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ABSTRACT

In recent years, geotechnologies as remote and proximal sensing and attributes derived from 
digital terrain elevation models indicated to be very useful for the description of soil variability. 
However, these information sources are rarely used together. Therefore, a methodology for assessing 
and specialize soil classes using the information obtained from remote/proximal sensing, GIS 
and technical knowledge has been applied and evaluated. Two areas of study, in the State of São 
Paulo, Brazil, totaling approximately 28.000 ha were used for this work. First, in an area (area 1), 
conventional pedological mapping was done and from the soil classes found patterns were obtained 
with the following information: a) spectral information (forms of features and absorption intensity 
of spectral curves with 350 wavelengths -2,500 nm) of soil samples collected at specific points in the 
area (according to each soil type); b) obtaining equations for determining chemical and physical 
properties of the soil from the relationship between the results obtained in the laboratory by the 
conventional method, the levels of chemical and physical attributes with the spectral data; c) 
supervised classification of Landsat TM 5 images, in order to detect changes in the size of the soil 
particles (soil texture); d) relationship between classes relief soils and attributes. Subsequently, the 
obtained patterns were applied in area 2 obtain pedological classification of soils, but in GIS (ArcGIS). 
Finally, we developed a conventional pedological mapping in area 2 to which was compared with a 
digital map, ie the one obtained only with pre certain standards. The proposed methodology had a 
79 % accuracy in the first categorical level of Soil Classification System, 60 % accuracy in the second 
category level and became less useful in the categorical level 3 (37 % accuracy).
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INTRODUCTION

People are becoming aware that soil resources 
are not renewable in the time-scale of human 
generations and, consequently, are limited. Thus, the 
need for information leading to greater knowledge of 
soil use becomes more imperative. This knowledge 
is essential for maintaining populations, not only 
in terms of food production and raw materials, 
but also as a subsidy for urban development 
and environmental studies, among others. Most 
knowledge is obtained through what is known as 
pedological inventories or pedological surveys, 
which are nothing more than the examination 
and identification of soils, the establishment of 
their geographical boundaries, representation and 
description of soils on the map, and interpretation 
of their purpose.

In Brazil, the first soil surveys were carried out 
during the 1930s, with the objective of characterizing, 
identifying, and assessing potential sites for 
irrigation projects downstream from public dams 
in the Brazilian Northeast. However, the greatest 
boost in soil surveys occurred in the late 1940s, when 
the Ministry of Agriculture established the National 
Commission of Agronomic Research (Centro 
Nacional de Ensino e Pesquisas Agronômicas 
- CNEPA) to study soils in the vast territory of 
Brazil. Soil studies involved classification, fertility, 
management, and conservation, in addition to 

the basic research of physical, chemical, and 
mineralogical characterization of soils. There 
was an extensive program of soil surveys on 
the exploratory level of recognition, which for 
three decades produced most of the pedological 
information available today. Currently, around 
35 % of Brazilian soils (17 states and the federal 
district) are mapped on medium to undetailed scales 
(1:100,000 to 1:600,000) and complete coverage of 
the country at the exploratory level, on undetailed 
scales (1:1,000.000 to 1:5,000.000) (Santos, 2007). 
From the mid-1980s on, soil surveys in Brazil have 
been practically stagnant, mainly due to lack of 
incentives from the government, along with poor 
working conditions (problems with food, fresh water, 
road traffic conditions, cars, and medical assistance), 
the slow pace of officials, costly fieldwork, and 
difficulties in laboratory analyses.

A l t h o u g h  s u r v e y s  p e r f o r m e d  o n  t h e 
exploratory/schematic level are not considered 
highly valuable due to poor detail, they were very 
important for establishing public policies that gave 
rise to cartographic resources to develop land use 
and support the potential of land use on the regional 
level. In general, for all other purposes that require 
detailed soil surveys, Brazil is a country wholly 
deficient with regard to soil surveys (Oliveira, 1999).

The continuity of implementing surveys, at any 
level, depends on the use of technological advances, 
especially advances in soil mapping. Otherwise, 

RESUMO: MÚLTIPLAS FERRAMENTAS TECNOLÓGICAS NO MAPEAMENTO DIGITAL 
EM SOLOS TROPICAIS

Nos últimos anos, geotecnologias como sensoriamento remoto, espectrorradiometria próxima e 
atributos do terreno derivados de modelos digitais de elevação são muito úteis para a descrição da 
variabilidade do solo. No entanto, essas fontes de informação são raramente usadas em conjunto. Por este 
motivo, uma metodologia para atribuir e especializar classes de solos utilizando-se de informações obtidas 
com sensoriamento remoto/proximal, geoprocessamento e conhecimento técnico foi aplicada e avaliada. 
Duas áreas de estudo, localizadas no Estado de São Paulo, Brasil, e totalizando aproximadamente 
28.000 ha, foram utilizadas. Primeiramente, em uma área (Área 1), realizou-se o mapeamento pedológico 
convencional e a partir das classes de solos encontradas foram obtidos padrões com as seguintes informações: 
a) informações espectrais (características de formas e intensidade de absorção das curvas espectrais com 
comprimentos de onda de 350 - 2500 nm), de amostras de solo coletadas em pontos específicos nas áreas 
(de acordo com cada classe de solo); b) Obtenção de equações de determinação de atributos químicos e 
físicos do solo a partir da relação entre os resultados obtidos em laboratório, pelo método convencional, 
dos teores dos atributos químicos e físicos com os dados espectrais; c) classificação supervisionada de 
imagens Landsat TM 5, a fim de detectar alterações no tamanho das partículas do solo (textura do solo); 
d) relação entre as classes de solos e atributos do relevo. Posteriormente, os padrões obtidos foram aplicados 
na Área 2 a fim de obter-se a classificação pedológica destes solos, porém em ambiente SIG (ArcGis). Para 
finalizar, ainda foi realizado na Área 2 o mapeamento pedológico convencional para então comparar o 
mapa convencional com o mapa digital, ou seja, aquele obtidos apenas com padrões pré-determinados. A 
metodologia proposta teve expressivo resultado no primeiro nível categórico do Sistema de Classificação 
de Solos (79 % de acerto), um desempenho satisfatório até o segundo nível categórico (60 % de acerto) e 
tornou-se menos útil no nível categórico 3 (37 % de precisão).

Palavras-chave: comportamento espectral do solo, atributos do terreno, sensoriamento remoto.
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efficient development of detailed maps may be 
hindered. The aim of computer use is not to replace 
the conventional method of soil surveys, but to assist 
and optimize the work.

Many multidisciplinary studies show the 
efficiency of technological tools in soil studies, for 
example, orbital spectroradiometry. Although the 
soil is usually covered with vegetation and the 
soil surface is not visible, some soil properties can 
be directly assessed by their spectral signatures 
(Rossiter, 2005). Some of these notable soil properties 
are moisture (Jackson  et  al., 1996), physical and 
chemical characteristics (Odeh and McBratney, 
2000), and salts (Metternicht and Zinck, 2003). 
Moreover, integrated use of geostatistical techniques 
with remote sensing data for spatialization is 
important (Stein et al., 1998).

Studies on spectroradiometry show a strong 
relationship between spectral responses and soil 
properties, such as cation exchange capacity, organic 
carbon, Fe oxides, and clay (Chang  et  al., 2001; 
Shepherd and Walsh, 2002; Franceschini  et  al., 
2013; Nanni and Demattê, 2006; Demattê  et  al., 
2014a). In fact, this led Demattê et al. (2004a) to 
use a spectroscopy information to aid in pedological 
mapping. Afterwards, Fiorio et al. (2014) suggest the 
use of spectral sensors for the aid of field work in 
pedological maps. In addition to laboratory or field 
spectroscopy, we can also gather information from 
space (using Landsat data) as a valuable strategy 
(Demattê et al., 2009).

Another example of geotechnology applied 
to soil studies is the use of numerical models of 
land and their primary and secondary derivatives 
(McBratney  et  al., 2003), which are applied in 
the characterization and delineation of mapping 
units (McKenzie et al., 2000). The relationship of 
topographic features to soil properties was proved 
by Milne (1935); however, this relationship has been 
used more significantly in recent years, mainly due 
to the technological progress that facilitated access 
to powerful computers, as well as tools such as the 
Geographic Information System (GIS) and Global 
Positioning System (GPS) (Rossiter, 2005).

Although these techniques have proven helpful, 
few studies joined geoprocessing techniques, 
remote sensing (ground and orbital), relief analysis, 
field observations, and technical knowledge in a 
concise, accurate, and scientific way in soil surveys. 
However, basic studies such as morphopedology, 
photopedology, remote/proximal sensing, and 
geoprocessing focus on one unique technique, and 
are not linked. Nothing more logical than integrating 
the information generated, resulting in a more 
accurate and less costly soil map, which is generated 
more quickly and covers larger areas.

This study is based on the hypothesis that 
it is possible to determine a method that allows 

characterization, discrimination, and spatialization 
of soil classes, integrating the information obtained 
from remote/proximal sensing and geoprocessing, 
since these techniques are complementary. We expect 
that using each several remote sensing techniques 
will achieve a better soil map than traditional 
methods. Thus, the main objective is to generate a 
technique for developing a highly-detailed level of 
soil mapping with the integration of geotechnologies.

MATERIAL AND METHODS

Study site
The study site consists of two areas (1 and 2) 

of sugarcane (Saccharum spp) cultivation, each 
composed of several non-continuous plots. These 
sites are located in the northeastern region of São 
Paulo, involving several municipalities, such as 
São Carlos, Araraquara, and Ibaté, among others 
(21º 16’ 59” S/48° 39’ 31” W and 21º 45’ 19” S/48° 6’ 2” W). 
The areas together cover approximately 28,000 ha, 
with 15,000 ha in area 1 and 13,000 ha in area 2. 
The region ranges from 450 - 900 m above sea level, 
and the climate is mesothermal (dry winters and 
wet summers). Annual average rainfall ranges from 
1,000 - 1,800 mm, and annual average temperature 
is around 20 ºC. Lithology is represented mainly 
by the Serra Geral, Botucatu, and Pirambóia 
Formation (São Bento Group) and covered by the 
Serra de Santana Formation and others (Taubaté 
Group). The rocks of the Serra Geral Formation are 
volcanic, mainly basaltic. The rocks of the Botucatu 
Formation are wind sandstones, and the rocks of the 
Pirambóia Formation are composed of sandstones 
originating from fluvial deposits and flood plains 
(Bistrichi et al., 1981).

Methodology
The methodology proceeded in three stages: 

(a) determination of soil patterns in part of the studied 
area; (b) application of patterns obtained from stage 
“a” in a second unknown area; and (c) validation of soil 
mapping. We used wholly geotechnological patterns 
to create a digital map of the soil. We validated 
the digital map by cross-tabulating the digital and 
conventional soil maps with a conventional soil map 
of the unknown area.

Stage 1 - Determination of soil patterns
This stage was performed in area 1. The patterns 

of soil profiles were extracted from a semi-detailed 
soil map. The map was created by the conventional 
method, with 300 sampling points distributed 
according to the transection method. The samples 
were collected at three different depths (0.00 - 0.20, 
0.40 - 0.60 and 0.80 - 1.00 m) for a total of 900 soil 
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samples. In addition, 40 complete soil profiles were 
described and laboratory analyses were made to 
determine the following soil properties: sand, silt, 
clay, Ca2+, Mg2+, Al3+, and H + Al (Embrapa, 2013) 
in the soil exchange complex, and total contents of 
Fe, Ti, Si, and Al (Camargo, 1986). The sampling 
points were georeferenced with GPS. Figure 1 shows 
the activities in stage 1.

Spectral data acquisition at the laboratory level
The spectral data for the 900 soil samples 

collected from area 1 were obtained by the portable 
Fieldspec Pro sensor (ASD Inc., Boulder, Colorado, 
USA), within the 350 - 2,500 nm wavelength range, 
following the method described by Bellinaso et al. 
(2010). The spectral data was processed after 
measurement to smooth the spectral curves through 
application of the Savitzky-Golay method, with the 
2nd polynomial order and a 9-point window (Savitzky 
and Golay, 1964). Subsequently, the spectral data 
were processed following the method of Nanni and 
Demattê (2006), with 22 bands (B1, B2…B22) and 
13 heights (H1, H2...H13).

Spectral information and soil properties 
determined by conventional analysis were joined 
in a data matrix. A mathematical procedure was 
applied to deduce multiple regression equations, 
which allowed estimation of soil properties from the 
soil spectral data. The equations were used in area 2 

(unknown area). The multiple regression equations 
were calculated to quantify 19 physical and chemical 
soil properties.

Multiple linear regression analysis was performed 
with SPSS 11.0 software using the stepwise method 
(Glantz and Slinker, 1990). The equations were 
evaluated according to R2, RMSE, and em indexes 
(Kobayashi and Salam, 2000; Brown et al., 2006; 
Wolschick et al., 2007).

Evaluation of pure spectral curves 
The spectral curves obtained for each sampling 

point at different depths were correlated with a 
spectral library (Bellinaso  et  al., 2010) in order 
to sort and collate the spectra by soil class. 
Subsequently, each class obtained was analyzed 
in terms of form, intensity, and absorption of their 
respective groups of spectral curves (Demattê et al., 
2002, 2014b), to be used as a pattern for the group 
of curves obtained in area 2.

Satellite images and supervised classification
Five satellite images were taken from Landsat 

5 (Thematic Mapper sensor), WRS 220/075, dated 
08/17/2002, 08/14/2004, 08/17/2005, 05/09/2006, 
08/09/2007, with six spectral bands (B1: 450 - 520; 
B2: 520 - 600; B3: 630 - 690; B4: 760 - 900; B5: 
1,550 - 1,750; and B6: 2,080 - 2,350 nm), a spatial 

Figure 1. Flowchart of activities in stage 1.
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resolution of 30 m, and average altitude of orbit 
of 705 km. The reason the images were obtained 
in different years is that in large commercial 
plantations of sugar cane, soil preparation for crop 
renewal (which implies exposed soil), materializes 
through installments over the years, that is, each 
year soil tillage and preparation is carried out on a 
percentage of the area. This system forms a five-year 
cycle on average for the area under study, which 
means that the area prepared this year will only be 
prepared again in five years.

The images were registered according to 
Mitishita  et  al. (1988). For the purpose of 
maintaining the pixel value as similar as possible 
to the original value, the method called “nearest 
neighbor interpolation” was used, correcting only 
distortions in scale, and displacement or rotation 
between image and land projection (Crósta, 
1992). All procedures for land registration were 
performed in the ENVI 4.3 program (RSI, 2006). 
Afterwards, the digital numbers of the image 
were processed for apparent reflectance (AR) 
(Antunes et al., 2003) to be converted to images 
of surface reflectance (Vermote et al., 1997) in the 
6S program (Second Simulation of the Satellite 
Signal in the Solar Spectrum).

To separate areas with vegetation from those 
with exposed soil, we performed the Linear Model 
of Spectral Mixture - LMSM (Shimabukuro and 
Smith, 1991) and the Normalized Difference by 
Vegetation Index - NDVI (Rouse  et  al., 1974; 
Deering et al., 1975). 

Thus, in each of the images (surface reflectance), 
sampling points are overlapped and only those 
with exposed areas of soil were preserved and used 
as a reference for later supervised classification. 
In each of the selected points, clay content in the 
surface layer was observed and rated in one of the 
following classes: sandy (<150 g kg-1), sandy medium 
(150 - 250 g kg-1), medium loamy (250 - 350 g kg-1), 
clay (350 - 600 g kg-1), and very clay (>600 g kg-1). 
Thus, the spectral information of the set of points 
belonging to each class is grouped in a library.

Next, a supervised classification procedure 
was applied to the images using the algorithm 
of Gaussian distribution by maximum likelihood 
(Rodrigues et al., 2007). 

Derivation of terrain features
Digital contour lines with vertical equidistance of 

20 m were used to derive a digital elevation model 
(DEM) for the site under study. From this, primary 
(slope and plan curvature) and secondary (compound 
topographic index (CTI) and potential drainage 
density (PDD)) terrain features were calculated 
according to Moore et al. (1993), Dobos et al. (2000), 
Shary  et  al. (2002), Gessler  et  al. (1995), and 
McBratney et al. (2003).

The spatial maps of the primary and secondary 
terrain features were tabulated in the ArcGIS 9.3 
software, with the detailed soil map of area 1. The 
objective was to correlate soil classes with terrain 
information to use this as additional information for 
delimitation of the mapping unit in the next stage. 

Stage 2 - Applying patterns in area 2
In this stage, the main objective was to use all 

patterns and knowledge acquired in stage 1 to determine 
a digital soil map in an unknown area (area 2).

Field examination, collection, and processing 
of soil samples

Initially, area 2 was studied to recognize the 
general characteristics of the site. Satellite imaging 
and elevation data were used as field support. 
Afterwards, toposequences of 225 sampling 
points were collected at three depths (0.00 - 0.20, 
0.40 - 0.60, and 0.80 - 1.00 m) and analyzed for 
chemistry and spectra.

Digital soil mapping based on patterns of 
stage 1
Quantification of soil properties by spectral 
models

From the soil spectral data of area 2, each 
physical and chemical property was quantified using 
the multiple regression models deduced from data of 
area 1, which allowed tabulation of soil properties 
estimated for each of the 225 soil samples. Additional 
information was provided by color measurement of 
surface and subsurface layers of wet soil samples in 
the laboratory using the colorimetric method.

Analysis of spectral curves
The spectral curves from each sampling point 

were visually compared to the patterns identified in 
stage 1 and assigned to a soil group. Thus, the soil 
class of greatest similarity to each sampling point 
was tabulated with soil properties estimated from 
the spectral data and used in final classification of 
each soil sample. 

Cluster analysis
The soil samples collected in area 2 were 

classified in homogeneous groups in cluster analysis 
(Demattê  et  al., 2004a), which was based on 
spectral information for each soil sample. Therefore, 
cluster analysis compared all sampling points that 
determined similar groups of curves. The clustering 
strategy used was Average Linkage, which allowed 
identification of sequential, hierarchical, and 
non-overlapping groups (Sneath and Sokal, 1973). 
The similarity coefficient applied was Euclidean 
distance, and it was implemented in the software 
SPSS 11.0.
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Soil classification based on all information 
acquired

After all data were collected, the procedure 
for final soil classification of each sampling point 
was: (1) soil samples were grouped based on visual 
patterns of spectral curves; (2) quantitative data 
of physical and chemical soil properties estimated 
from models deduced in stage 1 were tabulated, and 
color measurements were tabulated with other soil 
properties; and (3) the tabulated data were used to 
fit the results of cluster analysis, and each point was 
properly classified. The key-process was similar to 
interpretation of soil analysis in the traditional soil 
mapping method; however, additional properties 
were analyzed: (4) in situations where this 
information was not enough to classify a sampling 
point, we observed the cluster analysis of the most 
similar sample that had been classified. This soil 
class was then assigned to the unclassified sample; 
and (5) other data that supported the decision for 
the final soil classification were terrain features, 
such as slope and elevation. Each point was 
related to the relief features using a geographical 
information system. Based on patterns of stage 
1, the possibility of occurrence of a certain soil 
class at a point was indicated based on terrain 
features. This information was considered in the 
final decision.

Soil classification followed the SiBCS (Brazilian 
Soil Classification System, Embrapa, 2013) and 
was also related with the USDA (2010) along the 
text and tables.

Spatial analysis and delineation of the soils 
(Satellite imaging supervised classification)

Supervised classification was used to characterize 
the surface of the study site through orbital 
information, based on the patterns obtained in 
stage 1. Thus, complementary information was 
obtained, not to classify the soil, but to complement 
the database to make decisions based on the 
delimitation of mapping units.

Relief analysis
Similar to traditional soil mapping, contour lines 

were mainly delimited with vertical equidistance of 
20 m, and some observations were made in the slope 
map of the study site. In example 1, the cluster and 
spreadsheet analyses were sufficient to classify the 
soil. In example 2, the spreadsheet was not clear 
enough and the final decision was made based on 
cluster analysis. In example 3, the final decision 
was made based on the position of the point in the 
relief (Figure 2).

Delimitation of soils
All information obtained (classification of 

soil samples, terrain features, and supervised 

classification of satellite imaging) was organized 
in a database using the ArcGIS 9.3 software. Thus, 
information layers were used in the delimitation 
of mapping units (Figure 3), which was performed 
manually by digitalizing the vectors (polygons). 
Finally, soils of area 2 were obtained.

Stage 3 - Validation of the digital soil map
The digital soil map obtained in area 2 was 

validated using the cross-tabulation method, which 
correlated with the conventional soil map on a 
detailed level (1:20,000) developed in this study. This 
was carried out in two ways: (a) the soil class of each 
sampling point in the conventional soil map was 
compared with the soil class obtained from the digital 
soil mapping approach, and (b) cross-tabulation was 
compared with spatial information obtained from 
both approaches (conventional and digital) at the 
level of the mapping unit. 

In both cases, the soil was first classified to 
the 3rd category level in the SiBCS (Brazilian Soil 
Classification System), and texture classification 
was added, for example a Latossolo Vermelho 
Distrófico argiloso (Embrapa, 2013) - Clayey 
Rhodic Hapludox (USDA, 2010). We used in 
the text Brazilian and USDA soil classification. 
Afterwards, the soil class was decomposed, and 
each criterion was evaluated separately. The 
characteristics evaluated were the same used in 
classifying the soil up to the 3rd category level 
and texture class: (a) soil class; (b) soil color 
classified in three types (red, yellowish red, and 
yellow), as color determination in the colorimeter 
(Munsell color system) was given in hue values 
with decimals (continuous variable); these values 
were classified as yellow if the measurements were 
above 7.5 YR, classified as yellowish red if color 
data were from 7.5 YR to 2.5 YR, and classified as 
red if values were below 2.5 YR; (c) soil fertility 
analysis, based on three main criteria: base 
saturation higher than 50 % (eutrophic), base 
saturation lower than 50 % (dystrophic), and Al 
saturation higher than 50 %; (d) Fe oxide contents 
in the soil were evaluated observing results of 
extraction by sulfuric acid; values higher than 180 
g kg-1 were considered iron rich and classified as 
ferric (higher than 180 g kg-1 of Fe oxides); and 
(e) texture classes as described above.

Cross-tabulations resulted in confusion matrices, 
and indexes of classification accuracy were derived 
from these matrices. The indexes calculated were 
overall accuracy and the Kappa index (Story and 
Congalton, 1986; Congalton and Green, 1999).

Classification performance which was evaluated 
using the ranges proposed by Fonseca (2000) for 
the Kappa coefficient (K), were: K<0, Very poor; 
0<K≤0.2, poor; 0.2<K≤0.4, Reasonable; 0.4<K≤0.6, 
Good; 0.6<K≤0.8, Very good; and 0.8<K≤1.0, 
Excellent.
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Figure 2. Flowchart illustrating the work sequence.

Figure 3. Illustration of the arrangement of information layers that composed the digital soil map.
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RESULTS AND DISCUSSION

Quantification of Soil Properties
Multiple regression equations were fitted to 

predict values of 19 soil properties from their 
spectral response (Table 1). Of these, five exhibited 
R2 greater than 0.59, namely, Fe2O3, Al2O3, clay, 
Ki, and SiO2. Fe2O3 stood out at 0.82. Our results 
corroborate those obtained by Janik et al. (1998), 
Nanni and Dematte (2006), Demattê et al. (2004a), 
and Demattê et al. (2014a). It is notable that high 
coefficients for the physical properties such as 
sand, clay, and Fe2O3 were achieved, since these 
parameters have a significantly greater influence 
on the spectral response of the soil.

The sum of bases (SB), cation exchange 
capacity (CEC), and base saturation (V) showed 
the following values for R2: 0.44, 0.46, and 0.29, 
respectively, in contrast with Nanni and Demattê 
(2001), Dunn  et  al. (2002), and Demattê  et  al. 
(2004a), who found values of R2 greater than 0.74 
for these properties. However, such properties 
often show coefficients with values lower than 
50 % (Demattê and Garcia, 1999). Few studies 
have been carried out to explain the influence of 
chemical properties on the spectral response of 
soils (Demattê et al., 2004a), possibly due to the 
dynamic nature of soil reactions.

The estimated values were compared with values 
determined in conventional laboratory analysis for 
the purpose of verifying the possibility of using the 
data on soil fertility estimated by the equations, 
especially the data used as criteria to achieve 
the 3rd category level in soil classification. Values 
obtained in the equations tended to overestimate 
dystrophic soils and underestimate eutrophic and 
aluminic ones (Table 2). However, the percentage 
of accuracy exceeded 76 %, even reaching 98 %, as 
in the example of m groups.

Spectral curves as indicators for soil classification
The analyses of spectral curves for soil samples 

collected in area 1, which gave rise to the patterns 
applied in area 2, allowed determination of three 
distinct groups (Figure 4). The first group was 
characterized mainly by the presence of deep, 
well-drained soils, with texture ranging from 
sandy-clayey to clayey, especially in Latosols 

Table 1. Multiple regression equations developed from soil reflectance and obtained at ground level
Property Equation(1) R2 RMSD(2) ME(3)

Clay (g kg-1) Clay = 344.485 + 21,560.041 H2 + 1,973.068 B7 - 3,895.359 B21 - 10,231.5 H5 - 30,019.3 
B3 + 21,789.511 B5 + 6,386.753 B4 + 2,877.608 H8 + 6,253.900 B13 – 4,353.122 B16

0.75 63.8 20.65

OM(4) (g kg-1) OM = 24,887 - 160.911 H4 – 91,569 B21 - 185.125 H3 - 282.773 H5 0.32 4.16 37.88

SB(5) (mmolc kg-1) SB = 10(1,581 + 27,440 H8 – 48,716 H5 + 20,635 H7 – 7,646 H4 – 12,603 H1 – 2,866 B22) 0.44 10.67 44.57

CEC(6) (mmolc kg-1) CEC = 10(1,181 - 8,391 H6 + 13,141 H8 + 5,667 H9 – 16,127 H5 – 2,748 B4 + 4,860 B7 – 3,017 B19) 0.46 12.69 20.12

Fe2O3 (g kg-1) Fe2O3 =10(1,242 + 30,182 H7 + 8,823 H11 - 9,005 H9 - 5.283 H4 - 5,957 B2 + 5,860 H3) 0.82 3.53 24.13

SiO2 (g kg-1) SiO2 = 10(1,291 – 6,225 B22 + 1,396 B5 – 4,150 H11 – 2,955 H13 + 2,926 B14) 0.59 2.12 20.07

Al2O3 (g kg-1) Al2O3 = 10(1,373 - 5,714 B20 - 2,883 H2 + 6,810 B13 - 4,254 B17) 0.81 2.21 16.90

Ki Ki = 1,391 - 15,875 H11 + 10,696 H2 + 15,438 H3 - 25,592 H9 + 26,745 H7 + 2,890 B18 0.61 0.19 13.40
(1) Bands and heights selected; (2) Root mean square deviation; (3) Mean error; (4) Organic matter; (5) Sum of bases (Ca+Mg+K); (6) Cation 
exchange capacity (BS+H+Al).

Table 2. Matrix of accuracy and error of values 
determined in the laboratory by conventional 
soil analyses and values estimated by multiple 
regression equations for the variables base 
saturation (V), aluminum saturation (m), and 
aluminum exchangeable (Al3+)

Estimated values(1)

D
et

er
m

in
ed

 v
al

ue
s(2

)

V (%)(3) ≤50 >50 Total
≤50 454 44 498
>50 103 24 127

Total 557 68    625(5)

Overall accuracy = 0.76
m (%)(4) ≤50 >50

≤50 610 0 610
>50   13 2   15

Total 623 2 625
Overall accuracy = 0.98

Al3+ (cmolc kg-1) <4 ≥4
<4 515   2 517
≥4   99   9 108

Total 614 11 625
Overall accuracy = 0.84

(1) Values estimated by multiple regression equations; (2) Values 
determined in the laboratory by conventional soil analysis; 
(3) Base saturation (BS/CEC × 100); (4) Aluminum saturation 
(Al/Al + BS) × 100; (5) Number of total samples at three depths 
(0.00 - 0.20, 0.40 - 0.60, and 0.80 - 1.00 m).
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(Oxisols). These soils show spectral curves with 
low reflectance intensity in visible and infrared 
light. High concentrations of magnetite reduce the 
reflectance intensity of soils (Demattê et al., 2001) 
because magnetite does not show spectral features. 
At 1,400 and 1,900 nm, where features attributed to 
the OH- of hygroscopic water occur (Ben-Dor, 2002), 
these soils have low intensity features. In the 
2,200 nm wavelength region, a characteristic feature 
of 1:1 minerals appears, as indicated by Demattê and 
Garcia (1999). 

The second group (Figure 4) consisted of soils 
with a textural B horizon typical of Argisols (Alfisols/
Ultisols). We observed a gradual decrease of reflectance 
intensity from surface to subsurface layers, mainly 
because of the increase of clay content in deeper soil 
layers, in agreement with results observed by Sousa 
Junior et al. (2008). However, the spectral curve of 
the surface was significantly influenced by SOM, 
with consequent smoothing of the absorption features 
(Demattê and Garcia, 1999). In subsurface layers, 
there is more evidence of absorption bands within 
1400 - 1900 nm because of the OH- molecule of soil 
hygroscopic water (Ben-Dor, 2002) and the presence 
of 2:1 minerals (Demattê et al., 2004a). Thus, our 
results showed types of curves that differentiate 
soil samples from surface and subsurface layers, 
corroborating Demattê  et  al. (2004a), Rizzo  et  al 
(2014) and Vasques et al. (2014). 

In the third and last group (Figure 4), sandy 
soils were joined, especially soils of the Quartzarenic 
Neosol class (Typic Quartzpisament). These soils 
are associated with lower contents of OM and iron 
oxides, with mineralogy in the sand fraction consisting 
predominantly of quartz (Resende et al., 2005), resulting 
in high reflectance intensity. This is evident when 
comparing the spectral curve of this group with that of 
group 1. This increase in reflectance was reported by 
Barnes and Baker (2000), who obtained high positive 
correlations between soil reflectance and increase 
in the sand fraction, and high negative correlations 
proportional to an increase in clay content. Another 
fact observed for patterns defined in group 3 is little 
distinction between spectral curves at different depths, 
which may be related to the textural similarity between 
soil layers (Souza Junior et al., 2008). However, layer A 
shows a slightly less intense reflectance than reflectance 
in the other layers because of greater OM accumulation.

General characteristics of the Digital Soil Map 
(DSM) and comparison to the Conventional 
Map (CM)

The coverage area in the DSM is greater than 
in the CM (Table 3). The CM covers only sugarcane 
crop areas, thus bypassing roads, electrical lines, 
and other noncrop areas. However, this does not 
affect the correlation calculations between the maps 
because only areas in common were evaluated for 
both methods.

For soil classes in the 1st category level (orders), 
the DSM showed five classes, whereas the CM 
showed seven classes (Table 3). For Neossols (Lithic 
Neosols and Arenic Neosols), the 2nd category level 
was considered since the soils showed very distinct 
characteristics. Lithic Neossols and Gleysols were 
not covered in the DSM, although they showed a 
small index of representation in the CM (0.05 and 
0.03 %, respectively).

In comparison to the CM, the DSM shows double 
the number of soil classes (43 classes). This is 
attributed to the absence of the aluminic character 
in digital classification. This method of soil analysis 
overestimated the dystrophic characteristic and 
underestimated the eutrophic and aluminic ones. This 
is most evident in the percentage of dystrophic soils 
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Figure 4. Clustering of soil samples as a function of 
the form of spectral curves. Group 1 - clayey soils, 
low reflectance; Group 2 - soils with difference of 
reflectance between the surface and subsurface 
layers, typical of horizon with Bt; Group 3 - sandy 
soil characteristics, high reflectance.
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found; although they exhibited a high percentage in the 
CM (67 %), in the DSM, dystrophic soils reached 87 %.

Another relevant factor is that soils with a ferric 
character showed values near the significance level. 
Although the ferric property is a classification 
criterion in the 3rd category level, in conventional 
conditions, analyses of ferric properties are not 
often carried out, mainly due to the time required 
for the analysis and the high costs. This leads to the 
use of subjective methods of determination, such 
as magnetism. Analyses of ferric properties could 
be applied to samples from soils used in our study 
as well as in other conditions requiring less time to 
conduct and at lower costs. 

From the confusion matrix generated by cross 
tabulation, some statistical indicators were analyzed 
to investigate the comparison between maps (Table 4). 
For point (punctual information) data, the variables 
of class, color, and texture showed better performance 
(good) compared to the variables of fertility and Fe 
(Table 4). The highest value for soil class shows 
that soil classification and determination of textural 
groups in the 1st category level were efficient, in 
agreement with Shepherd and Walsh (2002) and 
Islam et al. (2003). Color obtained a high index of 
success because it was obtained in the colorimetric 
technique (Campos and Demattê, 2004). These 
authors concluded that, in order to obtain accurate 
results, measurements in colorimetry should replace 
color readings using the visual Munsell color chart. 
Determining color by the human eye is subjective, 
generating differences in soil classification.

Fertility had poor performance (Table 4). The low k 
value is associated with the prevalence of this property. 
High prevalence results in a high level of agreement 

expected in randomness, which results in lower k 
values. In turn, a property of low prevalence results in 
higher k values (Pinto et al., 2007); that is, given that 
fertility shows high predominance of dystrophic soils 
and Fe has high predominance of non-ferric soils, there 
are high chances of inferring, at random, and being 
sure that these soils are dystrophic and non-ferric and 
that the k index results in lower values.

The results showed that spatial data had a 
tendency of high accuracy levels for the different 
variables analyzed individually (po ranging from 
0.51 to 0.79), but, for texture, the performance of 
the kappa index ranged from good to reasonable.

The comparison between the classifications 
obtained for the two methods in the 1st, 2nd, and 3rd 
level (considering fertility), 3rd level (considering 
texture), and 3rd level (considering fertility plus 
texture) shows a good correlation of scores in the 
1st and 2nd levels, with accuracy rates of 0.79 and 
0.60, respectively, whereas for scores in the 3rd 
level, correlations ranged from reasonable to poor 
(Table 5). Higher levels were expected to decrease 
the accuracy rate because the greater the number 
of characters involved, the higher the difficulty in 
reaching consensus. However, the greatest losses of 
accuracy occur when associated with fertility.

The results for spatial data follow the same 
trends as point data, but with lower accuracy 
rates (Table 5). When fertility is inserted, the 
final mapping unit for this study is reached, with 
an accuracy rate of 0.08. Although fertility is 
difficult to assess, other variables such as class, 
color, and texture are subject to determination. If 
texture is taken as the 3rd level of classification, 
the results obtained are similar to those reported 

Table 3. Comparisons among several characteristics observed in the digital and conventional soil maps
Characteristic Conventional map Digital map
Total area 12,986.92 ha 15,999.4 ha
Soil classes of 1st and 2nd 
levels (such as Neosols)(1)

Cambisols, Gleysols, Latossols (Oxisols), Nitisols 
(Kandic), Argisols (Ulti/Alfisols), Quartzarenic Neosols 
(Typic Quartzpisament), Lithic Neosols (Lithic soils)

Cambisols, Latossols (Oxisols), Nitisols 
(Kandic), Argisols (Ulti/Alfisols), 

Quartzarenic Neosols (Typic 
Quartzpisament)

Main soil classes Latossols (Oxisols) (65.2 % of total area) Latossols (Oxisols) (73.6 % of total area)
Less pronounced soil classes Lithic Neosols (Lithic soils) (0.05 % of total area); 

Gleysols (0.03 % of total area)
Cambisols (0.17 % of total area)

Number of soil mapping units 43 units 21 units
Main soil mapping units4 LVAd4 (12.1 % of total area);

RQod5 (11.6 % of total area)
LVAd3 (32 % of total area);
RQod5 (12 % of total area)

Fertility classes Eutrophic, Dystrophic, Aluminic Eutrophic, Dystrophic
Main fertility class(1) Dystrophic (67 % of total area) Dystrophic (87 % of total area)
Area of ferric soils(1) 14 % of total area 11 % of total area
Textural groups(2) Clayey, Sandy Clayey, Clayey Loamy, Sandy Loamy, Sandy Sandy Clayey, Clayey Loamy, Sandy 

Loamy, Sandy
Main textural group Clayey Loamy (38.1 % of total area) Clayey Loamy (43 % of total area)

(1) Classes obtained according to criteria established by Embrapa (2013) as related with USDA (2010); (2) Texture divided into the 
following groups: 1 - clayey (>60 % clay); 2 - sandy clayey (35 - 60 % clay); 3 - clayey loamy (25 - 35 % clay); 4 - sandy loamy (15 - 25 
% clay); and 5 - sandy (<15 % clay); (4) LVAd4 (Red Yellow Oxisol Distrophic sandy loam); RQod5 (Typic Quartzpisament), LVAd3 
(Red Yellow Oxisol Distrophic clay loam).
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by Demattê et al. (2004b). The authors concluded 
that it was possible to reach the 3rd category level. 
Chagas et al. (2007) used artificial neural networks 
to predict soil classes and found accuracy rates of 
0.3. The authors attributed the large discrepancy 
obtained for the comparisons to the widespread 
nature of the conventional soil map. The multiple 
information from geotechnologies on soil mapping 
was recently conducted by Demattê  et  al. (2015) 
where used also spectra from images plus terrain 
models reaching important results when compared 
with traditional mapping, in agreement with the 
present work. Another important factor is that 
accuracy and effectiveness of surveys conducted 

conventionally are contingent upon the ability of 
the pedologist. Indeed Bazaglia Filho et al. (2013) 
showed differences in maps developed between 
five pedologists, which show the importance of 
increasing accuracy through geotechnologies, as 
indicated in the present study.

Thus, the present manuscript associated with 
literature, indicate the importance on to aggregate 
multiple techniques, such as remote/proximal sensing 
with relief parameters, to achieve a pedological map. 
Indeed, these tools may also be important to upgrade 
old maps and/or on the confection of new ones with 
more accuracy, less time and lower cost.

Table 5. Statistical index derived from the confusion matrix between the point results (boreholes with 
auger) and spatial results (soil map) obtained by crossing soil taxonomy in the 1st, 2nd, and 3rd levels 
considering fertility, the 3rd level considering texture, and the 3rd level considering fertility plus texture

Variable
Statistical Indexes(1)

Performance(2)
po pe Kappa Var (k) Z

Point data
1º Level 0.79 0.59 0.49 0.00 10.69 Good
2º Level 0.60 0.27 0.45 0.00 12.10 Good
3º Level (fertility) 0.37 0.16 0.25 0.00 9.62 Bad
3º Level (texture) 0.40 0.12 0.32 0.00 13.00 Reasonable
3º Level (fertility + texture) 0.20 0.06 0.15 0.00 7.00 Bad

Spatial data
1º Level 0.75 0.59 0.39 0.00 60.40 Good
2º Level 0.60 0.27 0.45 0.00 14.46 Good
3º Level (fertility) 0.21 0.09 0.14 0.00 9.20 Bad
3º Level (texture) 0.34 0.11 0.26 0.00 82.47 Reasonable
3º Level (fertility + texture) 0.08 0.03 0.05 0.00 31.26 Bad

(1) po: total accuracy or real concordance; pe: random concordance; Kappa: kappa index; var (k): variance of kappa index; Z: statistical 
index to test the significance of the kappa index: If Z>1.96, difference is significant at 95 % confidence threshold; If Z>2.58, the 
difference is significant at 99 % confidence threshold. (2) Classification in the kappa index.

Table 4. Statistical indexes derived from confusion matrix between point results (bore holes) and spatial 
results (soil maps) obtained by crossing five variables between the conventional and the digital soil map

Variable
Statistical Indexes (1)

Performance(2)
po pe Kappa Var (k) Z

Point data
Class 0.79 0.59 0.49 0.0021 10.7 Good
Color 0.72 0.48 0.46 0.0041 7.2 Good
Fertility 0.69 0.65 0.12 0.0015 3.1 Bad
Iron 0.80 0.76 0.14 0.0050 7.0 Good
Texture 0.58 0.29 0.41 0.0017 9.8 Good

Spatial data
Class 0.75 0.59 0.39 0.0000 60.40 Good
Color 0.72 0.47 0.47 0.0000 50.83 Good
Fertility 0.70 0.68 0.05 0.0000 13.40 Bad
Iron 0.79 0.76 0.12 0.0001 50.00 Good
Texture 0.51 0.26 0.34 0.0030 6.30 Reasonable

(1) po: total accuracy or real concordance; pe: random concordance; Kappa: kappa index; var (k): variance of kappa index; Z: statistical 
index to test the significance of kappa index: If Z>1.96, difference is significant at 95 % confidence threshold; if Z>2.58, difference is 
significant at 99 % confidence threshold. (2) Classification in the kappa index.
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CONCLUSIONS

The spectral curve patterns allowed determination 
of three distinct soil groups, namely: (a) clayey in the 
surface and subsurface soils, (b) soils with textural 
differences between depths (typical of soils with Bt 
horizon), and (c) sandy soils. 

The method for quantification of attributes such 
as Al3+, CEC, base and aluminum saturation needs 
to be adjusted or modified to reliably achieve the 
3rd category level in soil classification. However, for 
properties such as clay, sand, Fe2O3, and Al2O3, the 
method was efficient, with R2 of 0.75, 0.71, 0.82, and 
0.81, respectively.

The proposed method obtained information that 
assisted in soil classification and mapping in the 1st 
category level with 75 % accuracy, in the 2nd category 
level with 60 % accuracy, and in the 3rd category 
level with 34 % accuracy considering texture for 
the 3rd level. The performance of classification 
was good in the 2nd category level and reasonable 
when information on soil texture is added to it. 
Furthermore, when fertility is considered, the 
accuracy index reaches 8 %.

The comparison of five textural groups between 
both conventional and digital methods reached 
58 % accuracy.

There is clear importance of soil spectroscopy (from 
the surface and subsurface) on soil discrimination. 
Soil surface information from the satellite was useful 
for a first view on the discrimination of surface 
data. The next step was to achieve undersurface 
spectroscopy data from samples collected at field. 
Afterwards, both surface (by remote sensing) and 
subsurface (by proximal sensing) information, 
merged with relief parameters, could provide 
the method with important results as to support  
pedological mapping. 

We observed the importance of using multiple 
techniques simultaneously to support soil mapping. 
Nevertheless, the method still requires the 
interpreter’s knowledge in making the final decision. 
Fieldwork is also important because it is the basis for 
designing patterns, as well as for defining situations 
where digital techniques do not reach adequate 
levels. Further studies are suggested as to associate 
field observations with automated systems for the 
decision-making process.
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