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ABSTRACT: There are many methods for determining precompression stress (σp), whose 
value is affected by the slope of the soil compression curve. This study was designed 
to evaluate the hypothesis that for a certain compression curve all methods used to 
determine σp present the same value and accuracy. The aim of this study was to compare 
the accuracy and the relationship among seven of these methods by computational 
simulation of soil compression curves under nine scenarios. The following methods were 
used: Casagrande, Pacheco Silva, intersection of the initial void ratio with the virgin 
compression line (VCLzero), and the regression methods based on 2 (reg1), 3 (reg2), 
4 (reg3), and 5 (reg4) points for modeling the elastic curve. Under each scenario, created 
by combining the swelling and the compression indices, 1,000 compression curves were 
computationally simulated via the Monte Carlo method. Subsequently, 95 % percentile 
confidence intervals were built using the 1,000 estimates of σp from each method under 
each scenario. Most of the differences among the methods were detected under scenarios 
consisting of high swelling and low compression indices. In general, Casagrande, Pacheco 
Silva, and reg4 were strongly correlated and presented the highest values of σp, as well 
as similar variability. The latter two can be considered as alternatives to the standard 
method of Casagrande, except for Pacheco Silva when the curve has a low compression 
index (≤0.2) and from medium to high swelling index (≥0.025), for which differences 
(p<0.05) were detected.
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INTRODUCTION
Soil compaction as an effect of agricultural machinery has been one of the great challenges 
of modern agriculture (Lima et al., 2015). Vast cultivated areas have received increasingly 
heavy and intensive machine traffic (Mosaddeghi et al., 2007; Lima et al., 2015), especially 
at crop harvest. This has adverse effects on crop production and the environment 
(O’Sullivan et al., 1999). According to Cavalieri et al. (2008), soil compaction has been 
a subject of study for many years due to its implications for crop yield.

Compaction can be understood by studying soil compressibility (Dias Júnior and Pierce, 
1995). Compression is characterized by a mechanical process that describes the 
decrease in volume when soil is exposed to a mechanical load, which is defined by a 
soil compression curve. Three important parameters extracted from the soil compression 
curve were describe by Keller et al. (2011): the swelling or recompression index (Cs), 
the compressibility coefficient (Cc), and the preconsolidation or precompression stress 
(σp), where Cs is defined as the slope of the swelling line (SL) and Cc is the slope of the 
Virgin Compression Line (VCL).

The Cs is used as a measure of rebound and soil mechanical resilience, reflecting 
the first part of the curve subjected to historical stress, characterized by elastic 
deformation (recoverable). The second part is the VCL, for which plastic deformations 
are irreversible. This part can be verified by the Cc value, not subject stress (Keller 
et al., 2011). Finally, σp is mathematically defined as the point that divides the 
compression curve into the elastic and plastic parts of the soil compression curve 
(Casagrande, 1936). 

There are many methods for determination of σp. The most widely used was proposed 
by Casagrande (1936), which is based on the maximum curvature point of the soil 
compression curve. Nevertheless, other methods have been developed, such as the 
Pacheco Silva (ABNT, 1990) method, based on the intersection of the VCL and the 
initial void ratio. Dias Júnior and Pierce (1995) showed the procedure for determination 
of σp by intersection of two linear regressions made for VCL and SL, which can have 
a different number of points considered for fitting VCL and SL (Cavalieri et al., 2008). 
Another method (VCLzero) consists of considering σp as the value on the x-axis 
defined by the intersection of the VCL with a horizontal line from the initial void ratio 
(Arvidsson and Keller, 2004).

The studies of Arvidsson and Keller (2004), Gregory et al. (2006), Cavalieri et al. (2008), 
Ajayi et al. (2013), and An et al. (2015) demonstrated there are variations in the 
methods used for determination of the σp and that the shape of curve is an important 
source of variation of indices (σp, Cs, Cc) extracted from the soil compression curve, 
showing that further studies are required. However, these studies have in common 
many soils, moisture contents, textures, and different conditions in soil physical 
properties, which makes it hard to define the parameters of the compression curve 
for a specific study and more accurate analysis. Under these conditions, simulations 
can help create scenarios for reproducing experimental data (Tagar et al., 2015), 
which formalize and analyze some error propagation methods for modeling; among 
them, the Monte Carlo method has general applicability and can be used in models 
with mathematical formulations (Ortiz et al., 2004). This procedure was used by Ortiz 
et al. (2004), and simulations based on other methods were used by Oliveira et al. 
(2013, 2014) for soil data in Brazil. 

In this context, this study was designed to evaluate the hypothesis that for a certain 
compression curve all methods used to determine σp present the same value and 
accuracy. Hence, the aim of this study was to compare the accuracy and relationship 
among seven methods used to determine σp by simulating soil compression curves 
under nine scenarios.
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METHODS

Methods for determination and calculation of indices

Seven methods for determination of σp were used: Casagrande, Pacheco Silva, intersection 
of initial void ratio with VCL (VCLzero), and linear regression methods based on 2, 3, 4, 
and 5 points for modeling of the elastic curve (swelling line, SL). An illustration of the 
regression method based on 2 points can be seen in figure 1. 

The virgin compression line (VCL) was estimated through linear regression considering the 
last three points of the compression curve. The compressibility coefficient (Cc) was estimated 
as the slope of the linear regression fitted for VCL, determined as shown in equation 1, 
where e is the void ratio. The swelling index (Cs) was determined as the mean slope of 
the loading path up to 25 kPa (Equation 2), according to Keller et al. (2011). The Cc and Cs 
indices are identified on the compression curve and graphically represented in figure 1.

Cc = –
e1600 – e400

log10 (1600) – log10 (400) 							          Eq. 1

Cs = –
e25 – e0

log10 (25) – log10 (1) 							          Eq. 2

Scenarios of simulation

We created scenarios based on the values of the swelling (recompression index) and 
compression indices (Keller et al., 2011). This allowed us to reproduce different compression 
curves, which are associated with the results of a soil compressibility test. Simulation was 
based on the result of a simple uniaxial compression test with loads of 1, 12.5, 25, 50, 
100, 200, 400, 800, and 1,600 kPa. In this case, the loading of 1 kPa corresponds to the 
initial void ratio or bulk density, which was only to calculate the swelling line associated 
with the initial state of the soil sample (Keller et al., 2011; An et al., 2015).

Figure 1. Determination of precompression stress (σp) by reg1, regression method based on 2 
points, expressed in terms of void ratio, as a function of the logarithm of applied stress (kPa); Virgin 
compression line (VCL); the slope of the VCL is denominated as the compressibility coefficient, Cc; 
swelling index, Cs. Adapted from Keller et al. (2011). 
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We combined three values of Cc and three values of Cs in order to create nine scenarios 
(Figure 2). The slopes of the VCL and SL were generated on the log10 scale of the applied 
loads. The original data set and the boundary of the initial void ratio and the values of 
Cc and Cs used in simulations were based on data from Ajayi et al. (2009), Keller et al. 
(2011), Ajayi et al. (2013), and An et al. (2015).

Simulation 

Monte Carlo simulation was performed to compute mean and standard deviation. For each 
one of the nine compression curves described earlier, a fourth degree polynomial model 
was fitted, y = Xθ + ε, where y is the vector of void ratio, X is the polynomial model matrix, 
and ε is a random vector representing the error of the model. After that, we computed 
the vector of estimates (Equation 3) and its (co)variance matrix (Equation 4).

[ ]T

0̂θ=θ̂ 1̂θ 2̂θ 3̂θ 4̂θ
								         Eq. 3

Côv(θ) = (XT X)–1 s2ˆ 								         Eq. 4

where s2 is the estimate of residual variance.

Subsequently, we considered the vector of estimates to be normally distributed as
N5  θ, Cov(θ)ˆ ˆ[ ] in order to simulate 1,000 other vectors of estimates, say θ̂*. For every θ̂i

* 
(i = 1, 2, ..., 1,000), a corresponding predicted vector ŷi = Xθi

*ˆ  was calculated. Finally, 
the pairs (ŷi,x) were used to determine 1,000 random estimates of precompression stress, 
σ* 

p, by each one of the seven methods.

Statistics for comparisons

We calculated the mean and coefficient of variation (%) of σ* 
p determined by each method. 

In addition, a confidence interval was built using the percentile method, i.e., taking the 
quantiles )(σp

*
2
α  and 1σp 2

* α− )(  as estimates of the lower and upper limits, respectively, 
of a 100(1 - α)% confidence interval.

Furthermore, we computed Pearson’s correlation matrix in order to study the relationship 
among the methods.

Figure 2. Simulation scenarios, created by combining three values of the compressibility coefficient (Cc) and three values of the 
swelling index (Cs).
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Computing

All the simulations and data analyses were made using the software R 3.1.2 (R Core 
Team, 2015) soilphysics package (Silva and Lima, 2015). Calculation of σp was performed 
through the sigmaP() function. Simulations and percentile confidence intervals were 
performed using the simSigmaP() and plotCIsigmaP() functions, respectively.

RESULTS
Considering scenarios where Cc = 0.2, the reg4 and Casagrande methods were similar and 
showed the highest values of σp for all the Cs conditions (Figure 3). The methods of Pacheco 
Silva, reg3, reg2, and reg1 changed more than Casagrande and reg4 with variation in Cs. 
The Pacheco method was similar to Casagrande when considering the smallest Cs, but they 
were statistically different (p<0.05) when Cs increased. The regression method had higher 
values when using more points for modeling the swelling line (reg4>reg3>reg2>reg1).
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Figure 3. 95 % percentile confidence intervals for the mean of precompression stress (σp) determined by seven methods under nine 
scenarios designed according to the compression (Cc) and swelling (Cs) indices. Results based on 1,000 simulated soil compression curves.
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For Cc = 0.35, the Casagrande and reg4 methods also tended to show the highest 
values of σp. The VCLzero method showed the lowest values, regardless of Cs (Figure 3). 
The methods of Pacheco, reg3, reg2, and reg1 changed more than the Casagrande and 
reg4 methods with variation in Cs. As Cs increased, VCzero was the only method that 
was statistically different (p<0.05) than Casagrande. 

For Cc = 0.50, the methods of Casagrande, Pacheco Silva, and reg4 showed the highest 
σp values. The VCLzero was statistically different (p<0.05) from Casagrande for all Cs. 

In general, the methods of Casagrande, Pacheco, and reg4 tended to show the largest 
values of σp. Specifically for Cc = 0.20, Casagrande and reg4 promoted the largest values, 
regardless of Cs. For Cc = 0.35 and 0.50, the general observation applies. The VCLzero 
method had the lowest values of σp for most scenarios. The Pacheco method was closer 
to Casagrande as Cs declined.

Under (Cc = 0.20, Cs ~ 0.055), we found the largest number of statistical differences 
(p<0.05) among the methods. In contrast, no difference (p>0.05) was found under the 
combination (Cc = 0.35, Cs ~ 0.003).

The variability shown by the methods in scenario (Cc = 0.20, Cs ~ 0.055) is noteworthy 
(Table 1). In fact, we observed ascending variability in the estimates according to the Cs, 
whatever the value of the Cc. Likewise, Cc = 0.20 tended to show the highest variability 
in the simulated means.

In all scenarios, the standard Casagrande method was more correlated (r>0.90) with the 
Pacheco method and regression method using 5 (reg4) and 4 (reg3) points (Table 2). Although 
VCLzero always tends to show the lowest value of σp, it had the same behavior as Pacheco 
and Casagrande. The reg1 and reg2 methods were related to each other in all scenarios.

DISCUSSION

Simulated soil compression curves 

The curves simulated cover a wide range of soil compression curves, such as those 
obtained for soil samples in compression tests under different soil bulk densities, textures, 
and moisture contents (Arvidsson and Keller, 2004; Imhoff et al., 2004; Gregory et al., 
2006; Cavalieri et al., 2008; Ajayi et al., 2009; Saffih-Hdadi et al., 2009; Ajayi et al., 
2013; An et al., 2015).

A relationship between the simulated scenarios and situations of soil physical properties 
was observed. Ajayi et al. (2009) and Ajayi et al. (2013) obtained soil compression 
curves with lower values for Cc for samples with low water content. When water content 
increased, Cc also increased changing the shape of the soil compression curve.

For black and brown soils from Northeastern China under different bulk densities and 
water contents, An et al. (2015) obtained Cc values similar to those obtained by Ajayi et al. 
(2009) and Ajayi et al. (2013). They found that Cc was higher when water content in the 

Table 1. Coefficient of variation for the simulated means of the seven methods in each scenario 
defined by Cc and Cs

Cs (approx.)
Cc

0.20 0.35 0.50
0.003 20.9 15.4 16.3

0.025 25.7 16.9 16.7

0.055 37.8 24.6 21.2
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soil samples increased. Variations in the shape of the curve when bulk density changed 
were also observed by Saffih-Hdadi et al. (2009) and An et al. (2015). They stated that 
Cc decreases for high bulk density values. According to the results obtained by An et al. 
(2015), the combination of high bulk density values and low water content minimizes 
the value of Cc.

The shape of the elastic line of a soil compression curve, represented here through Cs, 
varies mainly with water content, as observed by O’Sullivan and Robertson (1996) and 
Braida et al. (2008). However, the results found by O’Sullivan and Robertson (1996) 
show Cs values were higher in dry than in wet soils. However, Braida et al. (2008) found 
exactly the opposite, and attributed the results to the effects of the organic C and water 
content, which increasing the elastic proprieties of soil. Nonetheless, in any case, it is 
important to know that changing Cs increases the differences among the σp methods. 
This is most evident when comparing the methods under the same Cc value (Figure 3).

Behavior of the methods under each scenario

The slope of the elastic curve and VCL influenced the estimate of σp by the methods. 
Specifically, high values of Cs (0.055) and low values of Cc (0.2) increased differences 
among the methods (Figure 3). This can also be seen by the gradual increase in the 

Table 2. Correlations among seven methods (C: Casagrande; V: VCLzero; r1, r2, r3, r4: regression methods; P: Pacheco Silva) 
of determination of σp under nine scenarios designed according to the compression (Cc) and swelling (Ss) indices. Results based on 
1,000 simulated soil compression curves

Cc = 0.2 | Cs = 0.003 Cc = 0.35 | Cs = 0.003 Cc = 0.5 | Cs = 0.003

V r1 r2 r3 r4 P V r1 r2 r3 r4 P V r1 r2 r3 r4 P

C 0.89 0.77 0.91 0.97 0.99 0.98 0.85 0.62 0.85 0.94 0.98 0.98 0.79 0.48 0.77 0.91 0.96 0.96

V - 0.70 0.81 0.85 0.87 0.96 - 0.52 0.71 0.79 0.81 0.95 - 0.36 0.58 0.68 0.72 0.93

r1 - - 0.97 0.91 0.85 0.78 - - 0.94 0.85 0.77 0.61 - - 0.93 0.80 0.69 0.46

r2 - - - 0.98 0.96 0.90 - - - 0.97 0.94 0.82 - - - 0.96 0.91 0.73

r3 - - - - 0.99 0.95 - - - - 0.99 0.92 - - - - 0.99 0.87

r4 - - - - - 0.97 - - - - - 0.95 - - - - - 0.91

Cc = 0.2 | Cs = 0.025 Cc = 0.35 | Cs = 0.025 Cc = 0.5 | Cs = 0.025

V r1 r2 r3 r4 P V r1 r2 r3 r4 P V r1 r2 r3 r4 P

C 0.93 0.78 0.92 0.97 0.99 0.98 0.85 0.58 0.83 0.94 0.98 0.98 0.82 0.51 0.78 0.91 0.96 0.97

V - 0.78 0.88 0.91 0.92 0.98 - 0.49 0.69 0.78 0.81 0.94 - 0.40 0.61 0.71 0.75 0.93

r1 - - 0.97 0.91 0.86 0.83 - - 0.94 0.83 0.74 0.59 - - 0.94 0.81 0.72 0.51

r2 - - - 0.98 0.96 0.94 - - - 0.97 0.93 0.82 - - - 0.97 0.92 0.76

r3 - - - - 0.99 0.98 - - - - 0.99 0.92 - - - - 0.99 0.88

r4 - - - - - 0.98 - - - - - 0.95 - - - - - 0.93

Cc = 0.2 | Cs = 0.055 Cc = 0.35 | Cs = 0.055 Cc = 0.5 | Cs = 0.055

V r1 r2 r3 r4 P V r1 r2 r3 r4 P V r1 r2 r3 r4 P

C 0.90 0.70 0.88 0.96 0.98 0.95 0.83 0.49 0.78 0.92 0.97 0.97 0.82 0.47 0.76 0.90 0.96 0.97

V - 0.66 0.79 0.85 0.86 0.96 - 0.43 0.65 0.75 0.78 0.93 - 0.42 0.63 0.73 0.76 0.93

r1 - - 0.96 0.88 0.81 0.82 - - 0.92 0.79 0.68 0.56 - - 0.93 0.80 0.69 0.52

r2 - - - 0.98 0.94 0.93 - - - 0.96 0.91 0.82 - - - 0.96 0.91 0.78

r3 - - - - 0.99 0.96 - - - - 0.99 0.92 - - - - 0.99 0.89

r4 - - - - - 0.96 - - - - - 0.95 - - - - - 0.93
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coefficient of variation (Table 1). When the variation among methods is analyzed under 
the same Cs, differences mainly occur under low Cc (Table 1). Variation among methods 
is largely influenced by the slope of VCL, Cc (Rosa et al., 2011).

Considering all scenarios, Casagrande, Pacheco Silva, reg4, and reg3 showed strong 
correlation (Table 2). Casagrande was compared with regression methods based on 2 (reg3) 
and 3 (reg4) points for modeling VCL (Arvidsson and Keller, 2004). These authors found 
that VCLzero was best correlated with Casagrande, but also found that the correlation 
between the regression method and Casagrande increased with the number of points 
(regression using three points>regression using two points), corroborating the results in 
table 2. However, Arvidsson and Keller (2004) did not test regression with four and five 
points (reg3 and reg4 as specified here, respectively), which would probably increase 
similarity with the Casagrande method, as found here. Cavalieri et al. (2008) showed 
medium to high correlations between regression methods and Casagrande (Cavalieri et al., 
2008), at least higher than those obtained by Arvidsson and Keller (2004). The regression 
method using 4 and 5 points was correlated with Casagrande, as well as the Pacheco 
method (Table 2). Similarity between Casagrande and Pacheco in terms of σp also was 
found by Rosa et al. (2011). 

Applicability of the methods 

The Casagrande method has been considered as standard in almost all comparison studies 
involving soil compressibility. However, its algorithm is relatively complex, since the 
point of maximum curvature of the compression curve must be determined. Regression 
methods are considerably simpler since they consist of intercepting two regression 
lines. However, evaluations of the regression methods, including comparison of their 
performance with the Casagrande method, can be found in the studies of Dias Júnior 
and Pierce (1995), Arvidsson and Keller (2004), and Cavalieri et al. (2008). 

CONCLUSIONS

Most of the differences among the methods were detected under scenarios consisting 
of high swelling and low compression indices. 

In general, Casagrande, Pacheco Silva, and reg4 were strongly correlated, showing the 
largest values of σp, and similar variability. The latter two can be considered as alternatives 
to the standard Casagrande method, except for Pacheco Silva when the curve has a low 
compressibility coefficient (≤0.2) and medium to high swelling index (≥0.025), for which 
differences (p<0.05) were detected.
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