990; 1995) made a
subdivision based on the amount of available
information. They distinguished class PTFs and
continuous PTFs.

Class PTFs

A class PTF predicts the hydraulic characteristics
of a texture class (e.g., loamy sand) and is based on a
preliminary grouping (Wösten et al., 1990; 1995).
Therefore, class PTFs are cheaper and easier to use
than continuous PTFs because they require only
identification of the texture class to which the soil
belongs. However, the accuracy achieved is limited
because only one average value of a hydraulic
characteristic is provided for each textural class
(Wösten et al., 1995). Bruand (2004) distinguished six
main grouping criteria for PTFs: genetic-based
groupings, horizon-based groupings, texture
groupings, groupings based on structure and BD,
groupings of parent material, and consecutive
groupings. Several class PTFs have been developed
for soils of temperate regions (Jamagne et al., 1977;
Clapp & Hornberger, 1978; Rawls et al., 1982; Carsel
& Parrish, 1988; Vereecken et al., 1989; Wösten et
al., 1995, 1999; Schaap et al., 2001; Bruand et al.,
2002, 2003, 2004; Al Majou et al., 2008; Baker, 2008).
Class PTFs are rare for soils of the humid tropics.
The class PTFs of Hodnett & Tomasella (2002)
developed for the parameters of the van Genuchten
(1980) equation are among those few published for
soils of tropical regions. One of the major constraints
to their development is the lack of availability of large
databases of soils of the humid tropics to provide a
sound statistical-based grouping. Moreover, class PTFs
generally seem to be less attractive than continuous
PTFs due to less flexibility and the occurrence of larger
estimation errors in some cases. For instance, the
results obtained by Hodnett & Tomasella (2002)
showed that the use of class PTFs may lead to

significant errors because of the variation within a
given textural class.

Continuous PTFs

A continuous PTF is developed without grouping
the data, but instead, using the complete dataset to
derive equations (Wösten et al., 1990). It estimates
the hydraulic characteristics using, for example, the
actually measured percentages of clay, silt, and
organic matter content (Wösten et al., 1995). Most
existing PTFs developed to date fall in this category.
They will be discussed in the next sections.

Point-based PTFs, parameter-based PTFs,
and pseudo-continuous PTFs

In the literature, some authors (Wösten et al., 2001;
Cornelis et al., 2001; Sharma et al., 2006) make a
distinction between PTFs that predict the water content
at some chosen matric potentials (point-based PTFs) and
PTFs that estimate the parameters of analytical
expressions of the SWRC (parameter-based PTFs). They
are referred to as Type 2 and Type 3 PTFs in Wösten et
al. (2001). Additionally, a recently published type of PTF
that falls somewhere between the above two categories
was introduced by Haghverdi et al. (2012) and referred
to as a pseudo-continuous PTF. Figure 1 provides a
schematic representation of point-based, parameter-
based, and pseudo-continuous PTFs.

Point-based PTFs

The PTFs of Gupta & Larson (1979), Rawls &
Brakensiek (1982), Saxton et al. (1986), and Saxton
& Rawls (2006) are among early, widely-applied,
published, point-based PTFs developed for soils in
temperate areas. Gupta & Larson (1979) used 43
different soil materials originating from ten locations
in the eastern and central USA to develop their PTFs.
The twelve PTFs that estimate soil moisture content
at matric potentials ranging from -4 to -1500 kPa were
developed from disturbed samples, containing
mixtures of dredged sediment and productive soil in
different proportions. Rawls & Brakensiek (1982)
estimated water content within the same matric
potential range using the same soil properties. Their
data originate from 2543 horizons from across the
USA. Saxton et al. (1986) developed point-based PTFs
from soils of the USDA dataset. These PTFs have
been successfully applied to a wide variety of studies
related to agricultural hydrology and water
management, together with models like SPAW
(Saxton & Wiley, 2006) and AquaCrop (Steduto et al.,
2009). Using the soil database currently available from
the USDA, Saxton & Rawls (2006) formulated PTFs
similar to those previously reported by Saxton et al.
(1986) but including more variables, with a wider
application range, based on data from 1722 soil
samples. In this updating process, the initial equations
were combined with equations of hydraulic
conductivity, also considering the effects of density,
gravel, and salinity.
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In the (sub)humid tropics, various efforts have
been made to develop point-based PTFs from soil
datasets specific to these regions. Most of these PTFs
have been developed for application within restricted
geographical domains for a limited range of soil
textures and soil types. Pidgeon (1972) used a dataset
including a wide textural range of ferrallitic soils (from
loamy sands to clay) from ten sites in Uganda to derive
point-based PTFs. Kaolinite was the dominant clay
mineral, but, in two sites, the dominant clay minerals
were illite and montmorillonite, respectively. He
estimated gravimetric water content at field capacity
(FC), permanent wilting point (PWP), and available
water capacity (AWC), among other things. The PTF
developed by Pidgeon (1972) estimates FC as
equivalent to the soil moisture of a wetted plot after
48 h of free drainage. The author also provided
equations that convert this value into water content
of undisturbed cores at -10 and -33 kPa. MacLean &
Yager (1972) derived PTFs to predict AWC10-1500 kPa
based on texture, OC, and soil sample depth for soils
of Zambia. Simple relationships between clay content
and gravimetric water content at -1500 kPa (PWP)
have also been derived for ferralic and oxic horizons
in various tropical regions, as reported in FAO (1974)
and Soil Survey Staff (1975; 1990). Lal (1978; 1981)
derived point-based PTFs to predict gravimetric water
content (at -10 kPa, -33 kPa, and -1500 kPa) and
AWC10-1500 kPa based on a dataset of soils developed
from two different parent materials in Southern
Nigeria. The PTF development datasets included
mostly strongly weathered soils, but some
hydromorphic soils and high activity clay soils were
also present.

Aina & Periaswamy (1985) related measured
volumetric water content of undisturbed and sieved
soils at -33 and -1500 kPa and AWC33-1500 kPa to soil
texture and BD. The soil dataset comprised different

Ultisols and Alfisols containing predominantly
kaolinite. They constructed a PTF estimating
AWC33-1500 kPa for core samples from silt, clay, and
BD; and a PTF relating AWC33-1500 kPa for sieved
samples to sand and BD. Arruda et al. (1987) used
well drained and mainly highly weathered soils from
Southeast Brazil to derive gravimetric point-based
PTFs predicting water content at -33 and -1500 kPa
from silt and clay. Dijkerman (1988) related sand and
clay content of soils from Sierra Leone to gravimetric
water content at -33 and -1500 kPa. The dataset used
included mostly strongly weathered Ultisols and some
hydromorphic soils. Bhavanarayana et al. (1986) and
Rao et al. (1988) developed point-based PTFs to predict
volumetric water content at FC and PWP for Indian
soils. A statistical relationship was established
between clay and OC content, and gravimetric water
content at -1500 kPa (Soil Survey Staff, 1992). Bell &
van Keulen (1995) derived PTFs to predict water content
at PWP for four groups of Mexican soils. Van den Berg
(1996) developed PTFs to predict water content at -10
and -1500 kPa and AWC10-1500 kPa for strongly weathered
soils in south and Southeast Brazil. Van den Berg et al.
(1997) used two datasets of soils originating from South
America, Africa, and Southeast Asia. The first dataset
was used to derive volumetric point-based PTFs to
calculate water content at -10 and -33 kPa and AWC10-

1500 kPa, as well as to estimate the parameters of the
van Genuchten (1980) equation. The second dataset
was used for validation purposes.

Singh (2000) derived point-based PTFs to predict
volumetric water content at saturation, -33 kPa, and
-1500 kPa based on sand and clay content of soils from
India. Mdemu & Mulengera (2002) developed local
PTFs to predict water retention at eight different
matric potentials and AWC for soils in Morogoro,
Tanzania. Point-based PTFs were derived by Igwe et
al. (2002) to predict water content of some soils of the
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Figure 1. Schematic representation of point-based, parameter-based, and pseudo-continuous pedotransfer
functions (PTFs). Source: Haghverdi et al. (2012). Sand, silt, and clay are sand, silt, and clay percentages,
which are the common input predictors of PTFs. Bulk density and organic matter content can be added
as optional extra predictors. θθθθθ1, θθθθθ2, ..., θθθθθ6 are volumetric water contents, which are the outputs of the
point-based PTF when using a dataset containing six points of the water retention curve for each
sample. θθθθθr, θθθθθs, ααααα, and in bold are the parameters of the van Genuchten (1980) equation, which, in turn,
are the outputs of the parametric PTF. ln (-ψψψψψ) is the matric potential, which is the extra input predictor
of the pseudo-continuous PTF. θθθθθ(-ψψψψψ) is the volumetric water content at -ψψψψψ matric potential, which is the
output predictor of the pseudo-continuous PTF. Different -ψψψψψ values yield different water contents.
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southeastern part of Nigeria. Tomasella et al. (2003)
used a large dataset including soils from different
geomorphic regions of Brazil to relate basic soil
properties to volumetric water contents at different
matric potentials (-6, -10, -33, -100, and -1500 kPa).
The point-based PTFs of Tomasella et al. (2003) use
moisture equivalent as an input. It is defined as the
water content remaining in a sample (fraction <2 mm)
after centrifuging at 2400 rpm for 30 min, generally
expressed in gravimetric units. In the PTF
development process, moisture equivalent has been
used by Tomasella et al. (2003) as a predictor of water
retention because it is basic information found in most
Brazilian soil survey reports. Point-based PTFs were
developed by Saikia & Singh (2003) to predict soil
water content at FC and PWP of soils of the Banha
watershed in the State of Jharkhand in India.
Likewise, Adhikary et al. (2008) developed -33 and
-1500 kPa PTFs based on a large collection of soil
data compiled from published scientific papers, reports,
and other relevant literature. Patil et al. (2009)
developed -33 and -1500 kPa PTFs and estimated AWC
of seasonally impounded shrink-swell soils of Central
India. Texture, BD, and OC were used as predictors
in most point-based PTFs developed for soils in India.
Reichert et al. (2009) generated point-based PTFs to
predict soil water retention at various matric
potentials (-6, -10, -33, -100, -500, and -1,500 kPa)
based on texture, OM, and BD of soils of Rio Grande
do Sul in Brazil. Minasny & Hartemink (2011)
developed PTFs to predict water content at -10, -33,
and -1500 kPa based on soil texture and BD. The
development dataset and the validation dataset were
composed exclusively of soils from the tropics. These
soil datasets are parts of the IGBP-DIS soil database
obtained from ISRIC in Wageningen (the Netherlands).
Chakraborty et al. (2011) developed PTFs from a wide
textural range of Indian soils for four points of the
SWRC, namely -33, -100, -500, and -1500 kPa.
Recently, Obalum & Obi (2012) proposed point-based
PTFs for kaolinitic and coarse-textured tropical soils
from southeastern Nigeria. Santos et al. (2013)
generated and validated PTFs to predict gravimetric
water content at -33 and -1500 kPa for different soil
classes from the central-south portion of the State of
Rio Grande do Sul in Brazil.

Parameter-based PTFs

Parameter-based PTFs are equations that estimate
the parameters of analytical expressions describing
the SWRC, such as the Brooks & Corey (1964), the
Campbell (1974), and the widely applied van
Genuchten (1980) equations. Parameter-based PTFs
generate continuous curves describing the hydraulic
characteristics of soils. This is very important for
modeling purposes (Tietje & Hennings, 1993; van den
Berg et al., 1997; Cornelis et al., 2001) because some
soil water and solute transport models require the
complete SWRC as input. Furthermore, parameter-
based PTFs allow the computation of hydraulic values

at arbitrary pressures, as indicated by Borgesen &
Schaap (2005).

The first parameter-based PTFs were developed
using datasets of soils from temperate regions. Cosby
et al. (1984) and Rawls & Brakensiek (1985) developed
regression equations for the Brooks & Corey (1964)
model based on soils from the USA. Saxton et al. (1986)
used the percentage of clay and sand to calculate the
parameters of a model that was derived from the
SWRC model of Campbell (1974). Vereecken et al.
(1989) developed PTFs widely used for estimation of
the parameters of the van Genuchten (1980) model
based on the physicochemical characteristics (sand,
clay, OC, and BD) of 182 horizons of 40 different
Belgian soil series. Wösten et al. (1999) predicted the
parameters of the van Genuchten (1980) model using
the HYPRES database including data from 4030
horizons from all over Europe.

For tropical regions, parameter-based PTFs were
developed by van den Berg et al. (1997) to predict the
water-retention parameters of the van Genuchten
(1980) analytical equation. Tomasella & Hodnett
(1998) developed PTFs to predict the parameters of
the Brooks & Corey (1964) equation from texture and
OC using a dataset of various soils from Brazilian
Amazonia. Tomasella et al. (2000) derived parameter-
based PTFs for the van Genuchten (1980) model using
soil information from a dataset containing 517 soil
horizons from various regions in Brazil. Tomasella et
al. (2000) stated that the van Genuchten (1980)
analytical function is very popular in the modeling
community although it may not be the best one to
properly describe the hydraulic behaviour of soils such
as Oxisols. Earlier, van den Berg et al. (1997) found
that the van Genuchten (1980) equation can
adequately describe moisture retention curves of soils
with low activity clays in the southern part of Brazil.
Later, Hodnett & Tomasella (2002) arrived at the same
conclusion for Brazilian soils. Hodnett & Tomasella
(2002) used part of the IGBP-DIS soil database obtained
from ISRIC in Wageningen (the Netherlands) to calculate
the four parameters of the van Genuchten (1980) model.
The authors referred to this dataset as the IGBP/T
dataset, which exclusively contained soils from tropical
climates. Santra & Das (2008) developed parameter-
based PTFs for the van Genuchten (1980) model to
predict water retention of soils from a hilly watershed
in eastern India. Adhikary et al. (2008) did the same
for the Brooks & Corey (1964) model to provide a
prediction based on soils from various parts of India.

From this review, one can see that most of the
PTFs developed for soils in the (sub)humid tropics
were point-based PTFs. Using validation statistics,
several authors (Pachepsky et al., 1996; Tomasella et
al., 2003; Dashtaki et al., 2010; Vereecken et al., 2010)
noted that the point-based PTFs better predicted water
retention than the parameter-based PTFs. This may
be attributed to the fact that water content is
controlled by different soil properties, depending on
the level of soil matric potentials. The point-based
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PTFs allow for more appropriate independent variables
to describe the water content variation than do the
parameter-based PTFs. This may partially explain
why most of the PTFs developed for tropical soils fall
in the group of point-based PTFs. Most point-based
PTFs are often limited to the prediction of water
content at matric potentials generally recognized as
representing FC, i.e., -10 and -33 kPa, and PWP, i.e.,
-1500 kPa. These values are typically used to calculate
the water depth that should be applied through
irrigation (Hansen et al., 1980) and to calculate soil
water availability, which is a key element in assessing
the suitability of a given region for producing a given
crop (Sys et al., 1991). However, this has been
perceived as a weakness by several authors (Tietje &
Hennings, 1993; Cornelis et al., 2001). They argue
that most of the simulation models require a
continuous function rather than the discrete
description provided by measurement points. However,
van den Berg et al. (1997) and Tomasella et al. (2003)
showed that point-based PTFs used to estimate soil
water retention, at least in Brazilian soils, provided
more accurate results than parameter-based PTFs.
Recently, Haghverdi et al. (2012) indicated that use
of parameter-based PTFs has a number of drawbacks.
In some cases, the real shape of the SWRC is not
similar to the shape of the chosen equation. In
addition, authors like Minasny & McBratney (2002b)
reported some problems in correlating the parameters
of SWRC models to basic soil properties. Furthermore,
parameter-based PTFs determine a priori which
equation has to be used by the potential user, which,
for most published PTFs, is either the van Genuchten
(1980) or the Brooks & Corey (1964) closed-form
equations. Vereecken et al. (2010) conducted a detailed
review of temperate PTFs developed to estimate the
parameters of the van Genuchten (1980) SWRC model.

Pseudo-continuous PTFs

Haghverdi et al. (2012) introduced pseudo-
continuous PTFs, in which the natural logarithm of
matric potential is considered as an input parameter,
enabling the user to derive water content at any
desired matric potential. Consequently, there is only
one output parameter, θ, which shows the water
content at the predefined matric potential, i.e.,
different values of matric potential yield different
water contents. This recent approach has only been
tested for soils of dry regions.

Specific approach-based PTFs

McBratney et al. (2002) stated that there are
various ways to derive PTFs. Generally, they can be
classified into two approaches: semi-physical - this
approach attempts to describe a physical or chemical
model relating the basic properties to the predicted
properties; and empirical approach - this is the most
widespread approach, linking the basic soil properties
to the more difficult-to-measure soil properties by
means of different numerical fitting methods.

Semi-physical approach

Semi-physical methods recognize the similarity
between the shape of the particle size distribution
(PSD) and water retention curves. They offer valuable
conceptual insights into the physical relations between
texture distribution and pore size distribution (POD).
A drawback of these methods is that they often require
a very detailed PSD, making them almost as difficult
to apply as direct measurements (Schaap, 2005).

Arya & Paris (1981) and Haverkamp & Parlange
(1986) translated PSD data into a water retention
curve by means of the capillary equation. They
assumed that the network of pores in the soil is a
bundle of cylindrical capillaries. Pedotransfer
functions of this group require a detailed PSD (more
than only clay, silt, and sand content). Khlosi (2003)
found that eight particle size mass fractions are
sufficient to estimate the water retention curve
relatively accurately. Tyler & Wheatcraft (1990) used
fractal mathematics and scaled similarities to show
that the empirical constant in the Arya & Paris (1981)
model is equivalent to the fractal dimension of the
tortuous fractal pore. The fractal dimension described
by Mandelbrot (1983) is a measure of the degree of
irregularity of the object seen in all scales (or
resolutions) of observation, where the fractal structure
is the one in which parts of it are similar to all of it.
In simple words, a small piece of the object looks rather
like a larger piece or the object as a whole. Therefore,
the key property of fractal geometry is a degree of
self-similarity across a range of spatial scales (or
resolutions) of observation (Feder, 1988).

The Rieu & Sposito (1991a,b) model appears to be
the first mass fractal model of the soil water retention
characteristics (Millàn et al., 2006). Perrier et al. (1996)
developed a general model of the SWRC for any soil
whose POD is fractal using Mandelbrot (cumulative
number vs. size) distribution (Mandelbrot, 1983).
Based on the previous works of Rieu & Sposito
(1991a,b), Perfect et al. (1998), and Perfect (1999) used
the definition of the volumetric water content of the
prefractal Menger sponge and came up with a reduced
two-parameter model of the SWRC. Perrier et al.
(1999) proposed a symmetric pore-solid fractal (PSF)
model. This PSF model is characterized by the same
geometric shape in the distribution of soil pores and
the distribution of soil solids; both are assumed to be
power functions with the same scaling component.
Based on the PSF model, Bird et al. (2000) developed
a new SWRC fractal model, which includes the Tyler
& Wheatcraft (1990) and Rieu & Sposito (1991a,b)
models as special cases. Based on the observation that
soil water retention is usually sensitive to both soil
structure and texture, Millàn & González-Posada
(2005) assumed that two fractal regimes, each with
different fractal dimensions, could be present in most
soils. They extended the model of de Gennes (1985),
which is similar to the model of Tyler & Wheatcraft
(1990), to a model with two fractal regimes. Cihan et
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al. (2007) introduced a general scale-variant fractal
drainage model, which can be simplified into two scale-
variant and scale-invariant models. In their general
model, the proportion of pores that drain at a given
matric potential depends on both the mass fractal
dimension of the drained pore phase and the proportion
of pores that drain at air-entry value. Ghanbarian-
Alavijeh et al. (2010) developed a method to determine
the van Genuchten (1980) model parameter m from
the fractal dimension. Recently, Hwang et al. (2011)
derived a symmetry- and an asymmetry-based PSF
model to estimate the SWRC directly from the PSD of
a soil.

Studies on semi-physical models to develop
hydraulic PTFs for soils in the humid tropics are
scarce. Vaz et al. (2005) evaluated the performance of
the Arya & Paris (1981) model applied on 104 soils
from Brazil and found relatively good results. Millàn
& González-Posada (2005) presented a piecewise
fractal approach to approximate the soil water
retention data and tested their model with previously
published soil datasets and two unpublished datasets
corresponding to clay loam and silty clay loam soils
located within a hydrographical basin in South Cuba.
Andrade et al. (2008) used fractal theory to incorporate
a fractal dimension based on the SWRC and/or the
PSD in the Brooks & Corey (1964) water retention
model to estimate the available water in a soil from
Brazil.

Empirical approach

The empirical approach is the one that is most
used to develop water retention PTFs in temperate as
well as in tropical regions. The most commonly used
techniques for fitting or deriving PTFs are statistical
regressions - Multiple Linear Regressions (MLR) and
polynomials of the nth order. Other modern numerical
and statistical methods applied are Generalized Linear
Models (GLM), General Additive Models (GAM), the
Group Method of Data Handling (GMDH), and
Multiple Adaptive Regression Splines (MARS).
Currently, data-mining techniques are gaining
popularity in the PTF-research field with the
application of nonconventional statistical methods,
e.g., Artificial Neural Networks (ANNs), Classification
and Regression Trees (CART), k-Nearest Neighbor (k-
NN), Support Vector Machines (SVM), Genetic
Algorithms (GA), and Genetic Programming (GP).

Multiple linear regressions and polynomials
of the nth order

Many of the available and well-established PTFs
for predicting soil hydraulic properties from continuous
soil properties are based on multiple linear regressions
(MLR) or polynomials of the nth order (Vereecken &
Herbst, 2004). In general, three main objectives can
be distinguished when using statistical regressions
to model relations between two sets of variables:
prediction, model specification, and parameter

estimation. Multiple linear regression equations are
a common statistical tool used for the prediction of
the response variable y from a number of n predictor
variables xi. A multiple linear regression equation can
be written as (Herbst & Diekkrüger, 2002):
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with the constant a (intercept), the regression
coefficients bi, and the error ε. A nonlinear regression
equation based on a second-order polynomial has the
following form:

( ) e+++= å
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where besides the intercept a, two regression
coefficients bi and ci have to be determined for every
predictor variable xi (Rawls & Brakensiek, 1985).

Gupta & Larson (1979) used MLR equations of the
following form:

θp= a (% sand) + b (% silt) + c (% clay) +
+ d (% OM) + e (BD, Mg m-³) (3)

to predict the soil water content (θp, m3 m-3) for 12
different matric potentials, where a, b, c, d, and e are
regression coefficients, OM is organic matter content,
and BD is bulk density. Intermediate values could be
determined by fitting one of the analytical SWRC
expressions.

Rawls & Brakensiek (1982) estimated water
content within the same matric potential range with
the following model:

θp= a + b (% sand) + c (% silt) + d (% clay) + e (% OM)
+ f (BD, Mg m-³) + g θ-33 kPa + h θ-1500 kPa (4)

Vereecken et al. (1989) developed widely used MLR
PTFs for the estimation of van Genuchten (1980)
parameters based on the physical characteristics of
182 horizons of 40 different Belgian soil series (sand,
clay, OC content and BD).

Tomasella & Hodnett (1998) studied Brazilian soils
and derived MLR PTFs for water contents θ at nine
matric potentials:

θp = a·(% OC) + b·(% silt) + c·(% clay) + d (5)

Most of the aforementioned point- and parameter-
based PTFs developed for soils of the humid tropics
are MLR PTFs and some PTFs, e.g., Tomasella et al.
(2000), are polynomials of nth order.

Extended nonlinear regression

Scheinost et al. (1997) found difficulty in estimating
the scaling (α) and shape (n) parameters of the van
Genuchten (1980) equation using the regression
approach. Realizing the overparametrization (too many
adjustable parameters relative to number of data
points) of the van Genuchten (1980) equation, they
proposed the following approach: (1) set up the
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expected relationship between the parameters of the
hydraulic model and soil properties; and (2) insert the
relationship into the model and estimate the
parameters of the relationship simultaneously by
fitting the extended model using nonlinear regression
for all data.

This approach is referred to as extended nonlinear
regression (ENR) by Minasny et al. (1999). Using soils
from Australia, they compared MLR and ENR
approaches in developing point- and parameter-based
PTFs for water retention. The authors found that ENR
was the most adequate approach for parameter-based
PTFs. For soils in the humid tropics, this approach
was used by Hodnett & Tomasella (2002) to develop
PTFs for the parameters of the van Genuchten (1980)
equation.

Generalized linear and additive models and
multivariate adaptive regression splines

Generalized linear models (GLM) extend the linear
regression models to accommodate the non-normal
response distributions (Hastie & Pregibon, 1992). The
theory and its applications to soil science have been
reviewed by Lane (2002). For example, McKenzie &
Austin (1993) used GLMs to predict soil attributes
such as clay content, cation exchange capacity (CEC),
pH, and BD, etc. using environmental variables
(geomorphic unit, local relief, etc.) as predictors.
Gessler et al. (1995) used GLMs to predict the presence
or absence of a bleached A2 horizon using digital
terrain information.

Gessler (1996) extended this flexibility by using
generalized additive models (GAM). These models
attempt to characterize the nonlinear effect which is
not considered in GLM. This is done by allowing
arbitrary smooth functions of the predictors to replace
some or all of the linear components of the GLM
(Hastie & Tibshirani, 1990). Yet the use of GAM, as
shown in the soil science literature, has been minimal,
as pointed out by McBratney et al. (2003).

Other models, such as multivariate adaptive
regression splines (MARS), are used to model
continuous variables (Friedman, 1991; Hastie et al.,
2001). Shepherd & Walsh (2002) used MARS to develop
prediction equations for some soil properties in eastern
Africa from NIR diffuse reflectance spectra. To our
knowledge, GLM, GAM, and MARS have not been
used to derive hydraulic PTFs in the humid tropics.

Artificial neural networks

An artificial neural network (ANN) consists of
many interconnected simple computational elements
called nodes or neurons (Figure 2). Neural networks
are sometimes described as universal function
approximators, i.e., they can learn to approximate
any continuous nonlinear function to any desired
degree of accuracy (Hecht-Nielsen, 1990; Haykin,
1994). An advantage of ANN PTFs, as compared to
MLR PTFs, is that they require no a priori concept of

the relations between input and output data. During
an iterative calibration procedure, the optimal
relations between input and output data are found
and implemented automatically. A drawback is that
these relations are difficult to interpret because of the
black-box nature of neural networks (Schaap & Leij,
1998).

Koekkoek & Booltink (1999) used ANNs to predict
water retention at various matric potentials based on
Dutch and Scottish soil datasets. Schaap et al. (1999)
developed ANN PTFs to determine the parameters of
the van Genuchten (1980) equation. Their ANN PTFs
were based on 1209 soil samples from the USA. Schaap
et al. (2001) developed the ROSETTA software, a
computer program that implements four hierarchical
ANN PTFs for estimation of the van Genuchten (1980)
water retention parameters. This stand-alone software
combines neural network analyses with the bootstrap
method (Efron & Tibshirani, 1993), thus allowing the
program to provide uncertainty estimates of the
predicted hydraulic parameters.

Minasny & McBratney (2002a) proposed a new
objective function for parameter-based ANN PTFs.
The authors argued that this new method, called the
neuron-m method, provides better accuracy and less
bias than the ROSETTA program. This is because
the network is set up so that the predicted parameters
fit the measured data, instead of training the neural
network to fit the estimated parameters. Sharma et
al. (2006) developed 18 models resulting from a
combination of the bootstrapping technique and ANN
to predict moisture content (at eight different matric
potentials) and the van Genuchten (1980) parameters
for soils of the Southern Great Plains in the United
States of America.

The ANN PTFs have rarely been used to predict
soil water retention of humid tropical soils. Agyare et
al. (2007) developed ANN PTFs for saturated hydraulic
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Figure 2. Schematic overview of a three-layer neural
network. Source: Schaap & Leij (1998).
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conductivity (Ksat) of soils of the Volta basin in Ghana.
Other studies used the ROSETTA program to derive
the parameters of the van Genuchten (1980) SWRC
model for shrink-swell and highly weathered soils and
compared the results with locally-derived or published
PTFs based essentially on MLR techniques (Patil &
Rajput, 2009; Botula et al., 2012).

Group method of data handling

The group method of data handling (GMDH)
combines the advantages of MLR techniques and
ANNs (Hecht-Nielsen, 1990). The GMDH constructs
a flexible neural network-type equation to relate
inputs to outputs and, at the same time, has a built-
in algorithm to retain only essential input variables
(Farlow, 1984). Some authors have used this method
in an attempt to improve the accuracy of hydraulic
PTFs of soils of temperate and tropical regions.
Pachepsky et al. (1998) used GMDH to develop PTFs
from texture, BD, penetration resistance, and water
content at 0, -5, -10, -20, -100, and -1500 kPa in 180
soil samples from New Zealand. Nemes et al. (2005)
used the GMDH technique to develop Ksat PTFs based
on data originating from the USA, Hungary, and the
European HYPRES database. Ungaro et al. (2005)
developed hydraulic GMDH PTFs for the soils of the
Pianura Padano-Veneta region in North Italy. The
derived PTFs estimate Brooks & Corey (1964) water
retention parameters and moisture content at -5, -10,
-33, and -1500 kPa. However, they commented that
using them in earth sciences is still fairly uncommon,
though they can provide good predictive models that
successfully compete with MLR and ANN models.
Tomasella et al. (2003) applied GMDH to obtain
tropical point-based and parameter-based PTFs using
the database of Tomasella et al. (2000) complemented
with new data from a great variety of soils from Brazil.
Tomasella et al. (2003) found that GMDH point-based
PTFs predict water retention better than GMDH
parameter-based PTFs for Brazilian soils.

Regression trees

A regression tree is a special type of decision tree
that can predict continuous variables (McBratney et
al., 2002). Regression tree (RT) modeling is an
exploratory technique based on uncovering structure
in data and a technique that partitions sample data
to find both the best predictors and the best grouping
of samples (Clark & Pregibon, 1992). The resulting
model divides data first into two groups, then into
four groups, and so on, providing groups as
homogeneous as possible at each of the levels of
partitioning. Each partitioning can be viewed as a
branching, and the final fit of the model to the data
looks like a tree with two branches originating at each
node (Figure 3). Both categorical and numerical
variables can be used as predictors in RT (Breiman et
al., 1993).

Pachepsky & Rawls (2003) used RT in their
exploratory study on the potential value of structural

information in the development of more accurate PTFs
in modeling water transport in soils. They used data
from the Unsaturated Soil Hydraulic Database
(UNSODA). Pachepsky et al. (2006) used Classification
and Regression Trees (CART) to develop and discuss
a PTF relating soil structure to soil water retention.
This study was based on a subset of 2149 samples
from the U.S. National Soil Characterization
Database. No studies were found where the CART
had been applied to predict soil water content of humid
tropical soils.

k-Nearest Neighbor

The k-Nearest Neighbor (k-NN) technique is
referred to as a lazy learning algorithm that has been
used for classifying sets of instances based on nearest
training instances in a space of multi-dimensional
features. It is said to be lazy since it passively stores
the data until the time of application. All calculations
are performed real-time, i.e., only when estimations
need to be generated. Once the k-NN algorithm stores
a set of training instances, application of the k-NN
technique means identifying and retrieving the
instances most similar to the target object from that
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Figure 3. (a) A regression tree to predict saturated
hydraulic conductivity (Ksat) from field texture
grade (S: sand, LS: loamy sand, L: loam, CL: clay
loam, LiC: Light clay, C: clay), bulk density (BD),
and clay content. Values in nodes are the
predicted log10(Ksat) (in mm/day), values
underneath the nodes are the standard deviation
of prediction. (b) A hybrid regression tree with
continuous piecewise functions (McBratney et
al., 2002).
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set of stored instances, based on their input attributes
(Figure 4). More theoretical details on this similarity-
based approach are given in Dasarathy (1991). The
k-NN approach is considered by several authors
(Buishand & Brandsma, 2001; Bannayan &
Hoogenboom, 2009) as one of the most attractive
pattern classification algorithms.

Nemes et al. (1999) used a k-NN variant, which
they termed the similarity technique, to estimate
missing soil PSD points from other existing PSD
points to harmonize data of the European HYPRES
database (Wösten et al., 1999). Jagtap et al. (2004)
used a k-NN technique to estimate the drained upper
limit and lower limit of plant water availability from
soil water retention data measured in situ. Nemes et
al. (2006a,b) developed another variant of the k-NN
technique to predict soil water retention at -33 and
-1500 kPa, and they also performed a detailed sensitivity
analysis of this technique. The newly developed k-
NN algorithm proved its robustness in different
scenarios. Based on the satisfactory results yielded
by their k-NN algorithm, Nemes et al. (2008) developed
user-friendly software called “k-Nearest” with the
option of estimating the uncertainty of the prediction.
Elshorbagy et al. (2010a,b) identified the k-NN
technique as an attractive modeling technique for
hydrological applications because of its high level of
flexibility. Recently, Patil et al. (2012) used the k-NN
software developed by Nemes et al. (2008) to estimate
water content at -33 and -1500 kPa of 157 shrink-
swell soils in India to derive their AWC. The ability of
the k-NN approach to estimate water content at
different matric potentials of highly weathered soils
in the humid tropics was tested for the first time by
Botula et al. (2013). They applied a variant of the
k-NN technique to predict soil water retention in a

humid tropical region of Central Africa with high
accuracy.

Support vector machines

Recently, support vector machines (SVM) have
gained popularity in many fields traditionally
dominated by ANN (Lamorski et al., 2008). They are
considered a pattern-recognition method that presents
the advantage of eliminating the local minimum issue,
which is one of the main weaknesses of the ANN
approach. Lamorski et al. (2008) used SVM to predict
water retention of soils from Poland at eleven matric
potentials using sand, clay, and BD, while Twarakavi
et al. (2009) used this technique to predict the
parameters of the van Genuchten (1980) equation
using four different levels of the following input
variables: sand, silt, clay, and water content at -33
kPa and at -1500 kPa. The interested reader can refer
to Vapnik (1995; 1998) and Noble (2006) for further
theoretical insights. Until now, this technique has
not yet been applied to soils of the humid tropics.

Genetic programming

Koza (1992) proposed an automatic programming
technique called genetic programming (GP) for
evolving computer programs to solve, or approximately
solve, problems. Genetic programming is a method
for constructing populations of models using stochastic
search methods, i.e., evolutionary algorithms. An
important characteristic of GP is that both the
variables and constants of the candidate models are
optimized. Hence, it is not necessary to choose the
model structure a priori as in other regression
techniques. The GP technique has only been recently
introduced in soil water related studies such as soil
moisture (Makkeasorn et al., 2006), evapotranspiration
(Parasuraman et al., 2007a), Ksat estimation
(Parasuraman et al., 2007b), and hydrological
modeling (Parasuraman & Elshorbagy, 2008;
Elshorbagy et al., 2010a, b; Selle & Muttil, 2011). To
our knowledge, GP has not yet been used to predict
water content of soils of the humid tropics.

Ensemble pedotransfer functions

Parasuraman et al. (2007b) stated that adopting
the ensemble technique in PTF development not only
assists in evaluating the uncertainty of the developed
PTFs but also helps in addressing one of the pertinent
issues in any machine learning (e.g., ANNs, GP)
algorithm, namely generalization. The word ensemble
is French, meaning “together” or “at the same time”
and usually refers to a unit or group of complementary
parts that contribute to a single effect. In predictive
modeling, an ensemble is a set of individual models
in which the component models (also known as
members) are redundant in that each provides a
solution to the same task, even though this solution
may be obtained by different means (Baker & Ellison,
2008b). Parasuraman et al. (2006) developed ensemble
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ANN PTFs to estimate Ksat of Canadian soils,
whereas Baker & Ellison (2008a) developed ensemble
ANN PTFs for water retention of European soils.
Guber et al. (2009) selected 19 PTFs developed in
different regions, among which was one developed by
Tomassella & Hodnett (1998) for Brazilian soils in
the Amazon region. Using the ensemble approach,
they developed a new PTF to estimate soil water
retention. This ensemble PTF was implemented in a
program called CalcPTF (Guber & Pachepsky, 2010).
To date, there is no ensemble PTF which has been
developed based exclusively on PTFs developed in
tropical regions.

Equation-based PTFs and pattern-recognition
PTFs

The PTFs described above can be categorized as
equation-based PTFs and pattern-recognition PTFs.
Equation-based PTFs are directly related to a
mathematical model. Their formulation is based on
conventional statistical procedures such as MLR,
ENR, GLM, GAM, MARS, and GMDH to some extent.
In contrast, in pattern-recognition PTFs, no a priori
model needs to be defined. They are based on pattern
recognition and make use of the recently developed
data-mining and machine-learning techniques: ANN,
RT, k-NN, SVM, GP. In figure 5, a schematical
representation of different types of water-retention
PTFs categorized according to various criteria is
provided.

Considerations

This review of water-retention PTFs for soils in
the humid tropics reveals that: 97 % of the PTFs based
on the empirical approach are Continuous PTFs, and
3 % are Class PTFs; 91 % of the PTFs are based on
the empirical approach, and only 9 % are based on

the semi-physical approach; 97 % of the empirical
PTFs were derived based on the MLR and polynomial
of the nth order techniques, and 3 % are based on the
k-NN approach; 84 % of the continuous PTFs are
point-based, 16 % are parameter-based, and 0% are
pseudo-continuous PTFs; 97 % of the continuous PTFs
developed for soils in the humid tropics are equation-
based PTFs, and 3 % are pattern-recognition PTFs;
26 % of the tropical water-retention PTFs were
developed for soils in Brazil, 26 % for soils in India,
11 % for soils in other countries in America (USA,
Mexico and Cuba), and 11 % for soils in other countries
in Africa (Sierra Leone, Tanzania, Uganda and
Zambia).

Table 1 shows that the aforementioned tropical
PTFs are derived based on different scales of data
collection, from the local to international level. Most
of the soils in the development dataset were highly
weathered soils dominated by low activity clay
minerals such as kaolinite. They mainly belong to
the FAO Soil Group of Ferralsols and related soils
(Acrisols and Nitisols). However, other soils like
shrink-swell soils (Vertisols) and hydromorphic soils
were also present, though to a limited extent. There
is wide variation in the size of the development
dataset, ranging from 13 to 685 soil samples. Most of
the local tropical PTFs published in peer-reviewed
journals originated from three countries, located in
South-America (Brazil), West-Africa (Nigeria), and
Southeast Asia (India). This shows that in other
regions of the humid tropics, such as Central Africa,
there have been no efforts to develop local water-
retention PTFs. Recently, Botula et al. (2012)
emphasized the need for development of PTFs to predict
water retention of soils in Central Africa.

Table 2 shows that different predictors were used
in tropical PTFs, and different output variables were
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Reference
Year of Scale of soil Information on the soils Size of the Geographical

publication  data collection  used in the dataset development dataset domain

Point-based PTFs

Pidgeon 1972 Local soil survey data Ferralitic soils dominated

by Kaolinite [LAC(1) soils] 39 Uganda

MacLean & Yager 1972 Local soil survey data Oxisols, Inceptisols, Entisols

and Vertisols 143 Zambia

FAO 1974 Soil survey data from Ferralic horizons (LAC soils) unknown Various countries

various countries  in the

humid tropics

Soil Survey Staff 1975, 1990 Local soil survey data Oxic horizons (LAC soils) unknown USA

Lal 1978, 1981 Local soil survey data Mostly HWS(2) (LAC soils) and some

hydromorphic and HAC(3) soils 119 Nigeria

Aina & Periaswamy 1985 Local soil survey data Mostly Ultisols and Alfisols

(LAC soils) unknown Nigeria

Bhavanarayana et al. 1986 Local soil survey data unknown unknown India

Arruda et al. 1987 Local soil survey data Mostly well-drained HWS

(LAC soils) unknown Brazil

Dijkerman 1988 Local soil survey data Mostly Ultisols (LAC soils)

and some hydromorphic soils 166 Sierra Leone

Rao et al. 1988 Local soil survey data unknown unknown India

Soil Survey Staff 1992 Local soil survey data Oxic horizons (LAC soils) unknown USA

Bell & van Keulen 1995 Local soil survey data Alfisols, Entisols and Vertisols

(LAC and HAC soils) 148 Mexico

van den Berg 1996 Local soil survey data Well drained Ferralsols and

related Acrisols and Nitisols

(LAC soils) unknown South and

Southeast Brazil

van den Berg et al. 1997 Soil survey data from World Oxisols and related

various countries  soils (LAC soils) 91 Various countries

in the (sub)

humid tropics

Tomasella & Hodnett 1998 Local soil survey data Mostly HWS (LAC soils) 196 Brazil

Singh 2000 Local soil survey data LAC and HAC soils 256 India

Mdemu & Mulengera 2002 Local soil survey data Nitisols, Luvisols and

Ferralsols (LAC soils) 102 Tanzania

Igwe et al. 2002 Local soil survey data unknown unknown Nigeria

Tomasella et al. 2003 Local soil survey data Mostly HWS (LAC soils) 75% of 838 (i.e. 629) Brazil

Saikia & Singh 2003 Local soil survey data unknown unknown India

Adhikary et al. 2008 Local soil survey data Entisols, Inceptisols,

Alfisols, Vertisols, Ultisols,

Oxisols and Aridisols

(LAC, MIX(4) and HAC soils) 600 India

Patil et al. 2009 Local soil survey data Vertisols or Typic

Haplusterts and Vertic

Haplustepts (HAC soils) 77, 13 and 15 Madhya Pradesh

region in India

Reichert et al. 2009 Local soil survey data unknown 249 to 685 Brazil

Table 1. General information on point-based, parameter-based, and semi-physical water retention
pedotransfer functions (PTFs) developed for soils of the humid tropics

Continua...
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considered. In Figure 6, one can see that PSD or
texture is the dominant predictor occurring in all the
tropical PTF papers (100 %), followed by OC/OM
(54.8 %) and BD (38.7 %). Therefore, these predictors
are more common for tropical PTFs compared to other
soil properties found in various databases of soils of
the humid tropics such as pH, CEC, dithionite-citrate-
bicarbonate extractable iron (DCB-Fe), and dithionite-
citrate-bicarbonate extractable aluminum (DCB-Al).
Botula et al. (2012) showed that DCB-Fe can be a good

potential predictor of water retention in the humid
tropics and particularly in DR Congo where data on
DCB-Fe and DCB-Al are largely available in various
soil databases and soil survey reports. However, only
van den Berg (1996) and van den Berg et al. (1997)
used DCB-Fe and DCB-Al as predictors in water-
retention PTFs. The results were very promising
since the PTFs containing DCB-Fe and DCB-Al yielded
the best results. Other soil properties such as specific
surface area (van den Berg et al., 1997), moisture

Reference
Year of Scale of soil Information on the soils Size of the Geographical

publication  data collection  used in the dataset development dataset domain

Minasny & Hartemink 2011 Soil survey data from

various countries LAC, MIX and HAC soils 632, 652 and 648 Various countries

in the (sub)

humid tropics

Chakraborty et al. 2011 Local soil survey data Inceptisols, Alfisols, Aridisols 187 India

Obalum & Obi 2012 Local soil survey data Typic Paleustults or

Ferric Acrisols (LAC soils) 27, 27, 36 and 18 Southeastern

Nigeria

Santos et al. 2013 Local soil survey data Argisols, Cambisols, Neosols

and Planosols (according

to Embrapa 2006) 504 and 484 Center South

portion of Rio

Grande do Sul

Parameter-based PTFs

Van den Berg et al. 1997 Soil survey data from World Oxisols and

various countries  related soils (LAC soils) 91 Various countries

in the (sub)

humid tropics

Tomasella et al. 2000 Local soil survey data Mostly HWS (LAC soils) 517 Brazil

Hodnett & Tomasella 2002 Soil survey data from World Oxisols and related

various countries  soils (LAC soils) 492 Various countries

in the (sub)

humid tropics

Santra & Das 2008 Local soil survey data unknown 100 India

Adhikary et al. 2008 Local soil survey data Entisols, Inceptisols,

Alfisols, Vertisols, Ultisols,

Oxisols and Aridisols

(LAC, MIX and HAC soils) 600 India

Semi-physical PTFs

Vaz et al. 2005 Local soil survey data Quartzipsamments,

Oxisols, Alfisols, Ultisols,

Vertisols, Mollisols, Entisols

(LAC, MIX and HAC soils) 104 Brazil

Millán & González-

Posada. 2005 Local soil survey data a clay loam and a silty

clay loam soil 2 Cuba

Andrade et al. 2008 Local soil survey data Neossolo Regolitico

(according to Embrapa, 1999) 36 Brazil

Table 1. Cont.

(1) LAC: low activity clay; (2) HWS: highly weathered soils; (3) HAC: high activity clay; (4) MIX: mixed activity clay.
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equivalent (Tomasella et al., 2003), micro-porosity,
and total porosity (Obalum & Obi, 2012) are rarely
found in tropical soil databases and, therefore, have
been rarely used as predictors in the development of
tropical PTFs. Other predictors related to soil
structure (Pachepsky et al., 2006) and topography
(Sharma et al., 2006) have been suggested to improve
the predictive ability of PTFs, but they have not yet
been used for tropical PTFs.

From table 2, it can be seen that gravimetric or
volumetric water contents at -10, -33, and -1500
kPa are the most selected output variables. The first
two matric potentials are related to FC of tropical
soils, whereas the third one is related to PWP. The
PTFs of Pidgeon (1972) and van den Berg et al.
(1997) predict volumetric water content at -10 kPa
but not at -33 kPa, whereas most of the
aforementioned PTFs do. According to various
authors (Pidgeon, 1972; Lal, 1978; Babalola, 1979;
Reichardt, 1988), the water content at -33 kPa, as
well as water content at FC, is considered to be too
low for tropical soils and they suggested measuring
soil moisture at -10 kPa. Other authors, such as
Ottoni Filho & Ottoni (2010), suggested even -6 kPa
matric potential as providing a more accurate
estimation of FC for Brazilian soils. Water retention
at -100 kPa was also a recurrent output variable in
all tropical PTFs that predict water content at
several matric potentials. The critical matric
potentials at which many crops undergo water stress
are around -100 kPa for excessively dry conditions
(Taylor & Ashcroft, 1972). In a similar vein, Pidgeon
(1972) indicated that -100 kPa has often been
considered as the limit for freely available water
since below this matric potential, the growth of many
crops may be reduced.

Virtually all parameter-based tropical PTFs predict
the parameters of the van Genuchten (1980) model,

with the exception of PTFs developed by Adhikary et
al. (2008), which predict the parameters of the Brooks
& Corey (1964) model.

These figures confirm once more the earlier
statement of Schaap (2005) that “with the exception
of a few studies, hydraulic data and corresponding
indirect methods about tropical soils are a virtual terra
incognita”. This situation has not changed much until
the present. Data-mining techniques such as ANNs,
k-NN, and SVM, which are gaining popularity in
pedotransfer modeling in temperate regions, have
rarely been applied to develop PTFs for soils of the
humid tropics. Pedotransfer functions derived from
the semi-physical approach, such as the pore-solid
fractal approach, have not yet been applied to soils in
the humid tropics. Moreover, additional studies should
be devoted to the development of tropical PTFs based
on new and/or promising predictors such as DCB-Fe
(Botula et al., 2012).
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