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ABSTRACT: The assessment of spatial variability of environmental variables such as 
soil properties is important for site-specific management. A geostatistical index that 
allows quantifying and characterizing the structure of spatial variability is fundamental 
in this context. Thus, this study aimed to develop a new spatial dependency index, 
called the Spatial Dependence Measure (SDM) for the spherical, exponential, Gaussian, 
cubic, pentaspherical, and wave semivariogram models; and comparing it with some 
of the indexes available in the literature. The SDM is also dimensionless, in the same 
way as the Spatial Dependence Index (SDI), also considering more parameters of the 
semivariogram, when compared to the Spatial Dependence Degree (SPD) and Relative 
Nugget Effect (NE) indexes. In a simulation data study, it is observed that the SDI and 
SDM indexes showed an advantage over the SPD (or NE). To exemplify the application 
of the SDM in the proposal for the classification of soil properties, we used estimates 
of geostatistical parameters presented in the two studies. The results indicate that the 
SDM can be a measure that, analyzed together with the SDI, can help to improve the 
description of the spatial variability structure. Thus, this study expands the number of 
geostatisitcal-based measures and increases the power of decision on the description 
of the degree of spatial variability of agricultural and soil attributes.
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INTRODUCTION
Several studies have highlighted the importance of measuring the spatial variability of 
agricultural and soil properties using geostatistical indexes (Seidel and Oliveira, 2014, 
2016; Appel Neto et al., 2018; Santos et al., 2018; Amaral and Della Justina, 2019; 
Leroux and Tisseyre, 2019). Such indexes are useful to assess the quality of the model 
fit on the semivariogram (Pazini et al., 2015; Oldoni and Bassoi, 2016; Büttow et al., 
2017) and, consequently, to indicate whether kriging interpolation results in good 
quality maps (Appel Neto et al., 2018). In addition, these indexes allow the comparison 
of within-field variability in different research situations such as when comparing the 
variability of different types of soils, chemical or physical properties, different crops, 
among others.

One of the most common indexes in the Soil Science literature in Brazil to calculate the 
degree of spatial variability is presented in Cambardella et al. (1994), called the Relative 
Nugget Effect (NE), relating the nugget effect and the sill parameters. Another existing 
index is that proposed by Biondi et al. (1994), called the Spatial Dependence Degree 
(SPD), relating the contribution and the sill parameters.

An alternative for the inclusion of the range parameter into a measure of spatial dependence 
is the use of integral scales J1 and J2 (Russo and Jury, 1987). Han et al. (1994) presented a 
closed form for the integral scale J1, called Mean Correlation Distance (MCD), considering 
the contribution, sill, and range parameters. Despite considering more aspects of the 
semivariogram, integral scales are given in a unit of distance measurement as meters 
(m) or kilometers (km), which makes it difficult to propose a categorization to classify 
spatial dependence.

A Spatial Dependence Index (SDI) was proposed by Seidel and Oliveira (2014, 2016) and 
Appel Neto et al. (2018), which is a dimensionless index (free of measurement units), 
inspired by integral scale J1 (Russo and Jury, 1987) and based on spatial correlation area. 
This SDI index takes a specific form for each semivariogram model considered, being 
proposed for the spherical, exponential, Gaussian (Seidel and Oliveira, 2014, 2016), 
cubic, pentaspherical, and wave models (Appel Neto et al., 2018). For its construction, 
the SDI index considers the following parameters of the semivariogram: contribution, 
sill, range, and half of the maximum distance between sampled points. The spherical, 
exponential, Gaussian, cubic, pentaspherical, and wave semivariogram models were 
studied; according to Olea (2006), they are the most used by researchers.

In the matter of geostatistical indexes for measuring spatial variability, there is still room 
to expand this knowledge. Thus, following the same idea as Seidel and Oliveira (2014, 
2016) and Appel Neto et al. (2018) in the construction of the SDI, the aim of this study 
was to develop a new spatial variability index, called the Spatial Dependence Measure 
(SDM), inspired by integral scale J2 (Russo and Jury, 1987), and comparing it with some 
of the indexes already exist in the literature.

MATERIALS AND METHODS
Equations 1 and 2 show the measurements NE (Cambardella et al., 1994) and SPD 
(Biondi et al., 1994), respectively.

NE = 100
C0

C0 + C1

								            Eq. 1

SPD = 100
C1

C0 + C1

								            Eq. 2
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in which C0 is the nugget effect; C1 is the contribution; C0 + C1 is the sill; NE and SPD 
are complementary in the sense that SPD = 100 - NE. Thus, it was decided to use only 
the SPD in the analyses.

Equations 3 to 8 show the expressions of the SDI index for the spherical, exponential, 
Gaussian (Seidel and Oliveira, 2016), cubic, pentaspherical, and wave models (Appel 
Neto et al., 2018), respectively.

SDIspherical = 0.375 100
C1

C0 + C1
min 1;

a
0.5 MD

			       Eq. 3

SDIexponential = 0.317 100
C1

C0 + C1
min 1;

a
0.5 MD

			       Eq. 4

SDIgaussian = 0.504 100
C1

C0 + C1
min 1;

a
0.5 MD

			       Eq. 5

SDIcubic = 0.365 100
C1

C0 + C1
min 1;

a
0.5 MD

				        Eq. 6

SDIpentaspherical = 0.312 100
C1

C0 + C1
min 1;

a
0.5 MD

			       Eq. 7

SDIwave = 0.589 100
C1

C0 + C1
min 1;

a
0.5 MD 				        Eq. 8

in which C1 is the contribution; C0 + C1 is the sill; a is the range; MD is the maximum 
distance. The values 0.375, 0.317, 0.504, 0.365, 0.312, and 0.589 are the respective 
model factors (MF) of each of the semivariogram models. The min {} function is used 
to adjust the fact that the component a

0.5 MD  is not necessarily limited in the amplitude 
from zero to one.

The SDM index was proposed following the same method as Seidel and Oliveira (2014, 
2016) and Appel Neto et al. (2018). First, the spatial correlation measure (SCM) is 
calculated. In this case, what differentiates in the calculation of the SCM in relation to the 
integral scale J2 is that in the SCM, the integration limit used is from zero until the value 
of the range (a). Equation 9 shows the spatial correlation measure obtained in general.

SCM = {2 ∫0
a ρ(h) h dh}   = {2 ∫0

a                            h dh}  = MF                   a
C1

C0 + C1

1
2

1
2

1
2

C0 + C1

(C0 + C1) – γ(h)
	     Eq. 9

in which ρ(h) is the correlogram function; γ(h) is the semivariogram function; h is the 
distance between sampled points; C0 is the nugget effect; C1 is the contribution; C0 + C1 
is the sill; a is the range; MF is the model factor (specific to each semivariogram model).

Then, the SCM is multiplied by the inverse of half of the greatest distance between the 
georeferenced points in the sampling grid, according to equation 10. Half of the greatest 
distance between points was used in the same way as in Seidel and Oliveira (2016) and 
Appel Neto et al. (2018).

SCM a
C1

C0 + C1

1
0.5 MD

1
0.5 MD = MF

1
2

					        Eq. 10

in which C1 is the contribution; C0 + C1 is the sill; a is the range; 0.5 MD is half of the 
maximum distance between sampled points; MF is the model factor (specific to each 
semivariogram model).
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Then, by rearranging the equation 10, the Spatial Dependence Measure (SDM) is obtained. 
Equations 11 to 16 show the SDM index for the spherical, exponential, Gaussian, cubic, 
pentaspherical, and wave models, respectively.

SDIspherical = 0.447 100
C1

C0 + C1
min 1;

a
0.5 MD

1
2

			      Eq. 11

SDIexponential = 0.422 100
C1

C0 + C1
min 1;

a
0.5 MD

1
2

			      Eq. 12

SDIgaussian = 0.563 100
C1

C0 + C1
min 1;

a
0.5 MD

1
2

			      Eq. 13

SDIcubic = 0.408 100
C1

C0 + C1
min 1;

a
0.5 MD

1
2

				      Eq. 14

SDIpentaspherical = 0.378 100
C1

C0 + C1
min 1;

a
0.5 MD

1
2

			      Eq. 15

SDIwave = 0.637 100
C1

C0 + C1
min 1;

a
0.5 MD

1
2

				      Eq. 16

in which C1 is the contribution; C0 + C1 is the sill; a is the range; MD is the maximum 
distance. The values 0.447, 0.422, 0.563, 0.408, 0.378, and 0.637 are the respective 
model factors (MF) of each of the semivariogram models. The min {} function is used 
to adjust the fact that the component a

0.5 MD  is not necessarily limited in the amplitude 
from zero to one.

To carry out the classification of the SDM, a methodology adapted from Seidel and 
Oliveira (2016) and Appel Neto et al. (2018) was used. Values were generated for the 
components ( C1

C0 + C1
) and ( a

0.5 MD ), from 0.05 to 1.00, varying by 0.05. Afterward, these 
values were combined by multiplications [( C1

C0 + C1
)( a

0.5 MD )], which generated a vector of 
400 values that was increased by a zero value. Thus, the vector of 401 values between 
0 and 1 was multiplied by MF100 for each model. Finally, the median and the third 
quartile of each vector (one for each semivariogram model) were considered as cuts to 
categorize the SDM and classify the spatial dependence as weak, moderate, and strong, 
as shown in table 1.

To evaluate the performance of the SDM and compare it with some of the indexes used 
in the literature, 25 scenarios of spatial variability were simulated in the geoR package 

Table 1. Amplitude of values and proposed classification for the Spatial Dependence Measure (SDM)

Model Amplitude
Classification

Weak Moderate Strong
Spherical 0 to 44.70 0 ≤ SDM ≤ 14 14 < SDM ≤ 24 24 < SDM ≤ 44.70
Exponential 0 to 42.20 0 ≤ SDM ≤ 14 14 < SDM ≤ 22 22 < SDM ≤ 42.20
Gaussian 0 to 56.30 0 ≤ SDM ≤ 18 18 < SDM ≤ 30 30 < SDM ≤ 56.30
Cubic 0 to 40.80 0 ≤ SDM ≤ 13 13 < SDM ≤ 22 22 < SDM ≤ 40.80
Pentaspherical 0 to 37.80 0 ≤ SDM ≤ 12 12 < SDM ≤ 20 20 < SDM ≤ 37.80
Wave 0 to 63.70 0 ≤ SDM ≤ 21 21 < SDM ≤ 34 34 < SDM ≤ 63.70
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(Ribeiro Junior and Diggle, 2001), from R software (R Development Core Team, 2018). The 
scenarios were composed with the following parameters: contribution values of 10, 25, 50, 
75, and 90 % of sill = 50; range values of 10, 25, 50, 75, and 90 % of 0.5MD = 70.71 m, 
in at 100 × 100 m sampling grid. Each scenario was replicated 100 times to mitigate 
possible variations in the simulation algorithm. With the 100 values generated from 
each scenario, the SPD, SDI, SDM and, as performance measures, the Mean Squared 
Error (MSE) and the Kriging Variance (KV) generated by cross-validation were calculated. 
Finally, Pearson’s correlations between the indexes and performance measures were 
calculated. In the case of a high spatial dependence structure, there are higher values in 
the SPD, SDI, and SDM indexes and lower values for the MSE and KV, so those negative 
correlations between the indexes and performance measures are expected. The results 
of the correlations are shown in table 2.

To exemplify the application of the SDM in the proposal for classification of soil properties, 
we use estimates of geostatistical parameters presented in the studies by Oldoni and 
Bassoi (2016) and Guedes et al. (2020). The authors used the SPD (or NE) and SDI indexes. 
From this, we also calculate the SDM index and apply its proposed classification. These 
results are shown in table 3.

RESULTS AND DISCUSSION

The SDM differs from the SDI in the values of the model factor (MF) and also by the 
inclusion of a square root in the component C1

C0 + C1
 to give more weight to this component 

in the measurement of spatial variability. In addition, the SDM is also dimensionless (does 
not depend on units of measurement), in the same way as the SDI, also considering more 
parameters of the semivariogram, when compared to the NE and SPD indexes. The range 
parameter allows the evaluation of the spatial variability in the horizontal direction of 
the semivariogram, and the contribution and the sill parameters allow the evaluation 
of the spatial variability in the vertical direction of the semivariogram (Santos et al., 
2018). The SDI and SDM indexes capture these aspects well in the whole area of the 
semivariogram graph, in other words, in both directions (horizontal and vertical) within 
the graph area, that is, in the direction of the horizontal axis of the semivariogram graph, 
and in the direction of the vertical axis of the semivariogram graph.

In general, in table 2, of the ten possible correlations between each index and performance 
measures, for the SPD there are six of them as strong, for the SDI there are eight of them 
as strong, and for the SDM also there are eight of them as strong. Thus, it is observed 
that the SDI and SDM indexes showed an advantage over the SPD. In addition, SDI was 
slightly better than SDM. Seidel and Oliveira (2014) found that the SDI had a slight 
advantage over the SPD, with a higher frequency of good correlations with the mean 
squared error of cross-validation. However, Amaral and Della Justina (2019) observed 
that the NE (or SPD) and SDI indexes did not perform as well as cross-validation measures 
in assessing the quality of kriging maps. In the sense of the relationship between the 

Table 2. Correlations between the Spatial Dependence Degree (SPD), Spatial Dependence Index (SDI), and Spatial Dependence 
Measure (SDM), and between Mean Squared Error (MSE) and Kriging Variance (KV) of the cross-validation, in semivariogram models

Indexes
Spherical Exponential Gaussian Cubic Wave

MSE KV MSE KV MSE KV MSE KV MSE KV
SPD -0.67 -0.44 -0.92 -0.70 -0.79 -0.77 -0.63 -0.34 -0.77 -0.78
SDI -0.84 -0.97 -0.91 -0.97 -0.79 -0.83 -0.86 -0.95 -0.51 -0.55
SDM -0.80 -0.94 -0.90 -0.95 -0.72 -0.77 -0.81 -0.91 -0.45 -0.50

Strong correlations: -1.00 to -0.70; moderate correlations: -0.69 to -0.30. The pentaspherical model is not implemented in the geoR package (Ribeiro 
Junior and Diggle, 2001) so that the simulation was not performed.
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indexes and the range parameter, Santos et al. (2018) found that SDI had a moderate to 
a strong positive correlation with range parameter; and, the SPD had a weak to moderate 
negative correlation with range parameter.

Some researchers use metrics together to better assess spatial variability and optimize 
decision-making: Taylor et al. (2007) using the NE and the MCD; Souza et al. (2008) 
using the NE and the integral scale J2; Oldoni and Bassoi (2016) using SPD and SDI; 
Amaral and Della Justina (2019) and Guedes et al. (2020) using the NE and SDI. These 
findings show the need for further studies to propose and evaluate the performance of 
the indexes, mainly for the SDM that is being proposed.

From table 3, it can be seen that the SPD index generates four strong classifications, ten 
moderate classifications and one weak. The SDI generates five strong classifications, 
seven moderate, and three weak. While the SDM index generates four strong ratings, 
four moderate, and seven weak. Considering a joint assessment of the three indexes, 
it is possible to verify that sand, available water, soil density, 60 days after pruning 
(DAP), and 63 DAP were classified as strong in at least two of the indices. The properties 
silt, clay, 100-101 DAP, 78 DAP, calcium, and pH were classified as moderate in at least 
two of the indexes. The properties 57 DAP, carbon, and magnesium were classified 
as weak by at least two of the indexes. However, the 91 DAP property had the three 
discordant classifications.

CONCLUSIONS

The Spatial Dependence Measure (SDM) can be a measure that, analyzed together 
with the Spatial Dependence Index (SDI), can help to improve the description and 
classification of the spatial variability structure. Thus, this study expands the number 
of geostatistical-based measures and increases the power of decision on the description 
of the degree of spatial variability of agricultural and soil properties.

Table 3. Spatial Dependence Degree (SPD), Spatial Dependence Index (SDI), Spatial Dependence Measure (SDM), and classifications 
generated for some soil properties

Properties(1) Model(2) Range SPD SDI SDM SPD 
classification

SDI 
classification

SDM 
classification

m %
Sand(3) Exp 85.5 50.2 13.7 25.7 Moderate Strong Strong
Silt(3) Gaus 55.5 35.5 10.0 18.8 Moderate Moderate Moderate
Clay(3) Sph 40.6 79.9 12.2 16.3 Strong Moderate Moderate
AW(3) Sph 146.2 84.6 31.7 41.1 Strong Strong Strong
SD(3) Gaus 60.6 75.9 23.3 29.9 Strong Strong Moderate
57 DAP(3) Sph 36.0 46.3 6.0 10.5 Moderate Weak Weak
60 DAP(3) Sph 90.3 53.4 17.3 28.2 Moderate Strong Strong
100-101 DAP(3) Sph 46.9 47.6 8.0 13.8 Moderate Moderate Weak
63 DAP(3) Sph 99.0 62.4 22.1 33.3 Moderate Strong Strong
78 DAP(3) Sph 35.8 74.1 9.5 13.2 Moderate Moderate Weak
91 DAP(3) Gaus 25.6 99.9 12.3 13.7 Strong Moderate Weak
Carbon(4) Gaus 254.9 47.5 6.9 11.2 Moderate Weak Weak
Calcium(4) Gaus 639.9 29.0 10.6 22.0 Moderate Moderate Weak
Magnesium(4) Gaus 685.5 16.0 6.3 17.5 Weak Weak Weak
pH(4) Exp 300.0 35.1 8.3 18.6 Moderate Moderate Moderate

(1) AW: available water; SD: soil density; DAP: days after pruning. (2) Exp: exponential; Gaus: Gaussian; Sph: spherical. (3) Soil properties presented in 
Oldoni and Bassoi (2016). (4) Soil properties presented in Guedes et al. (2020).
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Errata RBCS 2020-0086

In the article “Geostatistical-based index for spatial variability in soil properties” [Rev 
Bras Cienc Solo. 2020;44: e0200086. DOI: 10.36783/18069657rbcs20200086], on page 
4 (Equations 11 to 16), where it is presented:

SDIspherical = 0.447 100
C1

C0 + C1
min 1;

a
0.5 MD

1
2

			      Eq. 11

SDIexponential = 0.422 100
C1

C0 + C1
min 1;

a
0.5 MD

1
2

			      Eq. 12

SDIgaussian = 0.563 100
C1

C0 + C1
min 1;

a
0.5 MD

1
2

			      Eq. 13

SDIcubic = 0.408 100
C1

C0 + C1
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