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ABSTRACT: Soil surveys often contain multi-component map units comprising two or 
more soil classes, whose spatial distribution within the map unit is not represented. Digital 
Soil Mapping tools supported by information from soil surveys make it possible to predict 
where these classes are located. The aim of this study was to develop a methodology 
to increase the detail of conventional soil maps by means of spatial disaggregation of 
multi-component map units and to predict the spatial location of the derived soil classes. 
Three digital maps of terrain variables - slope, landforms, and topographic wetness index - 
were correlated with the soil map and 72 georeferenced profiles from the Porto Alegre soil 
survey. Explicit rules that expressed regional soil-landscape relationships were formulated 
based on the resulting combinations. These rules were used to select typical areas of 
occurrence of each soil class and to train a decision tree model to predict the occurrence 
of individualized soil classes. Validation of the soil map predictions was conducted by 
comparison with available soil profiles. The soil map produced showed high agreement 
(80.5 % accuracy) with the soil classes observed in the soil profiles; Ultisols and Lithic 
Udorthents were predicted with greater accuracy. The soil variables selected in this study 
were suitable to represent the soil-landscape relationships, suggesting potential use in 
future studies. This approach developed a more detailed soil map relevant to current 
demands for soil information and has potential to be replicated in other areas in which 
data availability is similar.
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INTRODUCTION
The important role of soils in maintaining life on Earth dictates they should be used 
in a sustainable way and highlights the need for pedological information, such as soil 
properties and spatial distribution. The most common source of this information is the 
soil survey, which generally comprises a soil map accompanied by a descriptive report 
with a dataset of independent pedons.

However, Brazilian soil surveys that cover the entire country only exist at the reconnaissance 
level, containing soil maps with small scales (less than 1:750,000), and more detailed 
maps are rarely available (Giasson et al., 2006). Because of the small scale of these maps 
and/or complex arrangement of soils in the landscape, in most cases a map unit (MU) 
aggregates more than one soil component, forming a multi-component MU. Thus, there 
is no graphical representation of the distribution of these components in the soil map 
in these multi-component MU, and the only information contained in the survey report 
describes their general spatial distribution in the landscape and/or the percentage of 
each component within the MU. With these characteristics, they may not meet current 
demands for soil information, e.g., the valuation of ecosystem services provided by soils 
or the delineation of wetlands (Vincent et al., 2018). 

However, existing soil surveys can be an important starting point for generating more 
detailed soil maps. One possibility to refine information on soil distribution is to use 
spatial disaggregation of multi-component MUs. Spatial disaggregation follows Digital Soil 
Mapping (DSM) techniques and environmental covariates to separate soil components 
within a multi-component MU, based on spatial relationships or patterns between soils 
and the landscape (Sarmento et al., 2017; Vincent et al., 2018). The objective is to use 
a map with fewer details to produce an enhanced map that represents the distribution 
of the soil components, i.e., a map with more single MUs (Nauman et al., 2014). Spatial 
disaggregation of the multi-component MUs takes advantage of valuable sources of 
information, such as legacy data, which can be observational points (independent pedons) 
and/or soil maps with their respective descriptive reports. 

Tree-based models have been widely used in soil class prediction with DSM, due to ease 
of understanding and discussion, the ability to process large datasets, and robustness as 
a predictive technique (ten Caten et al., 2012; Bagatini et al., 2016). Following the same 
logic of conventional soil mapping, in which pedologists seek to establish conceptual 
relationships between soils and environmental parameters, DSM tree-based models can 
be used to correlate soil components or properties with environmental covariates, e.g., 
elevation and slope, to produce more detailed maps. These algorithms have been used for 
the disaggregation of multi-component MUs of conventional soil maps (Häring et al., 2012; 
Nauman et al., 2014; Nauman and Thompson, 2014; Sarmento et al., 2017; Vincent et al., 
2018) or geological studies (Bui and Moran, 2001) and to describe the spatial variation of 
soil properties, such as organic carbon, with more detail (Kerry et al., 2012). 

We aimed to present a methodology to increase the detail of a soil map by disaggregating 
the multi-component MUs of the soil map of the municipality of Porto Alegre using available 
soil information and tree models to generate an enhanced soil map. This approach based 
on available legacy data allows substantial reduction in the number and extent of field 
trips, which are a considerable part of the cost of a soil survey.

MATERIALS AND METHODS

Study area 

The study area is the municipality of Porto Alegre, Rio Grande do Sul, Brazil, which 
covers approximately 49,668 ha (Figure 1). Most of the parent material in the area is 
composed of granitic rocks and granodioritic to dioritic gneisses, forming crests and 



Machado et al. Spatial disaggregation of multi-component soil map units using legacy...

3Rev Bras Cienc Solo 2018;42:e0170193

hills. At lower levels, there are more recent formations, such as eluvial deposits of 
granites and gneisses and partially reworked colluvial and alluvial deposits, the latter 
forming terraces and sand barriers. Along the streams and on the islands in the Jacuí 
River delta, deposits of sediments of fluvial origin occur. On the banks of Guaíba Lake, 
more recent lagoon and marine sediment deposits form sand coastal plains (Philipp, 
2008). The elevation ranges from 0.1 m (Jacuí River delta) to 311 m (Santana Hill) 
(Penter et al., 2008; Hasenack et al., 2010). 

The region is in a transition between two major Brazilian biomes, the Pampas and the 
Atlantic Forest; the vegetation comprises a mosaic of wood- and grasslands, as well as 
various pioneer formations (Hasenack et al., 2008). The climate, according to Köppen 
system, is Subtropical Humid (Cfa), with an annual mean temperature of 19.5 °C and 
annual mean rainfall of 1,320 mm, well distributed throughout the year (Inmet, 2016). 

The most common soils classes according to Soil Taxonomy (Soil Survey Staff, 2014) and 
Brazilian Soil Classification System (Santos et al., 2013) are Ultisols (Argissolo Vermelho 
Distrófico), Inceptisols (Cambissolo Háplico Alítico), and Lithic Udorthents (Neossolo 
Litólico Distrófico), usually found at higher elevations, whereas Albaquults (Planossolo 
Háplico Distrófico), Plintaquults (Plintossolo Argilúvico Distrófico), and Aquents (Gleissolo 
Háplico Alítico) occur in low-lying areas (Schneider et al., 2008).

Available soil and terrain database

The Porto Alegre soil survey (Schneider et al., 2008), part of a comprehensive environmental 
assessment (Hasenack et al., 2008), covers the entire municipality and contains a soil 
map published at 1:50,000 scale. It is formed by twelve MUs: one single MU, one MU 
composed of terrain types, and ten multi-component MUs. Of these last MUs, nine are 
soil associations and one is an undifferentiated group. 

The original 72-pedon dataset was obtained from the pedologists who carried out the 
original soil survey, and it was used as an information source in addition to the soil map. 
Pedon data included soil classification to the second categorical level of the Brazilian 
Soil Classification System (SiBCS), the geographical coordinates, slope, and landscape 
position of each pedon. A digital hypsometric map (line vector format with 1 m interval 
contours), from Hasenack et al. (2010), was used to produce a digital elevation model 
(DEM) with a 15-m pixel resolution with ArcMap™ 10.2 (ESRI, 2013).

Assignment of soil-landscape relationships and creation of training area 

This methodology follows a rationale similar to that of Nauman et al. (2014), Nauman and 
Thompson (2014), and Sarmento et al. (2017) (Figure 2). The initial effort was to select 
areas typifying the occurrence of each soil component, where there is high probability 
that a certain soil component will occur. Through selection of these areas, it was possible 
to correlate the environmental variables with the soil components and, using prediction 
models, to generate maps with MUs containing only single components. 

The multi-component MUs used for disaggregation were CX, GX, PV1, PV2, and SG1 
(Table 1), which occupy approximately 80 % of the municipal area. These MUs were 
chosen because the soil components that compose them occur in distinguishable 
positions in the landscape, as described in the survey report, thus enabling the 
individualization of each soil component to generate a map with the largest number 
of simple MUs. The areas of the MUs not used in the disaggregation were maintained 
within their original limits.

First, we attempted to identify the most typical environmental conditions for each soil 
class present in the MU. The soil survey report provided initial information on slope and 
landscape position for the soil classes. A slope map and a landform map were created 
with the DEM in ArcMap™ 10.2 and LandMapR (MacMillan, 2003), respectively, to obtain 
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the slope and the landscape position of each pedon. LandMapR produces landscape 
segmentation (into 15 landforms) based on elevation, surface contours, slope length, 
relative slope position, and other variables (MacMillan et al., 2000; MacMillan et al., 
2005; Sarmento et al., 2017). The relation between LandMapR and the landforms 
and the landscape position of each soil component was established by comparing the 
description of each landform provided by MacMillan (2003) and the description of the 
position occupied by each soil component in the landscape, which is contained in the 
soil survey report (Schneider et al., 2008).

After that, the pedons were cross-tabulated with the slope and landform maps and the soil 
map containing the delimitations of the MUs to generate a table with the combination of 
these three variables. Analyzing the combinations, we noted that the slope variable did not 
contribute to explain the occurrence of soil components commonly found at lower elevations, 
which have poorly drained soils, such as Aquents, Albaquults, and Plintaquults. Therefore, 
it was necessary to include an additional environmental variable, the Topographic Wetness 
Index (TWI). This index, developed by Beven and Kirkby (1979), combines the upslope 
contributing area and slope to explicitly quantify topographic control over hydrological 
processes (Sørensen and Seibert, 2007). The index was generated in ArcMap. A cross- 
tabulation of poorly drained soil pedons and TWI was conducted and showed high correlation 
between these soils and this variable. Earlier studies by Giasson et al. (2006) and Nauman 
et al. (2014) also used the TWI to differentiate areas with contrasting drainage in DSM 
studies. Subsequently, the study was conducted separately in two subareas: MUs containing 
well-drained soils (WDS) and imperfectly/poor drained soils (IPDS).

The most common combinations between MU, slope, and landform were selected for 
the WDS areas, and the most common combinations between MU, TWI, and landform 
were selected for the IPDS areas. From these combinations, rules that explain the 
occurrence of soil components were created. For example: Inceptisols are expected to 
occur on a Divergent Backslope (DBS) landform with slopes ranging from 23-30 % in the 
multi-component MU CX. Aquents are expected to occur in a Toe Slope (TSL) landform 
with TWI ranging from 10 to 15 in the multi-component MU GX. For each soil component, 
not only one, but several individual rules were created. At the end of the rule creation 
process for a total of six different individualized soil components, a total of 210 unique 
soil occurrence rules were created (Table 2).
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Figure 1. Location of the study area in the state of Rio Grande do Sul, Brazil.
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Figure 2. Schema of methodological steps for disaggregating soil map units in the Porto Alegre 
municipality area.
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These rules were translated into logical expressions for insertion into the ArcMap’s Raster 
Calculator tool. Areas corresponding to the rule combinations of landform, MU, and 
slope (for the WDS areas) or landform, MU, and TWI (for the IPDS areas) were selected, 
aiming to represent the typical areas for each soil component (Figure 2). After selection, 
these typical areas were converted to polygon vector format to facilitate the creation of 
sample points that were needed for the predictive model. Sample points were created 
in ArcMap™ 10.2 with the Sampling Design Tool (Buja and Menza, 2013). We used a 
stratified random sampling approach in which a given point density was defined and 
applied to all polygons, resulting in similar density for all the polygons of the training 
area. This approach allowed better distribution of points across polygons, as opposed to 
random sampling, which tends to provide greater density of points in large polygons, thus 
reducing the importance of the information contained in small polygons (Odgers et al., 
2014). The point density chosen was approximately 2.5 points per hectare, as suggested 
by Sarmento et al. (2012) and Bagatini et al. (2015) for sampling density in DSM. The 
sampling process resulted in selection of approximately 50,000 sampling points in the 
WDS area and approximately 38,000 sampling points in the IPDS area for use in the 
predictive model.

Table 1. Soil map units in the Soil Survey map of Porto Alegre, RS, Brazil (adapted from Schneider et al., 2008)

Map unit
Drainage(1) Soil Taxonomy Brazilian System

Area 
ID Type Principal Inclusions Principal Inclusions

%

PV1 Undifferentiated Group WDS Ultisols
Inceptisols

Argissolos
Cambissolos

6.9Lithic 
Udorthents

Neossolo 
litólico

PV2 Association WDS Ultisols and Inceptisols Lithic 
Udorthents

Argissolos and 
Cambissolos

Neossolo 
litólico 15.8

CX Association WDS Inceptisols and Lithic 
Udorthents

Ultisols
Cambissolos and 
Neossolo Litólico

Argissolos
14Rocky 

outcrops
Afloramentos 

rochosos

SG1 Association IPDS Albaquults, Aquents, 
and Plintaquults -

Planossolo Háplico, 
Gleissolo Háplico, and 
Plintossolo Argilúvico

- 26.8

SG2 Association NU Albaquults, Aquents, 
and Fluvents -

Planossolo Háplico, 
Gleissolo Háplico, 

and Neossolo Flúvico
- 1.9

GX Association IPDS Aquents and 
Albaquults -

Gleissolo Háplico 
and Planossolo 
Hidromórfico

- 14.6

G1 Association NU Aquents and Fluvents Histosols Gleissolo Háplico and 
Neossolo Flúvico Organossolos 7.4

G2 Association NU Aquents and Albaquults 
and Terrain Types(2) Plintaquults

Gleissolo Háplico, 
Planossolos, and 

Tipos de Terreno(2)

Plintossolo 
Argilúvico 6.3

RQ Association NU Quartzipsamments 
and Aquents -

Neossolo 
Quartzarênico and 
Gleissolo Háplico

- 2.5

RU1 Simple NU Fluvents Aquents Neossolo Flúvico Gleissolo 
Háplico 0.1

RU2 Association NU Fluvents and Terrain 
Types Aquents Neossolo Flúvico and 

Tipos de Terreno
Gleissolo 
Háplico 2.1

TT Terrain Type NU - - Tipos de Terreno - 1.6
(1) Drainage classes created in this study. WDS = well-drained soil area; IPDS = imperfectly/poorly drained soil area; NU = not used for disaggregation; 
- = no inclusions. (2) Terrain types (Tipos de Terreno) are map units with few or none natural soil (IBGE, 2015).
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Tree-based model implementation

To implement the predictive model, a set of 32 environmental variables (Table 2) was 
generated in SAGA-GIS (Conrad et al., 2015) from the DEM. These variables were then 
cross-tabulated in ArcMap with the sampling points from the previous step. In this step, 
each sampling point received a combination of values from the variables. The process 
generated two tables, one for the WDS area and one for the IPDS area. These tables 
were inserted in the data-mining software WEKA 3.6 (Hall et al., 2009) and formed the 
database for implementation of the predictive models for generation of the disaggregated 
soil map. With the Attribute Selection function of WEKA, the variables were tested for 
their contribution to soil component mapping in the predictive model. Based on statistical 
analysis of the dataset, this tool searched which subset of properties worked best for 
prediction. Then, relevant properties could be selected, and the redundant or irrelevant 
ones could be discarded, resulting in a model that was simpler, faster, and easier to 
interpret (Hall and Holmes, 2003). 

The predictive model chosen was the decision tree algorithm J48, which is a Java 
implementation of the C4.5 algorithm (Quinlan, 1993) in the WEKA data-mining tool. The 
choice was based on the satisfactory results shown by this algorithm in other DSM studies 
(Giasson et al., 2011; Costa, 2016). Pruning of the decision tree was established to avoid 
overfitting of the model; thus, terminal nodes with less than 10 pixels were suppressed. 
Values of 5, 15, 20, and 30 pixels were tested, but the value of 10 was chosen because 
it resulted in a predictive model with accuracy higher than 90 % without an excessive, 
time-consuming number of rules. Model training was performed with 50 % of the points, 
while the other half was used for validation. 

Table 2. Examples of rules created to describe the typical location of soil components within the 
five mapping units based on the slope ranges, landforms, and Topographic Wetness Index (TWI)

Mapping unit Slope range Landform TWI Soil component
%

WDS area

PV1
<20 Any - Ultisol

20-45 DSH - Inceptisol
>45 Any - Lithic Udorthents

PV2

<3 TSL, TER - Ultisol
3-8 FSL - Ultisol

8-20 BSL - Inceptisol
>45 DSH - Lithic Udorthents

CX

<3 LCR, TER - Ultisol
8-20 FSL, TSL, FAN - Ultisol
8-20 BSL, DBS, CBS - Inceptisol
Any DSH - Lithic Udorthents

IPDS area

SG1
- TSL 7-9 Plintaquults
- TSL 9-11 Albaquults
- TSL >11 Aquents

GX
- BSL, TSL 9-11 Albaquults
- TER, TSL >11 Aquents

DSH = divergent shoulder; TSL = toe slope; TER = terrace; FSL = foot slope; BSL = back slope; LCR = level 
crest; FAN = lower slope fan; DBS = divergent back slope; CBS = convergent back slope; Any = any of the 
landforms; - = not applicable to this MU.
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The resulting tree-based models, one for the WDS area and the other for the IPDS area, 
were implemented using the Raster Calculator in ArcMap™ 10.2. This step generated 
two soil maps, one with only the soils of the WDS area and another with only the 
soils of the IPDS area. These two maps were merged with the areas that were not 
disaggregated to form one final soil map with approximately 80 % of its area containing 
individual soil components.

Map accuracy assessment

The accuracies of the original and disaggregated soil maps were assessed by intersecting 
the maps with the georeferenced pedon dataset (Häring et al., 2012; Nauman et al., 
2014; Nauman and Thompson, 2014; Sarmento et al., 2017). A 30-m circular buffer 
was created in each pedon, similar to that performed by Sarmento et al. (2014), 
Nauman and Thompson (2014), Heung et al. (2016), and Vincent et al. (2018). This 
buffer is created for the purpose of disregarding the precision error involved in the 
GPS equipment used to collect the geographic coordinates of the pedons, which may 
be more than 20 meters in some cases, depending on the atmospheric conditions and 
the equipment used. The prediction was computed correctly when any pixel in the 
buffered area matched that of the reference pedon (Smith et al., 2012; Nauman and 
Thompson, 2014; Sarmento et al., 2017).

The risk of a biased validation using the soil pedons was deemed low because their 
spatial location was not used directly as a training area. The pedons were used as an 
information source about the environmental conditions that each soil component occurs, 
aiming to create soil-landscape rules for selecting typical areas of each soil component. 
These selected areas, here called “training areas”, were used for training the tree-based 
model. The use of these pedons for validation helped attain one of our objectives, namely 
to reduce costs on field trips in elaborating a soil survey.

RESULTS AND DISCUSSION 

A visual comparison between the original map and the disaggregated map provides 
a first assessment of the improvement obtained from MU disaggregation (Figure 3). 
Whereas in the original map each MU was composed of more than one soil component, 
in the disaggregated map, each MU is formed by only one. Unlike the original map 
in which lines delimit the MUs, the disaggregated map represents the distribution 
of MUs through pixels, enabling more gradual and continuous transitions between 
the MUs, as occurs in the landscape. In addition, the pixels may represent the 
inclusions, unlike the original map of polygons, in which it would not be possible to 
know their location. Thus, the disaggregated map provides more detailed information 
on soil components.

The disaggregated map had 80.5 % correct predictions, higher than the 79.2 % verified 
in the original map (Table 3). However, it should be noted that maps with several soil 
components composing each MU, such as the original map, tend to increase the rate of 
correct predictions, because they enable more than one soil component to be matched 
with a validation pedon. Sarmento et al. (2017) verified correct predictions ranging from 
45.5 to 48.5 % using a one-pixel buffer (30 m) for validation, but the intention of these 
authors was mapping up to the sixth categorical level of the SiBCS, which involved a higher 
number of components. Vincent et al. (2018) achieved 41 to 72 % correct predictions in 
disaggregation of a Brittany (France) soil map containing 341 MUs, although their legacy 
soil data were much more detailed than ours. In mapping soils in the USA within the Soil 
Taxonomy series (Soil Survey Staff, 2014), Nauman et al. (2014) obtained 69.8 % and 
Nauman and Thompson (2014) 39 to 44 % correct predictions; the latter authors used 
a 60 m buffer validation. 
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Soil components which had more georeferenced pedons available showed higher 
performance, similar to that verified by Häring et al. (2012), with 89.1, 81.8, and 75.0 % 
correct predictions for the MUs (single component) of PV, RR, and SX, respectively. 
The MU FT exhibited 100 % correct predictions, but the availability of only one pedon 
imposes only two possible results, 0 or 100 %, making it difficult to evaluate the real 
value of correct predictions. Aside from this exception, components with low availability 
of georeferenced points had the worst concordances, at 0 and 50 % for Inceptisols and 
Aquents, respectively. These results reflect the difficulty of creating soil-landscape rules 
from a limited amount of information about the environmental conditions in which a 
given soil component occurs. 

In the WDS areas, the disaggregated map showed an extensive area mapped with Ultisols, 
followed by Lithic Udorthents at the tops and steep slopes of hills (Figure 3). Even in the 
original MU CX, the Ultisols occupied an extensive area, in contrast with the report of 
the original soil survey (Table 1), which suggests that Inceptisols and Lithic Udorthents 

Figure 3. Comparison of a part of the original (a) and of the disaggregated (b) soil map. The acronyms in the images and in the 
legend correspond to the map units of the original and of the disaggregated soil map, respectively.
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predominate in this MU. However, unlike the original survey, recent studies have shown 
that Inceptisols tend to occur under very specific topographic conditions, occupying narrow 
bands between Ultisols and Lithic Udorthents. In a study of the soils of Extrema Hill, in 
Porto Alegre, Medeiros et al. (2013) described the occurrence of Ultisols in places where 
the soil-landscape relationship would suggest the presence of Inceptisols, indicating that 
in the region, these soils occupy narrow zones of transition between Ultisols and Lithic 
Udorthents. Along the toposequence studied, these authors described the occurrence 
of three Ultisols, one Lithic Udorthent, and no Inceptisol. In the same municipality, 
Medeiros (2014) analyzed two toposequences, one in Santana Hill and one in São Pedro 
Hill, and found four Ultisols, two Lithic Udorthents, and two Inceptisols, indicating a 
higher probability of Ultisols in WDS areas. These findings reinforce the accuracy results 
of our study and the understanding that the disaggregated map seems to be closer to 
reality since it shows a greater presence of Ultisols in areas where Inceptisols could 
theoretically be suggested.

However, although the disaggregated map improved correspondence to the presence 
of Ultisols, the Inceptisols (CX) exhibited 100 % error. In this map error, the four points 
corresponding to this component were located in pixels referring mainly to the Ultisols. 
This mistake is a combined result of the low availability of Inceptisol pedons, associated 
with the fact that these two soil components occupy similar landscape positions; they 
occur in similar slopes and positions in the terrain, as stated in the field report. This 
resulted in difficulty in creating refined rules for the Inceptisols and, consequently, 
their prediction by the model. This difficulty could be overcome if a higher number of 
Inceptisol pedons had been available, which would help refine the rules for selecting 
the typical areas of this component, thus improving agreement of the prediction map 
with the georeferenced pedons.

Table 3. Variables tested in the decision tree algorithm

Tested variable Used(1) Tested variable Used(1)

Catchment area NU Negative Openness WDS

Catchment slope NU Normalized Height NU

Channel Network Base Level NU Plan Curvature NU

Closed Depressions NU Positive Openness NU

Convergence Index NU Profile Curvature NU

Cross-Sectional Curvature NU Relative Slope Position NU

Flow Accumulation IPDS Slope WDS

Digital Elevation Model WDS Slope Height WDS

Landform WDS, IPDS Standardized Height NU

Longitudinal Curvature WDS Terrain Ruggedness Index NU

LS Factor WDS Texture NU

Maximal Curvature NU Topographic Position Index WDS, IPDS

Mid-Slope Positon NU Topographic Wetness Index WDS, IPDS

Modified Catchment Area NU Valley Depth NU

Multi-resolution Ridge Top Flatness WDS Vector Terrain Ruggedness NU

Multi-resolution Index of Valley 
Bottom Flatness WDS Vertical Distance to 

Channel Network WDS
(1) WDS = well-drained soil area; IPDS = imperfectly/poor drained soil area; NU = variable not used, discarded 
by Weka’s Attribute Selection function. 
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The average accuracy of the IPDS areas was 72.7 %, and was 100, 75, and 50 % for the 
Plintaquults, Albaquults, and Aquents, respectively (Table 4). These accuracies were 
satisfactory, considering the greater difficulty in mapping these areas in comparison 
to better drained areas because of the significant heterogeneity of soils inherent to 
hydromorphic environments (Coringa et al., 2012; Guimarães et al., 2013; Silva Neto, 
2015). Moreover, the terrain variations are small in these areas, which makes it more 
difficult to differentiate soil classes using terrain variables. This difficulty in mapping is 
also evident from visual analysis of the original soil map, where the polygons of the MU 
are large and have simple shapes; this may indicate difficulty of pedologists in delineating 
the MU in these areas. Höfig et al. (2014) used DSM and reported difficulty in mapping 
low elevation areas, which was overcome with division of the study area into units with 
homogeneous landscape according to its drainage pattern.

The accuracies obtained in our disaggregated map demonstrated the ability of the 
predictive model to represent the soil distribution in the landscape, which is our purpose. 
This was possible because the areas typifying the occurrence of each component, 
selected for training the tree-based model, were representative of reality. So, this leads 
us to affirm that creation of the rules relating soil components to their environments 
must have been efficient, which is largely a result of the effectiveness of the variables 
used in this step, i.e., landform, TWI, and slope. Sarmento et al. (2017) also used the 
landform and slope variables to translate indication of the position in which a given soil 
component occurs in a toposequence, which helped these authors in the disaggregation 
of a soil map from a mountainous region in southern Brazil. Nauman et al. (2014) used 
TWI to identify typical drainage patterns of certain soil components within the MUs and 
perceived an important relationship with aerial photographs. This enabled selection of 
typical areas for training a predictive model for spatial disaggregation of a soil map in 
Arizona, USA. Giasson et al. (2006) also used this variable for selecting reference areas 
based on drainage classes. Similarly, in our study we verified the noteworthy contribution 
of these variables in identifying the typical occurrence of soil components within MU, 
which recommends their inclusion in future DSM applications. 

The approach used in this study adequately disaggregated multi-component MUs into 
their soil components in the study area and produced a more detailed soil map. It may be 
applied under circumstances of soil surveys with limited detail and available information. 
Considering that many of the soil surveys available in Brazil have characteristics like 
those studied here, this approach is a promising alternative for generating maps more 
suitable to current demands in Brazil.

Table 4. Soil component and disaggregated map accuracies, assessed by the intersection with 
the available pedons

Map unit Soil component Validation points(1) Correct(2) Correct

%

PV Ultisol 46 41 89.1

CX Inceptisol 4 0 0.0

RR Lithic Udorthents 11 9 81.8

FT Plintaquults 1 1 100.0

SX Albaquults 8 6 75.0

GX Aquents 2 1 50.0

Disaggregated soil map 72 58 80.5

Original soil map 72 57 79.2
(1) A 72-pedon dataset available. (2) The prediction was considered correct whenever any pixel in a 30-meter 
radius matched that of the reference pedon.
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CONCLUSIONS
The methodology presented in this study proved useful in producing a more detailed 
map by disaggregating multi-component map units into single-component map units.

The terrain variables of Landform, Slope, and Topographic Wetness Index were useful in 
distinguishing some sites for occurrence of the soil components and they can be used 
as a support in identifying typical areas for training predictive models.

The methodology is promising for application in areas with a similar amount and type 
of data available.

ACKNOWLEDGMENTS
The authors are thankful to Robert (Bob) A. MacMillan, LandMapper Environmental Solutions Inc., 
for kindly providing LandMapr©, to Carlos Gustavo Tornquist for reviewing the manuscript, and 
for financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico 
(CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes). 

REFERENCES
Bagatini T, Giasson E, Teske R. Seleção de densidade de amostragem com base em dados de 
áreas já mapeadas para treinamento de modelos de árvore de decisão no mapeamento digital 
de solos. Rev Bras Cienc Solo. 2015;39:960-7. https://doi.org/10.1590/01000683rbcs20140289

Bagatini T, Giasson E, Teske R. Expansão de mapas pedológicos para áreas fisiograficamente 
semelhantes por meio de mapeamento digital de solos. Pesq Agropec Bras. 2016;51:1317-25. 
https://doi.org/10.1590/s0100-204x2016000900031

Beven KJ, Kirkby MJ. A physically based, variable contributing area model of basin hydrology. 
Hydrol Sci B. 1979;24:43-69. https://doi.org/10.1080/02626667909491834

Bui EN, Moran CJ. Disaggregation of polygons of surficial geology and soil maps using spatial modelling 
and legacy data. Geoderma. 2001;103:79-94. https://doi.org/10.1016/S0016-7061(01)00070-2

Buja K, Menza C. Sampling design tool for ArcGIS: instruction manual. Silver Spring: NOAA’s 
Biogeography Branch; 2013.

Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, 
Böhner J. System for automated geoscientific analyses (SAGA) v.2.1.4. Geosci Model Dev. 
2015;8:1991-2007. https://doi.org/10.5194/gmd-8-1991-2015

Coringa EAO, Couto EG, Perez XLO, Torrado PV. Atributos de solos hidromórficos no Pantanal Norte 
Matogrossense. Acta Amazon. 2012;42:19-28. https://doi.org/10.1590/S0044-59672012000100003

Costa JJF. Mapeamento digital de solos com uso de árvores de decisão na microbacia córrego 
Tarumãzinho, Águas Frias, SC [dissertação]. Porto Alegre: Universidade Federal do Rio Grande 
do Sul; 2016.

Environmental Systems Research Institute - ESRI. ArcGIS Desktop [computer program]. Version 
10.2. Redlands, CA: Environmental Systems Research Institute; 2013.

Giasson E, Clarke RT, Inda Junior AV, Merten GH, Tornquist CG. Digital soil mapping using 
multiple logistic regression on terrain parameters in Southern Brazil. Sci Agric. 2006;63:262-8. 
https://doi.org/10.1590/S0103-90162006000300008

Giasson E, Sarmento EC, Weber E, Flores CA, Hasenack H. Decision trees for 
digital soil mapping on subtropical basaltic steeplands. Sci Agric. 2011;68:167-74. 
https://doi.org/10.1590/S0103-90162006000300008

Guimarães ST, Lima HN, Teixeira WG, Neves Junior AF, Silva FWR, Macedo RS, 
Souza KW. Caracterização e classificação de Gleissolos da várzea do Rio Solimões 
(Manacapuru e Iranduba), Amazonas, Brasil. Rev Bras Cienc Solo. 2013;37:317-26. 
https://doi.org/10.1590/S0100-06832013000200003



Machado et al. Spatial disaggregation of multi-component soil map units using legacy...

13Rev Bras Cienc Solo 2018;42:e0170193

Hall MA, Holmes G. Benchmarking attribute selection techniques for discrete class data mining. 
IEEE T Knowl Data En. 2003;15:1437-47. https://doi.org/10.1109/TKDE.2003.1245283

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA 
data mining software: an update. SIGKDD Explorations. 2009;11:10-8. 
https://doi.org/10.1145/1656274.1656278

Häring T, Dietz E, Osenstetter S, Koschitzki T, Schröder B. Spatial disaggregation of 
complex soil map units: a decision-tree based approach in Bavarian forest soils. Geoderma. 
2012;185-186:37-47. https://doi.org/10.1016/j.geoderma.2012.04.001 

Hasenack H, Cordeiro JLP, Boldrini I, Trevisan R, Brack P, Weber EJ. Vegetação/Ocupação. In: Hasenack 
H, coordenador. Diagnóstico ambiental de Porto Alegre: geologia, solos, drenagem, vegetação/
ocupação e paisagem. Porto Alegre: Secretaria Municipal do Meio Ambiente; 2008. p. 56-71.

Hasenack H, Weber EJ, Lucatelli LML. Base altimétrica vetorial contínua do município 
de Porto Alegre-RS na escala 1:1.000 para uso em sistemas de informação geográfica 
[base de dados na Internet]. Porto Alegre: Universidade Federal do Rio grande do Sul, 
Laboratório de Geoprocessamento; 2010 [11 de abr de 2017]. Disponível em: http://www.
ecologia.ufrgs.br/labgeo

Heung B, Ho HC, Zhang J, Knudby A, Bulmer CE, Schmidt MG. An overview and comparison 
of machine-learning techniques for classification purposes in digital soil mapping. Geoderma. 
2016;265:62-77. https://doi.org/10.1016/j.geoderma.2015.11.014

Höfig P, Giasson E, Vendrame PRS. Mapeamento digital de solos com base na extrapolação 
de mapas entre áreas fisiograficamente semelhantes. Pesq Agropec Bras. 2014;49:958-66. 
https://doi.org/10.1590/S0100-204X2014001200006

IBGE. Manual técnico de pedologia. 3. ed. Rio de Janeiro: IBGE; 2015.

Instituto Nacional de Meteorologia - Inmet. Normais climatológicas do Brasil (1961-1990) 
[internet]. Brasília, DF: Ministério da Agricultura, Pecuária e Abastecimento; 2009 [acesso 
em 23 nov 2016]. Disponível em: http://www.inmet.gov.br/portal/index.php?r=clima/
normaisclimatologicas 

Kerry R, Goovaerts P, Rawlins BG, Marchant BP. Disaggregation of legacy soil data using 
area to point kriging for mapping soil organic carbon at the regional scale. Geoderma. 
2012;170:347-58. https://doi.org/10.1016/j.geoderma.2011.10.007

MacMillan RA. LandMapR© Software Toolkit- C++ Version: users manual. Alberta: LandMapper 
Environmental Solutions; 2003.

MacMillan RA, Pettapiece WW, Brierley JA. An expert system for allocating soils to landforms 
through the application of soil survey tacit knowledge. Can J Soil Sci. 2005;85:103-12. 
https://doi.org/10.4141/S04-029

MacMillan RA, Pettapiece WW, Nolan SC, Goddard TW. A generic procedure for automatically 
segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. 
Fuzzy Set Syst. 2000;113:81-109. https://doi.org/10.1016/S0165-0114(99)00014-7

Medeiros PSC. Pedogênese em topossequências graníticas no município de Porto Alegre, RS 
[tese]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2014. 

Medeiros PSC, Nascimento PC, Inda AV, Silva DS. Caracterização e classificação de solos 
graníticos em topossequência na região Sul do Brasil. Cienc Rural. 2013;43:1210-7. 
https://doi.org/10.1590/S0103-84782013000700011

Nauman TW, Thompson JA. Semi-automated disaggregation of conventional soil maps 
using knowledge driven data mining and classification trees. Geoderma. 2014;213:385-99. 
https://doi.org/10.1016/j.geoderma.2013.08.024

Nauman TW, Thompson JA, Rasmussen C. Semi-automated disaggregation of a conventional 
soil map using knowledge driven data mining and random forests in the Sonoran Desert, USA. 
Photogramm Eng Remote Sens. 2014;80:353-66. https://doi.org/10.14358/PERS.80.4.353 

Odgers NP, Sun W, McBratney AB, Minasny B, Clifford D. Disaggregating and harmonising 
soil map units through resampled classification trees. Geoderma. 2014;214:91-100. 
https://doi.org/10.1016/j.geoderma.2013.09.024



Machado et al. Spatial disaggregation of multi-component soil map units using legacy...

14Rev Bras Cienc Solo 2018;42:e0170193

Penter C, Pedó E, Fabián ME, Hartz SM. Inventário rápido da fauna de mamíferos do Morro 
Santana, Porto Alegre, RS. Rev Bras Biocienc. 2008;6:117-25.

Philipp RP. Geologia. In: Hasenack H, coordenador. Diagnóstico ambiental de Porto Alegre: 
geologia, solos, drenagem, vegetação/ocupação e paisagem. Porto Alegre: Secretaria Municipal 
do Meio Ambiente; 2008. p. 12-27.

Quinlan JR. C4.5: programs for machine learning. San Mateo: Morgan Kaufmann Publishers; 1993.

Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Oliveira JB, Coelho MR, Lumbreras JF, Cunha 
TJF. Sistema brasileiro de classificação de solos. 3. ed. Rio de Janeiro: Embrapa Solos; 2013.

Sarmento EC, Giasson E, Weber EJ, Flores CA, Hasenack H. Disaggregating conventional soil 
maps with limited descriptive data: a knowledge-based approach in Serra Gaúcha, Brazil. 
Geoderma Regional. 2017;8:12-23. https://doi.org/10.1016/j.geodrs.2016.12.004

Sarmento EC, Giasson E, Weber E, Flores CA, Hasenack H. Prediction of soil orders with high 
spatial resolution: response of different classifiers to sampling density. Pesq Agropec Bras. 
2012;47:1395-403. https://doi.org/10.1590/S0100-204X2012000900025

Schneider P, Klamt E, Kämpf N, Giasson E, Nacci D. Solos. In: Hasenack H, coordenador. 
Diagnóstico ambiental de Porto Alegre: geologia, solos, drenagem, vegetação/ocupação e 
paisagem. Porto Alegre: Secretaria Municipal do Meio Ambiente; 2008. p. 28-43.

Silva Neto LF, Inda AV, Nascimento PC, Giasson E, Schmitt C, Curi N. Characterization and 
classification of floodplain soils in the Porto Alegre metropolitan region, RS, Brazil. Cienc 
Agrotec. 2015;39:423-34. https://doi.org/10.1590/S1413-70542015000500001

Smith CAS, Daneshfar B, Frank G, Flager E, Bulmer C. Use of weights of evidence statistics to 
define inference rules to disaggregate soil survey maps. In: Minasny B, Malone BP, McBratney 
AB, editors. Digital soil assessments and beyond. Boca Raton: CRC Press; 2012. p. 215-22.

Soil Survey Staff. Keys to Soil Taxonomy. 12th ed. Washington, DC: United States Department of 
Agriculture, Natural Resources Conservation Service; 2014.

Sørensen R, Seibert J. Effects of DEM resolution on the calculation of topographical indices: TWI 
and its components. J Hydrol. 2007;347:79-89. https://doi.org/10.1016/j.jhydrol.2007.09.001

ten Caten A, Dalmolin RSD, Mendonça-Santos ML, Giasson E. Mapeamento digital de 
classes de solos: características da abordagem brasileira. Cienc Rural. 2012;43:1989-97. 
https://doi.org/10.1590/S0103-84782012001100013

Vincent S, Lemercier B, Berthier L, Walter C. Spatial disaggregation of complex Soil Map Units 
at the regional scale based on soil-landscape relationships. Geoderma. 2018;311:130-42. 
https://doi.org/10.1016/j.geoderma.2016.06.006


