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ABSTRACT: Quantification of soil properties is essential for better understanding of the 
environment and better soil management. The conventional techniques of laboratory 
analysis are sometimes costly and detrimental to the environment. Thus, development 
of new techniques for soil analysis that do not generate residues, such as spectroscopy, 
is increasingly necessary as a viable way to estimate a wide range of soil properties. The 
objective of this study was to predict the levels of organic carbon (OC), clay, and extractable 
phosphorus (P), from the spectral responses of soil samples in the visible and near infrared 
(Vis-NIR), medium infrared (MIR), and Vis-NIR-MIR using different preprocessing methods 
combined with five prediction models. Soil samples were collected in Iconha, Espírito Santo 
State, Brazil, in the Ribeirão Inhaúma basin. A total of 184 samples were collected from 92 
sites at two depths (0.00-0.10 and 0.10-0.30 m). Physical, chemical, and spectral analyses 
were performed according to routine soil laboratory methods. Random selection was made 
of 70 % of total samples for training and 30 % for validation of the models. The coefficient 
of determination (R2) and root mean square error (RMSE) were calculated in order to assess 
model performance. The standardized indexes of prediction error RPD and RPIQ were also 
calculated. For clay and OC, the best R2 was found in the MIR spectrum, at 0.69 and 0.65, 
respectively, and for P, it was 0.57 in Vis-NIR. The MSC (Multiplicative Scatter Correction), CR 
(Continuum removal), and SNV (Standard Normal Variate) preprocesses were most efficient for 
predicting clay, OC, and P, respectively, while the PLSR - Partial Least Squares Regression (OC 
and P) and SVM - Support Vector Machine (clay) gave the best predictions and are therefore 
recommended for modeling these properties in the study area. The models identified in this 
study can be used to discriminate soils according to a critical test value for clay, OC, and P.
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INTRODUCTION

Pedometry uses modern techniques of mining and data analysis to quantify soil properties, 
and it is one of the most promising fields of soil property prediction from its relationship 
with spectral responses in different reflectance ranges (Adeline et al., 2017; Nouri et al., 
2017). Conventional laboratory analyses used for quantification of soil properties are 
costly (Bogrekci and Lee, 2005; Viscarra Rossel et al., 2006; Bashagaluke et al., 2015) and 
likely to have environmental effects because of the chemical reagents they use (Nanni 
and Demattê, 2006). Furthermore, the time from sampling to acquisition of results is 
long (Bashagaluke et al., 2015).

In recent years, reflectance spectroscopy, both in near-infrared (NIR) and medium-
infrared (MIR) spectra, in addition to visible bands, has drawn attention for its potential 
use in non-destructive, fast, and efficient methods for quantifying soil properties 
(Bashagaluke et al., 2015). In the study conducted by Mohamed et al. (2018), the 
NIR was the most efficient systematic strategy for characterizing and identifying soil 
properties, whereas Abdi et al. (2016) found visible spectroscopy (Vis-NIR) to be the 
most efficient strategy.

Quantitative analysis based on NIR or MIR spectra requires the development of calibrations 
that relate spectral information to known analyte contents (Reeves III and Smith, 2009). 
The precise quantification of different soil properties is performed using large libraries, 
with many samples (Brown et al., 2006; Fernández-Pierna and Dardenne, 2008; Vasques 
et al., 2008; Genot et al., 2011; Viscarra Rossel and Webster, 2012), and a way to deal 
with this large number of covariate samples, such as infrared spectra, is the selection 
of those with the highest predictive power (Minasny and McBratney, 2008).

Thus, preprocessing strategies are incorporated as a necessary step prior to prediction 
calibration to improve extraction of useful information from both additive and multiplicative 
effects superimposed on reflection spectra (Peng et al., 2014). That way, the efficiency 
of the mathematical models that are used to link the generated spectra (predictor 
variables) to the soil properties (response variables) is increased (Nouri et al., 2017). 
These include the Support Vector Machine (SVM) (Stevens et al., 2010), Partial Least 
Squares Regression (PLSR) (McCarty et al., 2002), Random Forest (RF), Artificial Neural 
Networks (ANN), and Gaussian Process Regression (GPR).

The PLSR method is probably the most commonly used multivariate statistical technique 
for spectral calibration and prediction of soil properties (Nouri et al., 2017). This technique 
reduces the predictors for a set with a smaller number of components that are not correlated 
with each other, and then uses these to perform least squares regression. In addition, 
the SVM is a computational technique based on pattern recognition, so it determines 
decision limits where optimal separation occurs between classes with minimization of 
error (Nascimento et al., 2009).

The RF method was developed by Breiman (2001) for classification and regression. In this 
technique, decision trees are formed using an initial random set, that is, each tree is 
generated from the values of a random vector. It is robust and insensitive to noise. The 
ANNs are usually organized in layers; they are constituted by a series of interconnected 
nodes that contain an activation function. The patterns are provided to the network 
through the input layer, which communicates with one or more hidden layers where 
actual processing is done through a weighted connection system; most ANNs contain 
some form of learning rule that modifies the weights of the connections according to the 
input patterns (Mohamed et al., 2018). Gaussian Process Regression is a geostatistical 
equivalent to kriging interpolation widely known and used in pedometric research; 
however, rather than using geographic coordinates as input data, it uses spectral data 
(Ramirez-Lopez et al., 2013).
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In preprocessing strategies, smoothing is a simple moving mean of spectral data using 
a convolution function (Stevens et al., 2013). The preprocessing of normalization refers 
to the creation of displaced and staggered versions of spectral data, where these 
normalized values eliminate scattering effects (Rinnan et al., 2009). The Savitzky-Golay 
derivatization algorithm (Savitzky and Golay, 1964) requires the selection of smoothing 
points (filter width), polynomial orders, and derivative orders. The CR technique proposed 
by Clark and Roush (Clark and Roush, 1984) consists of removing continuous spectral 
characteristics and is often used to isolate specific absorption characteristics present 
in the spectrum to minimize noise. The continuum is represented by a mathematical 
function used to separate and highlight specific absorption bands of the reflectance 
spectrum (Mutanga et al., 2005).

Based on the hypothesis that it is possible to predict soil properties from their 
spectra, this study aimed to predict the organic carbon (OC), clay, and extractable 
P contents from the MIR, Vis-NIR, and Vis-NIR-MIR using different preprocessing 
methods (Continuum Removal – CR; Absorbance – ABS; Savitzky Golay Derivative – 
SGD; Standard Normal Variate – SNV; and Multiplicative Scatter Correction – MSC) 
combined with five predictive models (Partial Least Squares Regression – PLSR; 
Artificial Neural Network – ANN; Random Forest – RF; Gaussian Process Regression – 
GPR; and Support Vector Machine – SVM).

MATERIALS AND METHODS
Soil samples were collected in the Ribeirão Inhaúma basin, in Iconha, ES, Brazil, near 
coordinates 21° 10’ 58.82” S and 41° 00’ 08.87” W, with an area of 2,403.9 ha. According 
to the Köppen classification system, the climate of the study area is Aw, and its relief is 
mountainous with steep areas. We used 184 samples, obtained at 92 sites at two depths 
(0.00-0.10 and 0.10-0.30 m). The sampling sites were determined using a conditioned 
Latin hypercube method, with consideration given to access because of difficulties of 
movement in the area due to topographic relief. A 200-m buffer along the roads was 
determined. At each point, coordinates were recorded using a dual frequency GNSS 
receiver (L1, L2), whose data were processed in the Leica Geo Office 8.0 program. The 
base was adjusted from the fixed station of the IBGE in Vitória, ES, Brazil.

The samples were air dried, crushed, and sieved through a 2-mm mesh to quantify the clay, 
extractable P, and OC contents. Clay was quantified by the pipette method, extractable 
P by Mehlich-1, and organic carbon by Walkley and Black (Donagema et al., 2011).

In spectral analysis, about 5 g of sieved soil of less than 2 mm was used for bidirectional 
reflectance (350 to 2,500 nm); and for diffuse reflectance (medium infrared – 2,500 to 
25,000 nm), another 5 g were processed, which was milled, homogenized, and sieved to 
0.149 mm (100 mesh). To obtain the bidirectional data in the Vis-NIR bands, the samples 
were packed in petri dishes and leveling was performed to reduce the roughness of the 
surface. For each sample, 300 readings were performed automatically by the sensor, with 
100 readings every 90°. The final value considered was the mean of three measurements. 
The calibration of the sensor was done using a Spectralon (barium sulfate) plate, with 
reflectance of 100 %. Calibration was repeated every 20 minutes.

The FieldSpec Pro (Analytical Spectral Devices, Boulder, Colorado) sensor (Hatchell, 
1999) was used, whose resolution is 2 nm for the bands of 1,100 to 2,500 nm, and 1 nm 
for the other wavelengths. It was positioned vertically at 8 cm from the sample, with 
an 18° field of view. Two 50 W halogen lamps were used as a source of illumination, 
which were positioned 35 cm from the platform, with a zenith angle of 30°. At the 
end, the bidirectional reflectance factor was calculated, given by the ratio between 
the spectral radiance reflected by the soil sample and the radiance reflected by the 
Spelactron plate.
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The Alpha Sample Compartment RT-DLaTGS ZnSe (Bruker Optik GmbH) equipped with a 
diffuse reflectance acquisition accessory (Drift) was used to obtain data in the medium-
infrared range (diffuse reflectance). The device uses a He-Ne laser as an internally 
positioned light source and calibration standard for each wavelength. The sensor has 
a KBr beam splitter that allows wide amplitude of radiation incident on the sample 
(from 2,500 to 25,000 nm). About 1 cm³ of soil sample was placed for reading in the 
equipment container. Sixty-four readings were made every second per spectrum and 
these were acquired at a 2 cm-1 resolution. Before each reading, the calibration of the 
sensor, with diffuse gold plate, was performed to remove the background radiation from 
the sample spectrum.

Of the samples, 70 % were randomly selected for training and 30 % for validation (external 
set of samples) of the models. The preprocessing methods were Continuous Removal 
(CR), Absorbance (ABS), Savitzky Golay Derivative (SGD), Standard Normal Variate (SNV), 
and Multiplicative Scatter Correction (MSC). We used Software R, version 3.4.

The CR is obtained using the prospectr package, where it is calculated according to the 
following mathematical description:

φi =
xi
ci

; i = {1, ..., p}								            Eq. 1

in which xi is the original reflectance value; ci is the reflectance value of the continuum 
at the ith wavelength of a set of p wavelengths; and φi is the final value of the reflectance 
after removal of the continuum.

Absorbance is calculated by performing equation 2 on R.

A = log10
1
R 									            Eq. 2

in which A is the absorbance; log10 is the logarithm base 10; and R is the reflectance.

The SGD is implemented by the savitzkyGolay function in the prospectr package. The 
mathematical description is given by equation 3.

xj =
1
N Σm

–m ch xj+m
								            Eq. 3

in which xj is the new value; N is a normalization coefficient; m is the number of neighboring 
values on each side of j; and ch are precalculated coefficients, which depend on the 
chosen polynomial and derivative orders.

The SNV is implemented by the standard Normal Variate function in the prospectr 
package, according to:

SNV= xi – xi
si

									             Eq. 4

in which xi is the original reflectance; xi̅ is the mean of the original reflectance; and si is 
the standard deviation of the original reflectance.

The pls package includes the msc function for MSC preprocessing in R. The mathematical 
description of the MSC is given by equation 5.

MSC = xi – ai
bi

									             Eq. 5

in which xi is the original reflectance value; and ai and bi are the regression coefficients 
for sample i.
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These preprocesses were combined with the following multivariate regression algorithms: 
Partial Least Squares Regression (PLSR), Artificial Neural Network (ANN), Random Forest 
(RF), Gaussian Process Regression (linear and radial GPR), and Support Vector Machine 
(SVM), for a total of 30 tests. The data were processed using R 3.4 software, with the Alrad 
Spectra package. This package is not in CRAN, but in the GitHub repository. Instructions 
for installing, loading, and booting Alrad Spectra in R (Dotto et al., 2017).

For the Neural Network model, the parameters used were as follows: resampling 
method = 10 k-fold cross-validation; activation function = purelin (linear); and hidden units 
= 10. The elmtrain function of the elmNN package employs the best fitted parameters and 
executes the final ANN model. The caret package adjusts the SVM model, and the best 
parameters are used to generate the final model with the SVM function available in the e1071 
package. The adjustment parameters for SVM were as follows: resampling method = 10 
k-fold cross-validation, and Kernel parameter = Support Vector Machine with Linear Kernel.

For accuracy analysis of the models, the coefficient of determination R² was calculated 
according to the equation 6:

R2 = Σn
i=1 (Pi – o)2

Σn
i=1 (oi – o)2

								            Eq. 6

in which Pi and oi, are the values predicted and observed at location i, respectively; and 
n is the number of samples.

The RMSE, and the RPD (Residual Prediction Deviation) and RPIQ (Ration of Performance 
to Interquartile Distance) indexes were also calculated. The RMSE was obtained using 
the equation 7:

RMSE = 1
N Σi

ι=1 [z (Sj) – z*(Sj)]2^√ 						          Eq. 7

in which RMSE is the square root of the mean error; ẑ (Sj) are the estimated values; z* (Sj) 
are the validation data; and ι is the number of points for validation. 

The Residual Prediction Deviation (RPD) (Williams, 1987) and RPIQ (Bellon-Maurel et al., 
2010) were calculated, respectively, by the equations 8 and 9: 

RPD = SD
RMSE

									             Eq. 8

RPIQ = IQ
RMSE

									             Eq. 9

in which SD is the standard deviation; IQ is the difference obtained between the value 
referring to the 3rd and 1st quartile of the data distribution; and RMSE is the square root 
of the mean error.

Interpretation of the RPD values regarding the quality/reliability of the prediction was 
made according to the criteria proposed by Chang and Laird (2002) and Chang et al. 
(2001): values greater than 2.00 indicate excellent models for accurate prediction of 
properties; values between 1.40 and 2.00 indicate reasonable models; and values below 
1.4, unreliable models. The same analogy was applied for RPIQ analysis (Terra, 2011).

RESULTS AND DISCUSSION
Descriptive statistics are presented in table 1; to meet the assumptions of normality 
skewness and kurtosis, data should be close to 0 and 3 (Groeneveld and Meeden, 1984). 
Due to the nature of the distribution of the properties in the soils, it’s have a normal 
distribution (Bellon-Maurel et al., 2010). Soil properties generally have high spatial 
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variability, even in homogeneous agricultural fields, and therefore many samples should 
normally be collected and analyzed to capture this spatial variability and to adequately 
estimate its properties (Bilgili et al., 2010). Positive results are usually obtained for more 
heterogeneous samples, such as the effective calibrations achieved by Fidêncio et al. 
(2002), Kemper et al. (2005), and Brown et al. (2006).

Increased variability in the training phase of a statistical model leads to improved model 
robustness and greater ability to characterize a diverse variety of samples. Nevertheless, 
this variability may also lower prediction accuracy (McCarty et al., 2002). A widely 
applicable model for predicting OC should be based on a wide range of OC values in 
soils and on soils with different mineralogical contexts, as indicated by Hartmann and 
Appel (2006). Soil mineralogy is one of the main factors that causes differences in 
reflectance. Preprocess proved to be effective, although Kooistra et al. (2001) reported 
better predictions for clay and organic matter (OM) without spectral preprocessing.

Results are shown in table 2 for the clay property. When the coefficient of determination 
(R²) was analyzed, the highest values were found in the Vis-NIR (R2 = 0.69, RMSE = 4.38) 
and Vis-NIR-MIR (R2 = 0.54, RMSE = 5.88) spectra. Small improvements in clay prediction 
using the combination Vis-NIR-MIR were found by Viscarra Rossel et al. (2006). The Vis-NIR 
spectra contained valuable information to predict soil texture as reported by Mohamed 
et al. (2018), in agreement with the results obtained in our study. According to Hunt 
(1980), many clay minerals have unique spectral reflectance at visible wavelengths and 
NIR-SWIR (Near-Infrared--Short-wave Infrared).

For the Vis-NIR set, the best R2 value (0.69) was obtained from the combination of linear 
MSC-SVM algorithms. For Vis-NIR-MIR, it was from the combination SGD-PLSR (0.54). 
In the MIR range, the highest values of RPIQ in the validation set were found for the 
preprocessing combination SGD and PLSR predictor (1.82), and highest values of RPD 
for the combination MSC with PLSR and RF predictors (1.38). By RPD index analysis, we 
have an “unreliable” model (RPD less than 1.4), while the RPIQ raises the prediction for 
reasonable models. In the other spectra, maximum values of 2.15 for RPIQ and 1.62 for 
RPD were found in Vis-NIR; and 1.87 for RPIQ and 1.31 for RPD in Vis-NIR-MIR. By RPIQ 
analysis, the models were classified as excellent (2.15) and reasonable (1.87), whereas 
RPD classified them as reasonable (1.62) and unreliable (less than 1.4).

In relation to the prediction capacity analyzed within each preprocessing method, according 
to RPIQ and RPD values, we observed that for the clay variable, PLSR was higher in all 
spectrum bands except for RPD in the Vis-NIR, whose SVM was higher. It is important to 
note that, although it was presented as a method that reached higher index values, the 
maximum value was found by the SVM-linear, GPR-linear, and RF algorithms.

Table 1. Descriptive statistics for the clay, extractable phosphorus (P), and organic carbon (OC) 
of the all soils

  Clay P OC
g kg-1 mg dm-3 g kg-1

Observations 184 184 184
Minimum 82 0.05 6.39
Maximum 469 19.41 59.22
Mean 268 5.40 28.44
Median 273 3.52 27.93
Standard deviation 7.97 4.72 10.19
Asymmetry -0.04 1.09 0.64
Kurtosis 2.73 3.21 3.51

Clay was quantified by the pipette method; extractable P by Mehlich-1; and organic carbon by Walkley and 
Black (Donagema et al., 2011).
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In relation to clay preprocessing, the SGD method stood out, with most of the RPIQ 
values higher than 1.4 in the MIR range; the MSC method and the SNV algorithm in 
the Vis-NIR spectrum and MSC in Vis-NIR-MIR also stood out. In the Vis-NIR range, RPIQ 
values higher than 2.0 were found. Regarding RPD, the MSC method was superior in the 
MIR range, while the SNV method was more efficient in the Vis-NIR range. In contrast, 
Absorbance (ABS), Continuum Removal (CR), and Savitzky Golay Derivative (SGD) were 
more efficient in Vis-NIR-MIR. Values of RPD greater than 1.4 were found only for MSC in 
the Vis-NIR range. As in the MIR range, the models classified by the RPIQ index exhibited 
higher quality than that determined by RPD.

Table 2. Values of R2, RMSE, RPD (ratio of performance/prediction to deviation), and RPIQ (ratio of performance/prediction to 
interquartile range) for the clay property found for the different models and preprocessing methods in the MIR, Vis-NIR, and Vis-NIR-
MIR spectra

Model Pre-processing
MIR Vis-NIR Vis-NIR-MIR

R² RMSE RPD RPIQ R² RMSE RPD RPIQ R² RMSE RPD RPIQ
PLSR CR 0.34 6.57 1.08 1.23 0.36 6.53 1.09 1.45 0.21 7.64 0.93 0.98
ANN CR 0.08 7.81 0.91 1.04 0.52 5.37 1.32 1.76 0.25 6.47 1.10 1.15
RF CR 0.33 6.67 1.07 1.21 0.47 5.66 1.26 1.67 0.38 5.41 1.31 1.38
GPR linear CR 0.24 8.14 0.87 0.99 0.23 8.76 0.81 1.08 0.05 17.23 0.41 0.43
GPR radial CR 0.35 7.15 0.99 1.13 0.35 6.41 1.11 1.48 0.35 5.68 1.25 1.32
SVM linear CR 0.30 7.73 0.92 1.19 0.19 8.93 0.80 1.06 0.04 18.42 0.39 0.41
PLSR ABS 0.33 6.47 1.10 1.61 0.53 5.72 1.24 1.42 0.5 5.71 1.25 1.74
ANN ABS 0.28 6.77 1.05 1.54 0.40 6.15 1.16 1.32 0.44 6.02 1.18 1.65
RF ABS 0.27 6.82 1.04 1.53 0.37 6.24 1.14 1.30 0.5 6.08 1.17 1.63
GPR linear ABS 0.26 7.50 0.95 1.39 0.46 6.05 1.18 1.34 0.34 7.79 0.91 1.27
GPR radial ABS 0.25 7.04 1.01 1.49 0.30 6.81 1.04 1.19 0.41 6.73 1.06 1.48
SVM linear ABS 0.21 8.47 0.84 1.23 0.50 5.71 1.25 1.42 0.33 8.31 0.86 1.19
PLSR SGD 0.39 5.84 1.22 1.82 0.36 6.14 1.16 1.59 0.54 5.88 1.21 1.53
ANN SGD 0.29 6.37 1.12 1.66 0.32 6.70 1.06 1.45 0.12 8.06 0.88 1.12
RF SGD 0.32 6.33 1.12 1.68 0.60 5.40 1.32 1.80 0.53 6.17 1.15 1.46
GPR linear SGD 0.30 7.04 1.01 1.50 0.42 7.85 0.91 1.24 0.46 6.52 1.09 1.38
GPR radial SGD 0.20 7.02 1.01 1.51 0.49 6.42 1.11 1.52 0.47 6.78 1.05 1.33
SVM linear SGD 0.28 7.06 1.01 1.50 0.42 8.03 0.89 1.21 0.44 6.67 1.07 1.35
PLSR SNV 0.42 5.90 1.21 1.40 0.53 5.28 1.35 2.04 0.41 6.44 1.10 1.66
ANN SNV 0.32 6.43 1.11 1.28 0.43 5.93 1.20 1.81 0.21 7.31 0.97 1.46
RF SNV 0.50 5.61 1.27 1.47 0.44 5.72 1.24 1.88 0.39 6.52 1.09 0.83
GPR linear SNV 0.27 8.30 0.86 0.99 0.50 5.53 1.29 1.94 0.26 8.88 0.80 1.35
GPR radial SNV 0.32 6.82 1.04 1.21 0.44 6.01 1.18 1.79 0.34 6.93 1.03 1.72
SVM linear SNV 0.25 8.97 0.79 0.92 0.51 5.59 1.27 1.95 0.25 9.13 0.78 1.31
PLSR MSC 0.43 5.16 1.38 1.63 0.38 6.82 1.04 1.50 0.40 6.81 1.04 1.83
ANN MSC 0.39 5.33 1.33 1.58 0.35 6.70 1.06 1.53 0.35 7.10 1.00 1.75
RF MSC 0.44 5.16 1.38 1.63 0.38 6.24 1.14 1.64 0.42 6.78 1.05 1.84
GPR linear MSC 0.17 8.98 0.79 0.94 0.39 6.67 1.07 1.54 0.50 6.65 1.07 1.87
GPR radial MSC 0.20 6.37 1.12 1.32 0.4 6.23 1.14 1.65 0.42 7.18 0.99 1.73
SVM linear MSC 0.15 9.77 0.73 0.86 0.69 4.38 1.62 2.15 0.47 7.02 1.01 1.77

ABS = Absorbance; CR = Continuum Removal; MSC = Multiplicative Scatter Correction; SGD = Savitzky Golay Derivative; SNV = Standard 
Normal Variate; PLSR = Partial Least Squares Regression; ANN = Artificial Neural Network; RF = Random Forest; GPR linear and radial = Gaussian 
Process Regression; SVM = Support Vector Machine; MIR = Medium Infrared; Vis-NIR = Visible and Near Infrared; Vis-NIR-MIR = Visible, Near, 
and Medium Infrared.
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For clay prediction, some satisfactory results were found by Chang et al. (2001) and 
Morón and Cozzolino (2003). In the studies conducted by Ben-Dor and Banin (1995) and 
Islan et al. (2003), the clay was modeled from the NIR spectrum and found R2 of 0.56 and 
0.75, respectively. While Chang et al. (2001) and Shepherd and Walsh (2002) worked on 
the Vis-NIR spectrum, obtaining slightly better values, of 0.67 and 0.78. It is possible to 
predict clay in the NIR region using PLSR according to Silva et al. (2016). Viscarra Rossel 
et al. (2006) modeled clay and found R² values of 0.43 (Vis), 0.60 (NIR), 0.67 (MIR), and 
0.67 (Vis-NIR-MIR); while Kania and Gruba (2016) tested clay prediction by NIR spectra 
and found R² values of 0.57 and 0.21. These values are lower than the values found 
in this study, while Ben-Dor and Banin (1995) obtained higher values, with R2 = 0.86.

The significant wavelengths to estimate clay content in the NIR range are 1,600, 1,800, 
2,000, and 2,100 nm (Viscarra Rossel and McBratney, 1998). In contrast, Nawara et al. 
(2016) reported that the wavelength of 2,206 nm would be the ideal band for quantification 
of this property. In this study, the most important variables in the prediction (Figure 1) were 
the spectra around 1,500, 1,800, and 2,100 nm (Viscarra Rossel and McBratney, 1998).

The results for the organic carbon (OC) variable are shown in table 3. In the MIR spectrum, 
the best R2 value was 0.65, with RMSE of 8.31. This is obtained by the combination CR-PLSR. 
The highest RPIQ and RPD indices were 1.58 and 1.32, the first being obtained by SGD 
preprocessing and the PLSR predictor; and the second by the SNV-PLSR combination. 

In the Vis-NIR and Vis-NIR-MIR bands, the R2 values were slightly lower than in the MIR, 
while the RPIQ and RPD values were slightly higher. According to Vohland et al. (2014), 
the physical mechanisms differ basically between the Vis-NIR and MIR domains, while 
the fundamental molecular vibrations of the soil components can be measured only in 
the MIR. In the NIR range, the repercussions and combinations of these fundamental 
vibrations are detected.

Vis-NIR had an R2 of 0.63 (RMSE = 8.18) from the combination SGD-RF, and Vis-NIR-MIR 
had an R2 of 0.62 (RMSE = 8.28) from the combination CR-ANN. In relation to the RPIQ and 
RPD values for the OC variable, the PLSR algorithm was superior for MIR and Vis-NIR-MIR, 
and linear GPR was superior in the Vis-NIR range. Regarding OC preprocessing, SGD stood 
out, with the majority of RPIQ values higher than 1.4 in the MIR and Vis-NIR-MIR range; 
and SNV stood out in the Vis-NIR-MIR spectrum. As for the RPD, only the Vis-NIR-MIR 
range had values above 1.4 with ABS and SGD, which stood out as the best preprocessing 
methods for the variable.
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Figure 1. Important variables for clay prediction in the Vis-NIR (Visible and Near Infrared) spectrum using Multiplicative Scatter 
Correction (MSC) preprocessing and the Support Vector Machine (SVM) model.
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The RPIQ had maximum values of 1.74 (Vis-NIR) and 1.84 (Vis-NIR-MIR), while the RPD 
values obtained by the PLSR predictor was of 1.42 (Vis-NIR-MIR). When the process was 
combined with SGD preprocessing, the values was 1.74, with SNV was 1.84, and with 
ABS was 1.42. Contrary to what was found in this study, in which the PLSR stood out, 
Xiaoting et al. (2014) worked with the SVM predictor in the Vis-NIR spectra to improve 
OC accuracy by combining it with a projection algorithm (SPA) model. The results 
obtained by Brown et al. (2006) also indicated that other data mining techniques, 
such as Boost Regression Trees (BRT), may outperform PLSR because of their ability to 
include nonlinear interactions and relationships. Other articles are cited for applying 
different algorithms successfully (Mouazen et al., 2010; Viscarra Rossel and Behrens, 
2010; Vohland et al., 2011).

Table 3. The values of R2, RMSE, RPD, and RPIQ for the organic carbon property found for the different models and preprocessing 
methods in the MIR, Vis-NIR, and Vis-NIR-MIR

Model Preprocessing
MIR Vis-NIR Vis-NIR-MIR

R² RMSE RPD RPIQ R² RMSE RPD RPIQ R² RMSE RPD RPIQ
PLSR CR 0.65 6.57 1.29 1.43 0.36 6.53 1.20 1.46 0.49 7.64 1.34 1.08
ANN CR 0.42 7.81 1.09 1.21 0.36 5.37 1.19 1.45 0.62 6.47 1.30 1.50
RF CR 0.49 6.67 1.10 1.22 0.41 5.66 1.24 1.51 0.44 5.41 1.30 1.04
GPR linear CR 0.29 8.14 0.88 0.97 0.24 8.76 0.93 1.13 0.20 17.23 0.76 0.61
GPR radial CR 0.46 7.15 0.99 1.10 0.33 6.41 1.14 1.38 0.45 5.68 1.27 1.01
SVM linear CR 0.27 7.73 0.83 0.92 0.13 8.93 0.80 0.97 0.20 18.42 0.76 0.61
PLSR ABS 0.46 6.47 1.23 1.47 0.43 5.72 1.23 1.22 0.59 5.71 1.42 1.75
ANN ABS 0.37 6.77 1.14 1.36 0.41 6.15 1.21 1.19 0.43 6.02 1.26 1.26
RF ABS 0.38 6.82 1.11 1.32 0.41 6.24 1.18 1.30 0.58 6.08 1.32 1.62
GPR linear ABS 0.32 7.50 1.05 1.25 0.57 6.05 1.37 1.71 0.38 7.79 1.06 1.30
GPR radial ABS 0.22 7.04 1.01 1.20 0.22 6.81 1.23 1.31 0.54 6.73 1.12 1.37
SVM linear ABS 0.27 8.47 0.94 1.12 0.43 5.71 1.33 1.41 0.28 8.31 0.91 1.12
PLSR SGD 0.47 5.84 1.27 1.58 0.60 6.14 1.38 1.74 0.44 5.88 1.31 1.23
ANN SGD 0.19 6.37 0.99 1.23 0.43 6.70 1.18 1.48 0.39 8.06 1.17 1.22
RF SGD 0.52 6.33 1.19 1.48 0.63 5.40 1.31 1.65 0.48 6.17 1.41 1.32
GPR linear SGD 0.25 7.04 0.93 1.16 0.28 7.85 0.86 1.08 0.38 6.52 1.11 1.03
GPR radial SGD 0.36 7.02 1.04 1.29 0.60 6.42 1.14 1.43 0.46 6.78 1.31 1.22
SVM linear SGD 0.27 7.06 0.96 1.20 0.30 8.03 0.87 1.09 0.38 6.67 1.15 1.07
PLSR SNV 0.44 5.90 1.32 1.20 0.36 5.28 1.22 1.26 0.59 6.44 1.34 1.84
ANN SNV 0.36 6.43 1.23 1.12 0.34 5.93 1.19 1.23 0.31 7.31 1.17 1.19
RF SNV 0.46 5.61 1.28 1.16 0.41 5.72 1.26 1.30 0.53 6.52 1.21 1.67
GPR linear SNV 0.25 8.30 1.00 0.91 0.51 5.53 1.36 1.40 0.47 8.88 1.12 1.55
GPR radial SNV 0.34 6.82 1.13 1.03 0.36 6.01 1.15 1.19 0.57 6.93 1.03 1.42
SVM linear SNV 0.23 8.97 0.92 0.84 0.39 5.59 1.21 1.27 0.45 9.13 1.07 1.48
PLSR MSC 0.35 5.16 1.13 1.14 0.42 6.82 1.29 1.27 0.22 6.81 1.05 0.98
ANN MSC 0.26 5.33 1.07 1.08 0.47 6.70 1.39 1.37 0.25 7.10 1.33 1.28
RF MSC 0.41 5.16 1.19 1.20 0.41 6.24 1.34 1.32 0.29 6.78 1.23 1.14
GPR linear MSC 0.32 8.98 0.92 0.93 0.28 6.67 1.05 1.03 0.23 6.65 0.96 0.90
GPR radial MSC 0.27 6.37 1.04 1.06 0.37 6.23 1.25 1.23 0.25 7.18 1.20 1.12
SVM linear MSC 0.28 9.77 0.83 0.84 0.20 4.38 0.94 0.92 0.18 7.02 0.85 0.80

ABS = Absorbance; CR = Continuum removal; MSC = Multiplicative Scatter Correction; SGD = Savitzky Golay Derivative; SNV = Standard Normal Variate; 
PLSR = Partial Least Squares Regression; ANN = Artificial Neural Network; RF = Random Forest; GPR linear and radial = Gaussian Process Regression; 
SVM = Support Vector Machine; MIR = Medium Infrared; Vis-NIR = Visible and Near Infrared; Vis-NIR-MIR = Visible, Near, and Medium Infrared.
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However, Adeline et al. (2017) emphasize that PLSR is the most widely used multivariate 
statistical method in Soil Science for chemometrics. This method highlights calibration of 
soil reflectance to estimate soil properties (Viscarra Rossel et al., 2006) and is superior to 
traditional methods in dealing with multicollinearity in high-dimensional data (Bilgili et al., 
2010). In the study performed by Bilgili et al. (2010), the authors worked with 512 samples 
and different soils and were able to predict OM with an R2 of 0.73 from Vis-NIR with data 
preprocessing using SGD.

There are several studies that demonstrate the possibility of OC prediction based on 
MIR (Zimmermann et al., 2007; Bornemann et al., 2008; Yang et al., 2012). Studies that 
compare MIR and NIR in the same samples show that MIR consistently outperforms NIR 
in soil analysis, especially for C and N fractions (McCarty et al., 2002; Reeves III et al., 
2002; Madari et al., 2005). The MIR spectroscopy produced better models (from 10 to 
40 %) than models developed from NIR spectra in soil carbon studies (Bellon-Maurel and 
McBratney (2011). Nevertheless, none of the studies analyzed compared NIR and MIR 
spectroscopy in the same soil samples (Knox et al., 2015).

In general, MIR is considered superior to Vis-NIR (Vohland et al., 2014). The MIR seems 
better than NIR and Vis-NIR for estimation of soil carbon contents, as indicated in the 
literature (McCarty et al., 2002; McCarty and Reeves III, 2006). However, this superiority 
has not been recognized in all studies (Madari et al., 2006; Ludwig et al., 2008; Michel et al., 
2009). In this study, the best OC prediction was obtained in the MIR spectrum, in relation 
to R2, but the best values of RPIQ and RPD were in Vis-NIR. 

This may be related to the fact that separation of the contribution of each soil component 
in the Vis-NIR spectra is a challenging task due to the complex nature of the soil matrix, 
with multiple overlays of spectral characteristics, as well as the strong collinearities 
among soil properties (Gobrecht et al., 2013). According to Knox et al. (2015), the MIR 
spectroscopy has generally been shown to predict OC and total carbon with greater 
accuracy than the Vis-NIR derived models. These authors found R2 values ranging from 
0.58 to 0.87 for Vis-NIR, 0.87 to 0.96 for MIR, and 0.88 to 0.95 for Vis-NIR-MIR. However, 
they used a much larger range of samples than this study, with 1,014 sites being sampled, 
using 696 for calibration and 296 for validation.

The R2 value of 0.60 was found by Vohland et al. (2014) for OC in Vis-NIR; for MIR, the R2 
value was 0.78; RPD values were 1.58 and 2.12, respectively. Analyses were performed in 
a set of 60 soil samples extracted from arable land with different soil types and different 
textures, developed from different bedrocks and in different landscape positions. Despite 
having only a few samples, the heterogeneity of the analyzed material was perceived, 
unlike the results of our study.

Values of R2 of 0.8 for OC was found by Shepherd and Walsh (2002) using a spectral library 
with more than 1,000 samples, while Bashagaluke et al. (2015), predicting carbon, found 
R2 of 0.72 using 530 composite soil samples. Similar accuracie (R2 = 0.73) was found by 
Viscarra Rossel et al. (2006) for a validation set of 118 samples in an area of 18 ha in 
Australia. Value of R2 equal to 0.86 for OM prediction was found by Daniel et al. (2003) 
in a study developed in Thailand using artificial neural networks in the Vis-NIR spectrum.

A higher correlation between measured and predicted carbon in the MIR range, among the 
spectra tested, with R2 between 0.63-0.85 was found by Arachchi et al. (2016). Kania and 
Gruba (2016) tested to predict total carbon using the NIR spectra and found R2 values for 
calibration of 0.80 and 0.48, and for validation, of 0.03 and 0.22, values lower than those 
found in this study. Summers et al. (2011), predicting OC in the range of 400-2500 nm, with 
228 samples, achieved R2 of 0.57 with a RPD of 1.8. Reeves III and Smith (2009) predicted 
OC in the MIR and NIR spectra and found R² values of 0.58 in MIR and 0.53 in NIR.

Determination of organic carbon or OM is generally feasible, but confounding factors 
such as particle size, soil color, and soil type, among others, may cause problems for 
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development of calibration (Reeves III (2010). It has also been specifically observed 
that the use of the Walkley-Black procedure (Walkley and Black, 1934) for OC can be 
problematic due to non-linearity in the measured values. However, this procedure is 
the most commonly used method (Malley et al., 2004). These factors could explain the 
values found, slightly below those in some studies cited in the literature with R2 above 
0.8 and RPD-RPIQ higher than 2.0.

Infrared spectroscopy is well adapted and used to predict soil OC (Bellon-Maurel et al., 2010; 
Reeves III, 2010). Soil OC absorbs directly in the infrared region due to the high sensitivity 
of this region to groups such as C-H, C-O, and C-N prevailing in OM (Soriano-Disla et al., 
2014). According to Dor et al. (1999), the OH and CH groups dominate NIR and the 
electronic transitions of the visible portions of the electromagnetic spectrum.

The OM includes the living biomass of plants and remnants of vegetation (Bartholomeus et al., 
2008), and CO is an indication of the organic matter content since it is one of the main 
components of OM (Steiner et al., 2011). According to Beyer et al. (2001), CO contain 
biochemical components, such as chlorophyll, cellulose, pectin, starch, lignin, and 
humic acids, which influence the visible (400-700 nm) and near-infrared (700-1,400 nm) 
reflectance of the electromagnetic spectrum. The variation in cellulose concentrations 
was explained by Hartmann and Appel (2006) through the NIR spectrum. The Vis-NIR 
was applied by Viscarra Rossel and Hicks (2015) to predict carbon fractions.

Theoretically, the OM, due to its complexity, is spectrally active in practically the entire 
NIR region (Ben-Dor and Banin, 1990), but it is often reported that organic matter signals 
in this region may be weak (Viscarra Rossel and McBratney, 1998) as there may be 
overlapping spectral characteristics of some minerals and organic matter (Ben-Dor and 
Banin, 1990; Viscarra Rossel and McBratney, 1998). Bands of 1,744, 1,870, and 2,052 nm 
were important for organic carbon predictions according to Ben-Dor and Banin (1990). 
In this study, the best prediction was found in the MIR spectrum, whose most important 
prediction variables are presented in figure 2. The most relevant bands were 18,193 and 
16,879 nm, followed by bands 17,247 and 17,326 nm.

For the phosphorus variable (P), the values of R2, RMSE, RPD, and RPIQ are shown in 
table 4. The R2 values were the lowest among the properties modeled in this study. 
Influence between the prediction of available P in the Vis-NIR spectrum and the type 
of solution used in extraction during soil analysis in the laboratory was reported by 
Abdi et al. (2016). According to Minasny et al. (2009), available P extracted by either 
bicarbonate or the Bray method is not well predicted. Adequate accuracy of Vis-NIR was 
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Figure 2. Important variables for prediction of organic carbon in the MIR (Medium Infrared) spectrum using Continuous Removal 
(CR), Preprocessing, and the Partial Least Squares Regression (PLSR) model.
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found when available P was extracted using the Olsen method (Van Groenigen et al., 
2003). Nduwamungu et al. (2009) showed that P extracted with Mehlich-3 (M-3) was 
poorly predicted by Vis-NI. Soil chemical extractions that alter the balance between 
phases may complicate interpretation of the results even more (Viscarra Rossel et al., 
2006). Historically, the soil system and its quality were evaluated through this type of 
laboratory analysis (Viscarra Rossel et al., 2006).

In the MIR spectrum, no satisfactory R2 value was found. In the Vis-NIR spectra, the 
R2 value was 0.57 (SNV-PLSR with RMSE = 3.09). Maleki et al. (2006) observed the 
difference in Vis-NIR spectral reflectance according to variation in P content and they 

Table 4. Values of R2, RMSE, RPD, and RPIQ for the phosphorus property found for the different models and preprocessing methods 
in the MIR, Vis-NIR, and Vis-NIR-MIR spectra

Model Pre-processing
MIR Vis-NIR Vis-NIR-MIR

R² RMSE RPD RPIQ R² RMSE RPD RPIQ R² RMSE RPD RPIQ
PLSR CR 0.11 4.27 1.11 1.45 0.38 4.16 1.13 1.21 0.03 4.61 1.02 1.68
ANN CR 0.10 4.28 1.10 1.45 0.14 4.12 1.15 1.23 0.07 4.10 1.15 1.67
RF CR 0.06 4.41 1.07 1.41 0.18 3.90 1.21 1.29 0.18 4.19 1.13 1.84
GPR linear CR 0.09 5.52 0.86 1.12 0.01 14.93 0.32 0.34 0.11 5.88 0.80 1.31
GPR radial CR 0.09 4.34 1.09 1.43 0.09 4.05 1.17 1.25 0.08 4.46 1.06 1.73
SVM linear CR 0.08 6.09 0.78 1.02 0.02 14.03 0.34 0.39 0.09 6.51 0.73 1.19
PLSR ABS 0.18 4.30 1.10 1.45 0.24 3.70 1.28 0.88 0.20 4.04 1.17 1.59
ANN ABS 0.03 4.67 1.01 1.33 0.08 4.57 1.03 0.71 0.13 4.57 1.03 1.83
RF ABS 0.02 4.73 1.00 1.32 0.09 3.82 1.24 0.85 0.23 3.92 1.20 1.64
GPR linear ABS 0.18 4.88 0.97 1.28 0.19 3.89 1.21 0.83 0.10 6.27 0.75 1.03
GPR radial ABS 0.03 4.67 1.01 1.33 0.08 3.79 1.25 0.86 0.20 4.09 1.15 1.57
SVM linear ABS 0.16 5.42 0.87 1.15 0.20 3.94 1.20 0.82 0.05 8.13 0.58 0.79
PLSR SGD 0.00 5.06 0.93 1.56 0.14 4.07 1.16 1.07 0.07 5.22 0.90 1.38
ANN SGD 0.00 4.97 0.95 1.59 0.20 3.84 1.23 1.13 0.07 4.72 1.00 1.25
RF SGD 0.07 4.84 0.98 1.63 0.26 3.73 1.27 1.16 0.13 4.63 1.02 1.56
GPR linear SGD 0.18 4.85 0.97 1.63 0.11 5.21 0.91 0.83 0.04 6.03 0.78 1.19
GPR radial SGD 0.03 4.92 0.96 1.60 0.15 3.94 1.20 1.10 0.09 4.73 1.00 1.52
SVM linear SGD 0.16 4.82 0.98 1.64 0.11 5.10 0.93 0.85 0.04 5.90 0.80 1.22
PLSR SNV 0.10 4.69 1.01 1.26 0.57 3.09 1.53 1.92 0.21 4.90 0.96 1.52
ANN SNV 0.03 4.40 1.07 1.34 0.37 3.80 1.24 1.56 0.28 4.50 1.05 2.04
RF SNV 0.07 4.27 1.11 1.38 0.37 3.83 1.23 1.55 0.34 4.68 1.01 1.59
GPR linear SNV 0.13 5.37 0.88 1.10 0.49 3.34 1.41 1.77 0.11 5.52 0.86 1.35
GPR radial SNV 0.05 4.20 1.12 1.41 0.34 4.08 1.16 1.45 0.22 4.99 0.95 1.49
SVM linear SNV 0.12 5.70 0.83 1.04 0.42 3.62 1.30 1.64 0.09 5.89 0.80 1.26
PLSR MSC 0.01 4.76 0.99 1.54 0.30 3.94 1.20 1.24 0.35 4.26 1.11 1.49
ANN MSC 0.03 4.57 1.03 1.60 0.08 4.23 1.12 1.15 0.15 4.20 1.12 1.51
RF MSC 0.01 4.74 1.00 1.55 0.21 3.83 1.23 1.27 0.24 3.77 1.25 1.69
GPR linear MSC 0.17 5.42 0.87 1.36 0.39 3.60 1.31 1.36 0.34 5.24 0.90 1.21
GPR radial MSC 0.01 4.60 1.03 1.59 0.13 4.01 1.18 1.22 0.27 3.77 1.25 1.69
SVM linear MSC 0.15 5.97 0.79 1.23 0.40 3.45 1.37 1.41 0.32 5.75 0.82 1.11

ABS = Absorbance; CR = Continuum Removal; MSC = Multiplicative Scatter Correction; SGD = Savitzky Golay Derivative; SNV = Standard 
Normal Variate; PLSR = Partial Least Squares Regression; ANN = Artificial Neural Network; RF = Random Forest; GPR linear and radial = Gaussian 
Process Regression; SVM = Support Vector Machine; MIR = Medium Infrared; Vis-NIR = Visible and Near Infrared; Vis-NIR-MIR = Visible, Near, 
and Medium Infrared.
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hypothesized that P correlates indirectly with the near-infrared through different 
soil components.

For RPIQ, the highest value was found in Vis-NIR-MIR, at 2.04 (SNV-ANN), followed by 
Vis-NIR, at 1.92 (SNV-PLSR) and MIR, at 1.64 (SGD-SVM linear). For RPD, the Vis-NIR band 
had a value of 1.53 (SNV-PLSR). Thus, the Vis-NIR-MIR spectrum was highlighted by the 
RPIQ index and was classified as excellent, while the others were considered reasonable; 
by the RPD index, Vis-NIR was qualified as a reasonable model.

Regarding the RPIQ and RPD values for the variable P, PLSR was higher in Vis-NIR and in 
MIR together with radial GPR (for the RPIQ index); RF and ANN stood out in Vis-NIR-MIR. 
In phosphorus preprocessing, SGD stood out, with most RPIQ values higher than 1.4 in 
the MIR and SNV range. In the other values, SNV had RPIQ values higher than 2.0. As 
for RPD, only the Vis-NIR range presented values above 1.4 with SNV, standing out as 
the best preprocessing for the variable. According to Malley et al. (2004) predicting P 
with NIR spectra is less frequent. Possible causes are the nature of the element studied, 
interaction with other elements, the extraction method used (Chang et al., 2001), and 
to sample set heterogeneity and calibration.

In contrast, Niederberger et al. (2015) obtained results with adequate accuracy working 
in the NIR spectrum, where they realized that predicted models based on the organic 
P fractions had results superior to the inorganic P, because the organic compounds 
were more easily excited in the NIR spectrum. Values of R2 between 0.7 and 0.8 were 
found by Abdi et al. (2012) predicting total P, using the Vis-NIR spectrum for mapping 
element contents in an extremely sandy soil in Canada, attributing these values to 
the correlation between the total P and organic matter. Viscarra Rossel et al. (2006) 
found R2 values of 0.06 (Vis), 0.01 (NIR), 0.20 (MIR), and 0.02 (Vis-NIR-MIR) when 
modeling available P. While Janik et al. (1998) modeled available P contents with the 
MIR spectrum and found R2 values of 0.07, whereas Daniel et al. (2003) found R2 values 
of 0.81 with Vis-NIR.

Phosphorus was predicted by Lee et al. (2003) in 540 soil samples from four major 
soil types in Florida in the 400 to 2,500 nm wavelength range; they worked with PLSR 
and R2 values that ranged from 0.52 to 0.66. Values of R2 ranging from 0.51 to 0.95 for 
different bands of the spectrum were found by Knox et al. (2015), while Minasny et al. 
(2009) did not find satisfactory values in prediction of available P in the MIR spectrum; 
McCarty and Reeves III (2006) also did not consider P prediction to be satisfactory using 
this wavelength.

The NIR could be satisfactory to predict some properties but did not obtain adequate 
results or obtained results with great variability from study to study for mineral forms of 
Ag, Al, Cd, Cu, Co, Fe, K, N, P, Pb, Na, Ni, Se, Si, Zn, and pH (Reeves III and Smith, 2009). 
These authors found values of R2 of 0.85 and 0.09 for P in the MIR and NIR spectra, 
respectively. Bogrekci and Lee (2007) found coefficients of determination from 0.76 to 
0.93 in the near-infrared region using PLSR for total P and P extracted by Mehlich-1, 
respectively, and values between 0.61 and 0.83 for water-soluble P using visible region 
of the spectrum. 

Considering what was affirmed by Bellon-Maurel and McBratney (2011) regarding where 
it would be preferable to evaluate the RPIQ index on the RPD, this study established 
satisfactory models (RPIQ and/or RPD superior to 1.4) and showed excellent (RPIQ higher 
than 2.0) prediction capability for P, OC, and clay, which can be used to classify soils 
according to their properties, as suggested by Shepherd and Walsh (2002).

In the 1980s and 1990s quantification surveys were performed with only a few wavelengths 
(more specific, and varying according to the purpose, but always within the range of 1 
to 30 bands) since there was no software powerful enough to analyze large amounts 
of data. After 2000, with the advent of new and powerful computers and programs, 
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this has become possible, and now the PLSR system can analyze many simultaneous 
wavelengths (e.g., 2,500 bands), and it evaluates which wavelengths make higher or 
lower contributions in quantification of a given element. This upgrade in software and 
computers has allowed a great leap in quantification methodologies, as it analyzes all 
bands and gives weight to each one, thereby disarticulating the effects of collinearity. 
This caused an increase in the number of articles published in the field of chemometrics, 
as reviewed by Nocita et al. (2015). 

CONCLUSIONS

Clay, carbon, and extractable P elements were able to be quantified with R2 parameters 
in the range of 0.69, 0.65, and 0.57, respectively.

The spectral range of Vis-NIR was the best for clay and P, whereas that of MIR was best 
for organic carbon. The unification of all bands produced an increase in R2 for the clay 
and P properties in relation to the MIR range.

The MSC, CR, and SNV preprocesses were the most efficient for predicting clay, OC, 
and P, respectively, whereas the PLSR (OC and P) and SVM (clay) methods gave the 
best predictions and, thus, are recommended for modeling these properties in the 
study area.
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