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ABSTRACT

Under field conditions in the Amazon forest, soil bulk density is difficult to measure. 
Rigorous methodological criteria must be applied to obtain reliable inventories of C stocks 
and soil nutrients, making this process expensive and sometimes unfeasible. This study aimed 
to generate models to estimate soil bulk density based on parameters that can be easily and 
reliably measured in the field and that are available in many soil-related inventories. Stepwise 
regression models to predict bulk density were developed using data on soil C content, clay 
content and pH in water from 140 permanent plots in terra firme (upland) forests near Manaus, 
Amazonas State, Brazil. The model results were interpreted according to the coefficient of 
determination (R²) and Akaike information criterion (AIC) and were validated with a dataset 
consisting of 125 plots different from those used to generate the models. The model with best 
performance in estimating soil bulk density under the conditions of this study included clay 
content and pH in water as independent variables and had R² = 0.73 and AIC = -250.29. The 
performance of this model for predicting soil density was compared with that of models from 
the literature. The results showed that the locally calibrated equation was the most accurate 
for estimating soil bulk density for upland forests in the Manaus region.
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RESUMO:  ESTIMATIVA DA DENSIDADE DO SOLO POR EQUAÇÕES DE 
PEDOTRANSFERÊNCIA NA AMAZÔNIA CENTRAL

A densidade do solo é um parâmetro de difícil aferição no campo da floresta amazônica e exige rigor 
metodológico para realizar inventários dos estoques de C e nutrientes nos solos, fazendo com que esse 
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INTRODUCTION

Soil bulk density is used in the quantification 
of soil C stocks (Veldkamp, 1994), and is therefore 
an important parameter for national inventories of 
greenhouse gas (GHG) emissions under the United 
Nations Framework Convention on Climate Change 
(UNFCCC). However, this parameter is a major 
source of uncertainty for estimates of soil C stocks 
(Fearnside and Barbosa, 1998; Taalab et al., 2012). 
Data are scarce because sampling undisturbed 
cores is laborious and data are only reliable if the 
methodological rigor is high. The result is that soil 
carbon stocks are commonly estimated from mean 
bulk density (Bd) values from the literature and 
from values for C concentration measured in the 
field (Bernoux et al., 1998).

Although Bd is calculated as the ratio of soil 
mass to volume, both of which are easily measured 
variables, reliable information on soil Bd is difficult. 
This has stimulated predictions of soil density that 
exploit the relationship between this parameter 
and other variables commonly found in soil-related 
inventories in order to ensure the reliability of 
carbon stock assessments and to reduce evaluation 
costs (Federer et al., 1993; Bernoux et al., 1998, 
2002; Tomasella and Hodnett, 1998; Calhoun et 
al., 2001; Heuscher et al., 2005; Benites et al., 
2007; Tranter et al., 2007; Steller et al., 2008; 
Gharahi-Ghehi et al., 2012; Chaudhari et al., 2013).

Pedo-transfer functions (PTFs) have been 
widely used in soil studies to estimate values 
that are difficult to measure in the field (Minasny 
and Hartemink 2011). The PTFs constructed 
from commonly available parameters in soil 
inventories, such as organic C content and clay 
amount, are highly promising to represent direct Bd 
measurements where these are difficult to access or 
unavailable (Benites et al., 2007).

Thus, the trend is to increasingly generate 
estimates locally, to reduce the uncertainties 
of equations and calculations derived from this 
parameter. It should be noted that measuring the 
actual soil density values in the field is always 
more reliable than estimates based on variables 
that are equally or even more complex and with 
high spatial variability.

Bernoux et al. (1998) generated equations 
to estimate density from data series of the 
RADAMBRASIL inventories, published between 
1973 and 1982 by the Ministry of Mines and 
Energy. Despite the vast amount of data on geology 
and geomorphology, vegetation, soils and land use, 
these surveys lack information on soil density. 
This led to the creation of equations to estimate 
this parameter.

In view of the need to create equations that are 
locally better adjusted, the purpose of this study 
was to generate regression models to estimate 
density from soil parameters available in the soil 
inventories of the Project Biological Dynamics of 
Forest Fragments (PDBFF) and to compare their 
performance in predicting bulk density of upland 
forest soil of the region of Manaus between the 
locally generated equations and equations available 
in the literature.

MATERIAL AND METHODS

The study was conducted in the reserves of the 
PDBFF (Figure 1) located approximately 70 km 
north of Manaus (2° 30’ S, 60° W). The altitude at 
the site varies between 50 and 100 m above sea level, 
average annual temperature was 26.7 °C in Manaus, 
and average annual rainfall 2,200 mm, with a 
pronounced dry season from July to September 
(Fearnside and Leal Filho, 2001).

processo se torne oneroso e, certas vezes, inviável, dependendo das condições de trabalho. Objetivou-se com 
este estudo gerar modelos para estimar a densidade do solo a partir de parâmetros facilmente medidos 
em campo com confiabilidade, presentes em muitos inventários pedológicos. A construção dos modelos 
de regressão para estimar a densidade do solo usou dados sobre o teor de C, conteúdo de argila e pH em 
água medidos em 140 parcelas permanentes em florestas de terra-firme da região de Manaus, Estado do 
Amazonas, Brasil. Os resultados foram interpretados de acordo com o coeficiente de determinação (R²) e 
o critério Akaike de informação (AIC) dos modelos. Os modelos foram validados por meio de uma série 
de dados composta por 125 parcelas diferentes das usadas na geração dos modelos. O modelo que melhor 
estimou a densidade nas condições desse estudo foi o que incluiu o conteúdo de argila e o pH em H2O como 
variáveis independentes e apresentou R² = 0,73 e AIC = -250,29. O modelo desta pesquisa foi comparado 
a equações existentes na literatura quanto ao desempenho da predição dos valores de densidade do solo. 
Os resultados apontaram que o uso da equação calibrada localmente evidenciou melhor desempenho para 
estimar a densidade do solo para as florestas de terra-firme da região de Manaus.

Palavras-chave: densidade do solo, floresta amazônica, terra-firme, Manaus, Brasil, floresta tropical, 
solos tropicais.
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The soils in the region were classified as 
Latossolos Amarelos álicos (Oxisol), according 
to RADAMBRASIL maps (Fearnside and Leal 
Filho, 2001); they are highly leached, acidic and 
nutrient-poor (Chauvel, 1982; Chauvel et al., 1987). 
According to the current Brazilian system of soil 
classification (SiBCS), these soils are classified in 
the category of Latossolos Amarelos alumínicos 
(Oxisol) (Embrapa, 2013).

The typical vegetation in this part of central 
Amazonia is characterized as upland dense forest. 
The diversity of trees can be considered high, with 
an average of over 280 species (diameter at breast 
height [DBH] > 10 cm) per hectare in continuous 
forest (Oliveira and Mori, 1999).

In each of the PDBFF reserves, one or more 1-ha 
grid plots were permanently installed and divided 
into 25 quadrats (20 × 20 m, here called “plots”). 
Each vertex of these plots was assigned a letter and 
a number, creating a system of coordinates for the 
exact localization of the sampling points in the field

Soil sampling
Samples for C concentration determination were 

obtained using of a screw auger. Each individual 
sample for C content was composed of five subsamples 
taken on all four sides and in the center of each plot. To 
determine soil density, a sample was collected in the 
center of each plot using a stainless steel cylindrical 
auger specifically designed to collect undisturbed 
samples, similar to kopeck volumetric rings (length 
20 cm, diameter 5 cm, volume 0.3925 dm³). All samples 
were collected from the 0-20 cm layer and stored in 
plastic bags to be transported and properly processed 

in the laboratory. In total, soil samples were collected 
in 265 plots distributed in 22 1-ha grids in the PDBFF 
forest inventories in Central Amazonia.

Preparation and processing of samples
In the laboratory, samples for C analysis were 

dried in a solar oven and then sieved first through 
20 mm mesh and then through 2 mm mesh. The 
plant roots and other visible fractions were removed 
and a fraction of each specimen was ground and 
reduced to particles with maximum diameter of 
50 microns before automatic chemical analysis.

Samples for determination of bulk density (Bd) 
were placed to dry in aluminum containers in an 
electric oven at 105 ° C for approximately 72 h.

Analysis of total carbon content
Total C content (g/kg) of each sample was 

determined using an element analyzer (Varo Max 
model, CN Elemental Instruments, Hanau, Germany). 
This device employs the dry combustion technique, 
which is the conversion of elements in the samples to 
simple gases such as CO2 and N2. The resulting gases 
are mixed and maintained under standard conditions 
of pressure, temperature and volume, and are then 
depressurized in a column where they are detected, 
identified and separated based on their thermal 
conductivity (Pérez et al., 2001).

Determination of soil bulk density
The soil density in each plot was calculated by 

dividing the dry weight of the sample by the volume 
of the collection cylinder (0.3925).

Roads

Legends:

3.000 m

N

Hydrography

BDFFP Reserves Continuous forest

Deforested areas

Figure 1. Study area. Source: Project Biological Dynamics of Forest Fragments [PDBFF].
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Determination of clay content
Clay content (%) was determined by particle size 

analysis by the pipette method (Embrapa, 1979).

Determination of pH in water
Soil reaction (pH) in distilled H2O [pH(H2O)] 

was estimated by a pH-meter. The ratio between 
the amount of oven-dried soil and the amount of 
water used was 1:1 on a volume basis, 20 mL of soil 
to 20 mL of water (Fearnside and Leal Filho, 2001).

Model development
To estimate Bd, multiple-regression equations were 

generated by the stepwise routine in SYSTAT software 
(Wilkinson, 1990). The independent variables used in 
the models were chosen according to the information 
available in the PDBFF database, as well as their 
consistency with the soil variables most commonly 
used in developing PTFs to estimate density (C content 
amount of clay and pH measured in water). The model 
was constructed using data from 140 plots.

In order to assess the degree of correlation 
between the independent variables, the Pearson 
test was applied to this data series. The presence 
of co-linearity was observed according to the values 
of the parameters.

The performance of PTFs for predicting soil 
density was evaluated based on the Akaike 
information criterion (AIC) and the coefficient 
of determination (R²), thereby validating the 
models. The AIC value allows a comparison and 
classification of multiple competing models and 
to estimate which is closest to the “real” process 
underlying the biological phenomenon under study 
(Akaike, 1973; Bozdongan, 1987; Burnham and 
Anderson, 2002; Burnham et al., 2011; Symonds and 
Moussalli, 2011). The coefficient of determination is 
the proportion of the variation in soil density that 
can be explained by the set of predictor variables.

The model was validated using a data set 
consisting of 125 samples different from those used 
to generate the equations. The predicted values 
were then plotted against the observed values to 
evaluate the performance of the estimates. We also 
plotted the residuals of the regressions against 

the estimated values to verify the premise of 
homoscedasticity. Normality of residuals was tested 
by the Kolmogorov-Smirnov method at the 95 % 
significance level.

Comparisons of pedo-transfer functions (PTFs)
This study’s best model for predicting bulk 

density was compared with three models from the 
literature that were generated from samples collected 
throughout the Amazon Basin (Bernoux et al., 1998; 
Tomasella and Hodnett, 1998; Benites et al., 2007). 
These equations were used to predict density from 
the data series used to validate our models. For the 
model of Tomasella and Hodnett (1998), the dataset 
contained a limited number of plots due to the lack 
of information on soil texture in some locations. The 
result of these predictions were plotted in graphs 
of predicted values versus the values observed in 
the field. The comparison included analysis of the 
residual graphs to check homoscedasticity.

RESULTS

Model development and selection
Descriptive statistics for the data series used in 

the construction of density prediction models are 
presented in table 1. The Pearson correlation matrix 
indicates that there is co-linearity between soil 
carbon and clay (0.80), which creates an unwanted 
bias in composite models for these variables. The 
pH(H2O) was not correlated neither with carbon 
(-0.21) nor clay (-0.40).

The regression model results show R² = 0.74 and 
AIC = -251.88 for Model 1 equation (Table 2). Figure 2 
shows the observed density versus estimated values 
for each pedo-transfer equation. Model 1 fulfilled the 
homoscedasticity premise, as confirmed by analyzing 
the point distribution on the graph of regression 
residuals versus the estimated values (Figure 3). 
Furthermore, the result of the Kolmogorov-Smirnov 
test for normality at 95 % significance showed a 
normal distribution of the regression residuals 
(Table 3).

Table 1. Descriptive statistics for the model parameters
Serie for model development Serie for model validation

Parameter Carbon Clay pH(H2O) Carbon Clay pH(H2O)
g kg-1 % g kg-1 %

Mean 1.62 48.12 3.92 1.63 48.15 3.98
Median 1.59 49.68 4.02 1.62 50.71 4.06
Minimum 2.78 75.06 4.81 3.33 73.50 4.61
Maximum 0.81 15.23 3.20 0.73 5.81 2.20
Standard deviation 0.42 15.36 0.37 0.39 16.67 0.37
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Model 2, in which C and clay contents were 
explanatory variables, R² = 0.72 and AIC = -243.24. 
The residuals of this regression were shown to be 
homoscedastic (Figure 3) and followed the normal 
distribution (Table 3).

The third model generated was based solely on 
C content as predictor variable (Figure 2; Table 2). 
The model had a lower coefficient of determination 
compared to the previous models, with R² = 0.55 and 
AIC value = 180.52. Nevertheless, the regression 
residuals showed homoscedasticity and normal 
distribution, according to the Kolmogorov-Smirnov 
test (Figure 3; Table 3).

Model 4 included clay content and pH(H2O) 
as independent variables. The coefficient of 
determination of this model was similar to that of the 
first equation with R² = 0.73 and AIC value = -250.29, 
this being the second lowest value of the models tested 
(Table 2). The validation of this model indicated 
approximately 60 % correspondence between the 
observed values and those predicted by the equation. 
The plot of the residuals versus model-estimated 
values (Figure 3) showed homoscedasticity of the 
points, and the Kolmogorov-Smirnov test at 95 % 
significance confirmed normal distribution (Table 3).

Clay content was the variable which, separately, 
had the highest predictive power, as indicated by the 
results of Model 5. This parameter was responsible 
for explaining about 70 % of the variation in soil 
density. The model had a random distribution 
(Figure 3), and the regression residuals were 
normally distributed (Table 3).

The pH(H2O) was included as the only 
independent variable in Model 6 (Table 2). 
The extremely low coefficient of determination 
(R² = 0.01) and the high AIC value (-73.07) indicated 
that this variable is not significantly related to 
variation in soil Bd. The plot of residuals versus 
fitted values showed a pattern of clustering of 
points, and the Kolmogorov-Smirnov test at 95 % 
significance indicated a non-normal distribution, 
invalidating this model.

In the 7th and last model, C content and pH(H2O) 
were used as predictor variables (R² = 0.55 and 
AIC = - 178.72). The model was validated by the 

homoscedasticity seen in figure 3 and the normal 
distribution of the residuals (Table 3).

Despite the similarity between the results of 
Models 4 and 1, the existence of co-linearity among 
the predictors of the latter model compromises 
its reliability. Therefore, Model 4 had a better 
performance in predicting Bd under the conditions 
of this study and was selected for comparison with 
models in the literature.

Model comparisons
Using the equation of Bernoux et al. (1998) to 

estimate soil density from the validation series of 
this study resulted in a R2 = 0.56, which shows 
the degree of relationship between estimated 
density values for this model versus the values 
observed in the field. However, the graph of 
residuals versus estimated values showed 
clustering, suggesting that the residuals are not 
normally distributed, making the validity of this 
prediction questionable (Figure 4). Using this 
equation resulted in an overestimation of values, 
increasing the predicted average by around 72 % 
over the average of values obtained in the field 
(Table 4).

Results of the equation of Benites et al. (2007) 
also indicated a tendency for overestimation in 
the predicted values, with an average increase 
of about 130 %, compared to the observed values 
(Table 4). The yield of the regression between 
predicted and observed values was lower when 
the estimate was made from the validation series 
of this study, with R² = 0.63 in the original study 
versus R² = 0.56, when applied to the data set of 
this study (Figure 4).

When used to estimate soil density from the 
field data in this study, the equation of Tomasella 
and Hodnett (1998) showed the same trend 
observed earlier, resulting in overestimation of the 
predicted values of around 96 % above the average 
of the values for observed density (Table 4). The 
coefficient of determination of the regression was 
only 0.31, and the residuals were not randomized 
(Figure 4).

Table 2. Regression model selection results (ordinary least squares [OLS])
Model Variable Intercept #1_Carbon #2_Clay #3_pH Standard deviation AICc R²

1 1, 2, 3 1.51 -0.06 -0.01 -0.07 0.09 -251.88 0.74
2 1, 2 1.19 -0.07 -0.01 ... 0.10 -243.24 0.72
3 1 1.20 -0.32 ... ... 0.12 -180.52 0.55
4 2, 3 1.49 ... -0.01 -0.08 0.09 -250.30 0.73
5 2 1.15 ... -0.01 ... 0.10 -240.67 0.70
6 3 0.44 ... ... 0.06 0.18  -73.07 0.01
7 1, 3 1.26 -0.33 ... -0.01 0.12 -178.73 0.55
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Figure 2. Validation of the regression models generated by the stepwise method for predicting soil density.
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DISCUSSION

Assuming that there should be no co-linearity 
between independent variables that make up the 
equations in the regression models, the Models 1 
and 2, despite having high R² values, are considered 

biased and unreliable for predicting soil density. 
Models that do not include both C and clay content are 
free of the bias generated by the co-linearity between 
these variables, as is the case for Models 3 to 7.

Models 4 and 5 had similar R² values (0.73 and 
0.70, respectively). However, the results of the 
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Figure 3. Regression residuals versus estimated values for soil density.



R. Bras. Ci. Solo, 39:397-407, 2015

404 Henrique Seixas Barros and Philip Martin Fearnside

validation of the models indicated better performance 
of Model 4, and much of the variation in the 
estimated data was explained by the independent 
variables (Figure 2). The predictive power of this 
model was similar to that of Model 1, with the 
advantage of having no bias of co-linearity according 
to the Pearson correlation test results.

It is worth highlighting that the higher the 
complexity of regression models, the more the 
principle of parsimony requires attention from 
the modeler. In the case of a series of models 
with adequate fits, the model with the fewest 
predictor variables is preferred. This is because 
models that include many explanatory variables 

Table 3. Test for normality of residuals (Kolmogorov-
Smirnov at 95 % significance)

Model Critical value at 
95 % = 0.12 P value Distribution of 

residual

1 0.06 0.43 normal

2 0.05 0.43 normal

3 0.05 0.38 normal

4 0.04 0.75 normal

5 0.06 0.45 normal

6 0.12 0.00 not normal

7 0.06 0.65 normal
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E
st

im
at

ed
 b

ul
k 

de
ns

it
y 

(k
g 

dm
-3
)

Benites et al. (2007)

Tomasella and Hodnett (1998)

Observed bulk density (kg dm-3)

ŷ = 0.9002 + 0.3679x  
R² = 0.56 0.8

1.2

1.6

0.0 0.6 1.2 -1.0

-0.5

0.0

0.5

1.0

1.0 1.5 2.0

ŷ = 1.4967 + 0.0509x 
R² = 0.56 

0.8

1.2

1.6

0.0 0.6 1.2 -1.0

-0.5

0.0

0.5

1.0

1.0 1.5 2.,0

R
es

id
ua

l

 

ŷ = 0.9902 + 0.2693x 
R² = 0.31 

0.8

1.2

1.6

0.0 0.6 1.2 -1.0

-0.5

0.0

0.5

1.0

1.0 1.5 2.0

Figure 4. Comparison of our best model with models available in the literature.
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Table 4. Descriptive statistics for observed densities and for densities estimated by the regression models
Density

Observed in the 
field

Model 4 
estimate

Bernoux et al. 
(1998)

Benites et al. 
(2007)

Tomasella and Hodnett 
(1998)

kg/dm³
Mean 0.66 0.65 1.14 1.53 1.15
Median 0.62 0.63 1.14 1.53 1.16
Minimum 0.35 0.37 0.99 1.51 1.01
Maximum 1.10 1.08 1.31 1.55 1.41

may seem to fit the data well, when, in fact, the 
fit is biased (Minasny and Hartemink, 2011). 
However, the difference between the values of 
the coefficients of determination for Models 4 
and 5 should not be viewed in this light, since 
the difference in the number of explanatory 
variables is minimal between these models. 
Among the models generated, the performance 
of Model 4 was generally best for all assessment 
criteria. This model had the best coefficients of 
determination and AIC values, the residuals met 
the homoscedasticity assumptions and there was 
no co-linearity between the predictor variables.

Separately, the pH(H2O) was not significantly 
correlated with the target variable of estimation of 
the study. This indicates that changes in density 
must be more closely related to C content and 
especially clay content in the sampled soils, although 
the equation with the best performance included 
both clay and pH.

The study of Bernoux et al. (1998) provided a 
series of equations to estimate soil density, and the 
model with the best performance in predicting this 
parameter (R² = 0.56) was constructed from the 
quantities of clay, sand, organic matter and pH(H2O) 
based on 323 observations. The study showed that 
the estimated performance improved when the 
input data in the model were separated according 
to soil type and horizon. In this case, the equation 
was based only on clay content and C restricted to 
samples collected in the A horizon. For the surface 
of Latosols (Oxisols) the performance was high 
(R² = 0.78), although the number of observations was 
small (only 26 samples). This model is represented 
by the following equation:

Density (D, kg/dm3) = 1.419 - 0.0037 × clay (%) 
- 0.061 × carbon (%)

In the validation step of the PTFs, the application 
of this equation to our data resulted in a R2 similar 
to that of Model 4 in this study (Figure 4). However, 
the graph of the residuals versus estimated values 
showed that this model is not adequately fit and that 
it does not satisfy the premise of homoscedasticity.

Estimates of Benites et al. (2007) showed 
improved performance when the models included 

Fe2O3 content instead of the sum of bases (SB), 
since this parameter was not correlated with soil 
density. In addition, these authors found increase in 
the predictive power of the models when these were 
generated from data collected at different depths. 
The same pattern was observed by Heuscher et al. 
(2005) and Sequeira et al. (2014), who observed that 
the depth was not an appropriate variable to predict 
soil density. However, density appears to increase 
with the depth of the soil horizon, suggesting an 
influence of the pressure generated by the soil load 
(Tranter et al., 2007).

However, in the model of Benites et al. (2007), 
according to the authors the most accurate, the sum 
of bases (SB) was included as follows:

Density (D, kg/dm3) = 1.5600 - 0.0005 × clay (g/kg) 
- 0.100 × C (g/kg) + 0.0075 × SB (cmolc/kg)

In this particular case it was not possible to use 
this FTP to estimate Bd, since the data for this study 
contained no information on the parameter SB.

Benites et al. (2007) generated seven models for 
different soil parameters. For comparison, Model 6, 
which included the parameters clay and C, was 
selected due to its performance in predicting Bd. 
The equation of Model 6, of Benites et al. (2007), is 
as follows:

Density (D, kg/dm3) = 1.5688 - 0.0005 × clay (g/kg) 
- 0.009 × carbon (g/kg)

The small difference between the R2 of estimates 
made by this equation using the original data series 
and this validation series can lead to the impression 
that the PTF is suitable for predicting soil density 
under the conditions of this study, but the model 
was not considered valid since the residuals were 
not homoscedastic.

The best-performing model, presented by 
Tomasella and Hodnett (1998), included silt content, 
according to the equation:

Density (D, kg/dm3) = 1.578 - 0.054 × carbon (%) 
- 0.006 × silt (%) - 0.004 × clay (%)

To use this PTF for predicting soil density 
under the conditions of this study, the validation 
series was reduced, since information on the silt 
fraction was available for only 118 of the plots. The 
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low performance of this PTF in estimating density 
from the data series in this study may reflect the 
high correlation between clay and silt, as these 
parameters are expressed as percentages of the total 
particle-size composition and are added to the sand 
fraction, with a total of 100 % of the three fractions.

Although previous studies provided important 
information on the relationship between density 
and other soil properties in the Amazon, the 
spatial scales evaluated are too large to be reliably 
applied to local estimates (Bernoux et al., 1998; 
2002; Tomasella and Hodnett 1998; Benites et al., 
2007). The superiority of locally fit models was also 
shown in China, where the predictive power of 19 
pedo-transfer functions was tested for a range of soil 
data; the results showed that equations generated 
from local observations had greater accuracy in the 
prediction of soil density (Han et al., 2012).

Thus, it is understood that locally generated 
equations will perform better in estimating soil 
density. This is because the logic of spatial data 
confirms the idea that, in geographic space, 
everything is related. Observations at sites that 
are close together are more related to each other 
than to geographically more distant observations 
(Fotheringham et al.,  2002; Charlton and 
Fotheringham, 2009).

For having been calibrated based on field 
information, Model 4 produced a better estimate of 
soil density in this study than the PTFs available 
in the literature. The equation generated in this 
study was able to reliably estimate the density 
of surface soil (0-20 cm) in upland forests of the 
region of Manaus region. However, the uncertainty 
attributed to this estimate is still relevant, making it 
necessary to generate a larger number of equations 
calibrated locally in order to increase the accuracy 
of predicted values of density, and thereby improve 
estimates of soil carbon stocks throughout the 
Amazon landscape.

CONCLUSIONS

The pedo-transfer function (PTF) with the best 
performance in predicting soil density under the 
conditions of this study was Model 4, which included 
clay content and pH in water as independent 
variables [Density = 1.495 - 0.011 × clay (%) - 0.079 × pH(H2O)].

Despite the bulk density estimates using the PTFs 
available in the literature showing coefficients of 
determination similar to that of Model 4, a tendency 
of overestimation at different percentages was found 
for all tested equations from the literature, showing 
that locally generated equations have lower levels 
of uncertainty.
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