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ABSTRACT: Soil moisture (SM) plays an important role in regulating the global water 
cycle, especially in arid areas, and is one of the main indicators of ecological environmental 
health. Although traditional methods can accurately measure SM at a single sample site, 
they are limited in large-scale and dynamic SM monitoring. Therefore, we used the Landsat 
images as the data source and the soil adjusted vegetation index (SAVI) to build the 
adjusted SAVI (aSAVI) index by modifying the soil adjustment parameter L and introducing 
the short-wave infrared band. According to the theory of temperature vegetation dryness 
index (TVDI) and feature space, we introduced a model, combined the measured SM data 
(Minqin Basin, China) through a comparative analysis of four vegetation indices (NDVI, 
SAVI, MSAVI, aSAVI) determine the optimal model. Taking the Minqin Basin as the study 
area, the spatiotemporal variation characteristics of SM in three sub-regions (the entire 
study area, irrigated region, and periphery of the irrigated regions) were quantitatively 
analyzed and compared in four different periods: pre-Comprehensive Treatment Program 
of the Shiyang River Basin (pre-CTSRB) (2000–2005), CTSRB I (2006–2010), CTSRB II 
(2011–2016), and CTSRB-end (2017–2021) to evaluate the ecological restoration effects 
of treatment programs from the SM perspective. The results showed that: 1) SM values 
derived from TVDI inversion and the aSAVI were more accurate, and the model sensitivity 
decreased with soil depth; 2) the mean value of SM fluctuated across the four periods 
but decreased slightly over the entire time series. The spatial variations of the SM were 
characterized by a “descending then ascending” trend. Soil moisture increased in 21.35 
% of areas at 0.00-0.10 m in the past 22 years, and 59.66 % at 0.10-0.20 m. There was 
a negative correlation between the mean variation trend of SM and the percentage of 
area where SM fell in different periods; 3) the treatment program positively affected the 
ecological restoration of the Minqin Basin from the SM perspective. The area where SM 
increased was larger than that of decreasing SM, especially in 0.10-0.20 m soil layer. 
The increase can promote growth and confer resistance to desertification. 

Keywords: soil moisture, adjusted SAVI (aSAVI), time series, arid / semi-arid regions, 
ecological restoration project.
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INTRODUCTION
Soil is the interface that connects the biosphere and atmosphere, and water cycle process 
of the earth’s ecological environment (Zhang et al., 2018). Soil moisture (SM) is a control 
variable in the heat and water exchange cycle between the land surface and atmosphere; 
it affects precipitation and evapotranspiration in different meteorological environments 
(Seneviratne et al., 2010) and can directly characterize the wet and dry conditions of 
the surface environment (Wang et al., 2018). Soil moisture also plays a regulatory role 
in the water cycle (Mulder et al., 2011), while the water content of different soil types 
affects the terrestrial water cycle; for example, the water storage capacity of loam is 
much higher than that of sandy soil (Assi et al., 2018). If the proportion of clay is too 
small, there will be great restrictions on agricultural development (Wells et al., 2022). Soil 
moisture can affect the moisture content of organisms (vegetation, microorganisms, etc.) 
(Liancourt et al., 2012) and is the basic variable for agricultural production development, 
making it an indispensable part of the balance of the ecological environment. Therefore, 
understanding SM variation is a prerequisite for studying the complex relationships among 
climate, hydrology, and biology (vegetation) from multiple perspectives.

Soil moisture is essential for vegetation, but it is difficult to reliably determine this variable 
using direct measurements (Seneviratne et al., 2010). Generally, traditional methods 
are time and cost-consuming, as they can be used for only a limited number of samples 
(Charlton, 2000). In addition, due to the existence of various uncertain influencing factors, 
such as soil type, groundwater distribution, and topographical changes, the spatial 
variability of soil is complex (Holzman et al., 2014). Therefore, the method of monitoring 
SM in a certain area based on the actual measurement of sample points has limitations 
regarding the accuracy and temporality of the monitoring results (Hamidisepehr et al., 
2017; Xie et al., 2017).

Based on this background, we attempted to combine remote sensing technology with the 
SM monitoring method. Since the 1980s, various vegetation index (VI) based on remote 
sensing data have been used to invert and monitor SM, starting with the normalized 
differential VI (NDVI) and land surface temperature (LST) (Carlson et al., 1981; Sucksdorff 
and Ottle, 1990). We considered this as a starting point to conduct continuous in-depth 
research. At present, the inversion of SM has achieved considerable progress in both 
microwave and optical remote sensing (Wigneron et al., 1995; Zhao et al., 2016). 
Microwave remote sensing mainly uses the relationship between short radiation bands 
and radar backscattering coefficients to retrieve SM (Jackson et al., 2012; Periasamy and 
Shanmugam, 2017). Using various bands or spectra to construct an index to simulate SM 
is a common method for optical remote sensing, and the main methods include TVDI, 
apparent thermal inertia (ATI), thermal infrared remote sensing, reflectance, and the 
model with temporal and spatial heterogeneity. The reflectance method is simple and 
quick to operate, but it is only suitable for areas with flat terrain and single landforms 
(Zhang et al., 2017). The difference in sensors limits the albedo calculation in ATI, and 
generally, the effect is better in the early stages of vegetation growth (Sun et al., 2015). 
The TVDI can effectively overcome the influence of soil background and achieve better 
results in areas with incomplete coverage (Chen et al., 2011).

Based on the above-mentioned reasons, scholars focused on the TVDI and found that 
the relationship between the relative changes in VI, LST, and SM was relatively stable 
under most climatic conditions and surface cover conditions (Carlson et al., 1990). 
The triangular or trapezoidal two-dimensional feature space formed by LST and NDVI 
(Liu et al., 2021a) was used to estimate the TVDI. The upper and lower thresholds of 
land surface temperature are represented on both sides of the characteristic space, 
and the calculated TVDI values are subsequently used to infer the degree of drought, 
which can more accurately determine the SM. A significant negative correlation was 
found between the TVDI and SM in different arid and semi-arid regions (Guo et al., 2009; 
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Kazemzadeh et al., 2021). Due to the discrepancies in climate and soil environment in 
different regions, the feature space (Vis-TVDI) and LST that constitute the TVDI were 
modified in a suitable manner, summarized as follows: (a) replaced NDVI and used the 
modified soil adjusted VI (MSAVI), soil adjusted VI (SAVI), and enhanced VI (EVI) for 
evaluation (Zhang et al., 2014a; Ma et al., 2017; Wu et al., 2019); (b) modified the soil 
line and increased the combination of shortwave infrared (SWIR), near-infrared (NIR), 
and red light bands to reduce the sensitivity of VI to the soil background (Feng et al., 
2011a; Chen et al., 2019; Liu et al., 2021b); (c) considered the influence of factors such 
as terrain (digital elevation model, DEM) and environmental data on the LST and made 
corrections to the LST (Ran et al., 2005; Sun et al., 2010; Liu et al., 2013). The correlation 
between the TVDI and SM obtained after the modification was clear, which improved 
the accuracy of SM inversion (Thi et al., 2019; Yan et al., 2019). However, the above 
results were only a single-factor modification, and the influence of factors such as VI, 
SWIR band, and altitude on the accuracy of the TVDI-SM model was not comprehensively 
discussed. Furthermore, the inversion of SM is often only a distribution model, and little 
attention has been paid to the practical application of the model and the establishment 
of relevant evaluation mechanisms.

To find an optimal model for SM in arid and semi-arid areas of northwest China, in this 
study, we established the TVDI after revising VI and LST, and constructed a model 
between TVDI and SM to explore its ecological impacts. In addition, to better understand 
the key process of SM changes over time in arid and semi-arid regions, we carried out 
analysis in combination with time series. We used our model to obtain the SM distribution 
in the study area from 2000 to 2021 and to evaluate the different periods (before, 
during, and after) of the ecological restoration project to determine whether change 
in SM promoted ecological restoration. Our model will provide a framework for the 
comprehensive management of SM sustainability in arid and semi-arid areas and 
directions and references for ecological restoration, and affect evaluation research 
from the perspective of SM.

MATERIALS AND METHODS

Study area

The study area was in the Minqin county in Gansu Province, northwestern China, 
downstream of the Shiyang River Basin in the northeast of the Hexi Corridor, and between 
the Badain Jaran and Tengger Deserts (Figure 1). This area has important reference 
value for China’s desertification control research and ecological environment restoration 
construction (Ma et al., 2013). The altitude is between 1190 to 1465 m, and the main 
landforms are deserts, low hills, and plains. The soil type is Arenosols (IUSS Working 
Group WRB, 2015), but the continuous erosion of the two deserts and the development of 
unscientific irrigated agriculture have led to desertification, salinization, and degradation 
of the soil (Ren et al., 2014). 

The studied area has a temperate continental arid climate, with four distinct seasons. 
It is windy in winter and spring and hot in the summer. The temperature can vary greatly 
daily, with frequent sandstorms and extreme imbalances between precipitation and 
evaporation. Specifically, the annual average precipitation (114 mm) is only approximately 
4.55 % of the annual average evaporation (2483 mm). The average annual temperature 
is 38.4 ℃, with an average annual wind speed is 2.7 m s-1. To distinguish the oasis in 
the basin and its periphery, the study area was divided into the irrigation area and the 
periphery of the irrigation area. Crops make up most of the vegetation in the irrigation 
area, while the periphery of the irrigation area is dominated by halophytic and xerophytic 
vegetation. The main crops are wheat and corn; the wild vegetation includes woody 
plants, such as shrubs and subshrubs, which are more common, as well as annual and 
perennial herbs. Among them, shrubs are mainly Kalidium foliatum (Pall.) Moq., Nitraria 
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tangutorum Bobr., and Reaumuria songarica (Pall.) Maxim., and herbaceous plants 
include Peganum harmala L., Phragmites australis (Cav.) Trin. ex Steud., and Suaeda 
glauca (Bunge) Bunge. 

Currently, the studied area mainly consists of irrigated agriculture, but unscientific 
irrigation (surface flooding irrigation, uncontrolled groundwater extraction) methods 
before 2006 caused irreversible damage to the ecological environment of the area. 
The main problems caused were: (a) continuous groundwater level decline and soil 
desertification intensified; (b) merging of the two deserts; (c) different degrees of 
ecological degradation, reflected in soil, vegetation, groundwater, and other aspects 
(Zhang et al., 2004). To curb the continuous decline of the groundwater level in the 
Minqin oasis and restore the ecological environment of Minqin, and the entire Shiyang 
River basin, the Chinese government launched the Comprehensive Treatment Program 
of the Shiyang River Basin (CTSRB) in January 2006. Increasing surface runoff and 
reducing groundwater extraction were two major treatment measures of the CTSRB 
(Hao et al., 2017). The project was implemented in two periods: CTSRB I (2006–2010) 
and CTSRB II (2011–2020; however, it was completed in 2016). Therefore, different 
time nodes of project implementation were used to divide the time stages in the study. 
The project preparation period from 2000 to 2005 (pre-CTSRB), the first period from 
2006 to 2010 (CTSRB I), the second period from 2011 to 2016 (CTSRB II), and the end 
period from 2017 to 2021 (CTSRB-end) were used. The spatiotemporal variations of 
SM were analyzed in four periods to evaluate the ecological restoration effect of the 
CTSRB from the perspective of SM.

Data

In situ SM

Farmland abandoned for ecological restoration from 2006 to 2010 in the CTSRB was 
selected to meet the requirements of the surrounding area with closed irrigation wells 
and was converted to ecological restoration land. To improve the accuracy of the inversion 
and avoid subjective errors, the sampling points of the experiment were selected in 
ecological restoration land where the vegetation grows evenly and is less affected by 
human activities, which also makes the soil samples more representative.

Figure 1. Studied area location and distribution of SM sampling points. (a) location of the Hexi Corridor and Shiyang River Basin in 
China; (b) location of the studied area in Shiyang River Basin; (c) soil sample collection method; (d) distribution of sampling points 
in the study area.
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Data were collected from field samples taken in the study area in July 2020 and 2021 
and were brought back to the laboratory for SM measurements. A total of 130 points 
(2020, 79 points; 2021, 51 points) were sampled (Figure 1). The specific sampling method 
was as follows: at each sampling point, three large sample squares of 10 × 10 m were 
arranged at 100 m intervals in the north-south direction. In each large sample square, 
three samples were taken on the north-south diagonal and recorded as a repetition 
(Cosh et al., 2013). At each point, the soil samples were taken at three soil layers 
(0.00-0.10, 0.10-0.20, and 0.20-0.30 m) using the ring knife method (Xu et al., 2022), 
and the latitude and longitude coordinates and surrounding environment information 
were recorded (Figure 1c) (McAlary et al., 2009; Sousa et al., 2022). Soil moisture was 
obtained using the soil drying method (Wong et al., 2020).

Remote sensing data

Landsat remote sensing images (collection1-L1 level) were obtained from the USGS 
(United States Geological Survey, 2021), and we chose July or August (vegetation 
grows vigorously or reaches the flowering period) in 2000–2021 (Path/Row is 131/033, 
132/033). The spatial resolution of the multi-spectral bands was 30 m and the thermal 
infrared bands were 100 m (TM and TIRS) and 60 m (ETM+). According to the orbital 
repetition period (16 days) and cloud cover, the images that affected the inversion 
result were eliminated. The best images from each year were screened according to the 
satellite revisit period and cloud distribution. Specific image information is presented in 
table 1. Image preprocessing was completed using ENVI software, including radiometric 
calibration, FLAASH atmospheric correction, resampling, geometric correction, image 
mosaic, cropping, and band calculation. On 31 May, 2003, the Scan Line Corrector (SLC) 
onboard the Landsat 7 ETM+ satellite failed, which caused approximately 22 % of the 
striped data to be lost in the images acquired subsequently. The SLC-off model was 
used for correction.

To rule out the influence of precipitation on the selected remote sensing images, 
and to verify whether they are representative, the precipitation of the 5 days before, 
10 days before and 15 days before of the annual images between 2000 and 2021 was 

Table 1. Details of Landsat data usage

Year Sensor Path/Row Date Cloud Quality Year Sensor Path/Row Date Cloud Quality
2000 TM 131/033 2000.07.19 0.00 % 9

2014 OLI/TIRS
131/033 2014.07.26 0.00 % 9

2001 TM 131/033 2001.07.22 0.00 % 9 132/033 2014.07.17 0.00 % 9
2002 ETM+ 131/033 2002.07.17 3.00 % 9

2015 OLI/TIRS
131/033 2015.07.29 2.77 % 9

2003 TM 131/033 2003.08.13 3.00 % 7 132/033 2015.08.05 3.02 % 9
2004 TM 131/033 2004.07.30 0.00 % 7

2016 OLI/TIRS
131/033 2016.07.15 0.30 % 9

2005 TM 131/033 2005.08.02 0.00 % 7 132/033 2016.07.06 2.68 % 9
2006 TM 131/033 2006.07.04 0.00 % 9

2017 OLI/TIRS
131/033 2017.07.18 0.95 % 9

2007 ETM+ 131/033 2007.07.15 0.00 % 9 132/033 2017.07.09 2.55 % 9
2008 TM 131/033 2008.07.25 0.00 % 7

2018 OLI/TIRS
131/033 2018.07.21 0.47 % 9

2009 TM 132/033 2009.08.13 4.00 % 9 132/033 2018.07.12 0.16 % 9
2010 ETM+ 131/033 2010.07.23 2.00 % 9

2019 OLI/TIRS
131/033 2019.07.24 22.02 % 9

2011 ETM+ 131/033 2011.07.26 0.00 % 9 132/033 2019.07.31 3.02 % 9
2012 ETM+ 131/033 2012.08.29 0.00 % 9

2020 OLI/TIRS
131/033 2020.07.26 4.72 % 9

2013 OLI/TIRS
131/033 2013.08.08 4.74 % 9 132/033 2020.07.17 14.72 % 9
132/033 2013.07.30 14.48 % 9

2021 OLI/TIRS
131/033 2021.07.13 0.03 % 9
132/033 2021.07.20 0.01 % 9
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counted. In figure 2, except for the selected remote sensing images in 2004, which 
had more precipitation (>40 mm), the precipitation of the selected remote sensing 
images in other years was below 30 mm, and most of them were less than 10 mm. 
The precipitation in the study area decreased throughout the period prior to image 
capture, and the area experienced a temperate desert climate from July to August 
(with the high temperature during the day). With these temperatures and insufficient 
(≤30 mm) precipitation (5 days before), the selected images are representative of the 
ecological environment of the studied area in that year and can therefore be used for 
subsequent inversion research.

DEM data

Digital elevation model from the Resources and Environment Science Center of the 
Chinese Academy of Sciences (2003), with a resolution of 30 m. ArcGIS 10.3 and ENVI 
5.3 were used for processing.

Methods

Acquisition of VI

Vegetation index can show vegetation information (Xiang et al., 2022). Normalized 
difference vegetation index is a VI that incorporates external factors such as illumination, 
surface undulation, and roughness for vegetation monitoring and is considered first 
in vegetation monitoring (van Leeuwen et al., 2006). We used the SAVI, a VI based 
on NDVI and a large amount of observational data proposed by Huete (1988). The 
MSAVI further weakens the influence of the soil background, replacing the constant 
soil adjustment index (L) in SAVI with a variable, resulting in increased sensitivity 
to vegetation (Qi et al., 1994). Finally, the SAVI was modified by adding short-wave 
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infrared bands and modifying L to obtain the adjusted soil adjustment VI (aSAVI). The 
above four VIs were calculated as follows:

NDVI =
(ρNIR – ρRed)
(ρNIR – ρRed)

								            Eq. 1

SAVI = (1 + L)
(ρNIR – ρRed)

(ρNIR – ρRed + L)
							          Eq. 2

MSAVI =
2 ρNIR + 1 – √(2 ρNIR + 1)2 – 8(ρNIR – ρRed)

2
					        Eq. 3

aSAVI = (1 + L)
(ρNIR – ρR + ρSWIR )

( ρNIR – ρR + ρSWIR + L)
						         Eq. 4

In which: ρNIR, ρRed, and ρSWIR are the near-infrared, red and short-wave infrared band 
wavelengths, respectively; L is generally 0.5; in this study, L = 0.23 in aSAVI after  
many tests.

SAVI-aSAVI

Modify the parameters of L

SAVI is a VI that considers the sensitivity of the soil background and is generated 
by observing a large amount of vegetation and soil data. It adds a soil adjustment 
coefficient “L” on the basis of NDVI (Huete, 1988). However, when using the empirical 
value “L = 0.5”, SAVI cannot fully explain the local vegetation information and many 
outliers will appear. Studies have used different approaches to modify the L value, 
which depends on the region being studied; however, modifying L can generally better 
tailor performance results to local conditions (Ma et al., 2017; Wu et al., 2019). The use 
of variables instead of L in the MSAVI to further increase the sensitivity of vegetation 
(Qi et al., 1994), such as the negative factor (L = -0.2) (Zhen et al., 2021) and enlarge 
L value (L = 100) (Kasim et al., 2018), are more appropriate for the study of vegetation 
coverage (VC) in arid and semi-arid regions, and can also alleviate the saturation of 
SAVI (Ren et al., 2018). Based on the premise that the confidence is 0.95 and meets 
the threshold of the SAVI value domain, the L value is adjusted with a step size of 0.01 
from 0 to 1, reaching am optimal L value of Minqin Basin of 0.23.

Joining of SWIR band

The SWIR band has the characteristics of penetrating clouds, fog, and high sensitivity 
(Chen et al., 2019). Modified soil line and combination of SWIR, NIR, or Red bands can 
reduce VI sensitivity to soil background (Feng et al., 2011b; Holzman et al., 2021).

Specifically, adding SWIR to VI improved the relationship between SAVI and VC 
(R2 increase 0.06) and leaf area index (R2 increase about 0.10) (Chen et al., 2019). 
In complex environments, such as VC or bare areas, the Sentinel-2 satellite can improve 
the estimation accuracy of SM in the 0.00-0.05 m topsoil layer (R2 increase 0.04) 
by combining the SM monitoring index with the red edge and SWIR band (Liu et al., 
2021b). Using different high-resolution multi-spectral images, better results were 
obtained by estimating SM by SWIR conversion reflectivity under high spatial resolution 
(Feng et al., 2008). In summary, adding the SWIR band to the VI improved the inversion 
accuracy of SM. In this study, SWIR was added to the SAVI to generate the aSAVI model 
based on the best vegetation adjustment index; the adjusted VI was modeled and, 
by accuracy, verified (R2 increased by 0.04) as more suitable for inversion of SM in 
arid and semi-arid areas.
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Acquisition of VC

The pixel binary model is a common method for calculating VC based on a linear 
mixed-pixel decomposition model. The semi-empirical relationship was discovered by 
Gutman and Ignatov (1998) according to the formula proposed by Gillies and Carlson 
(1995). To construct a mixed pixel model, the VC is extracted from four VIs (NDVI, SAVI, 
MSAVI, and aSAVI). Pixels with VI less than 0 were excluded because they are mainly 
water bodies and clouds and are considered to be 100 % of VC. Thus, if they are, included 
in the calculation, the validity of the results may be affected (Yuan et al., 2020). The VC 
was calculated as follows:

VC =
VI – VImin

VImax – VImin

								            Eq. 5

in which VI is NDVI, SAVI, MSAVI, and aSAVI, and VImin and VImax are the maximum and 
minimum values of VI, respectively. In this study, statistical histogram analysis was 
conducted on each VI, and the maximum and minimum values were determined to be 
95 and 5 % cumulative probability, respectively.

Land surface emissivity

Surface emissivity is the characterization of the ability of the land to radiate 
electromagnetic waves outwards and refers to the ratio of the amount of radiation 
emitted by the ground surface to the amount of radiation emitted by a black body at 
the same temperature (Zhang et al., 2014b). It not only depends on the composition of 
the earth’s surface but also on the surface state and physical properties, and changes 
with the measured wavelength and observation angle (Valor and Caselles, 1996; 
Qin et al., 2006). It is difficult to measure the surface specific emissivity accurately 
and quantitatively; therefore, we divided it into water body, urban period element, 
natural surface, and estimates based on empirical formulae, and calculated as follows 
(Mallick et al., 2012; Ndossi and Avdan, 2016):

εwater = 0.995									             Eq. 6

εurban = 0.9589 + 0.086 × VC – 0.0671 × VC2					         Eq. 7

εsurface = 0.9625 + 0.0614 × VC – 0.0461 × VC2					         Eq. 8

ε = [VC<”VImin”] × εwater + [”VImin”<VC<”VImax”] × εurban + [VC>” VImax”] × εsurface	     Eq. 9

in which: ε is the surface emissivity.

LST

There are three common methods for LST inversion: thermal radiation transfer equation 
method, single window algorithm, and single channel algorithm (Guha et al., 2020). In 
this study, the thermal radiation transfer equation method was used to perform LST 
inversion in the Minqin Basin. The basic principle is to estimate the influence of the 
atmosphere on the surface thermal radiation, and subtract the influence of the total 
thermal radiation received by the satellite sensor to obtain the surface thermal radiation 
intensity, and finally convert the surface thermal radiation intensity into the corresponding 
LST (Chatterjee et al., 2017). This was calculated as follows:

Lλ = [ε × B(LST) + (1 – ε) × L↓] × τ + L↑					        Eq. 10

in which: Lλ is the thermal infrared radiance; ε is the surface emissivity; B(LST) is the 
thermal radiance of the black body derived from Planck’s law at this LST; τ is the 
atmospheric transmittance; and L↓ and L↑ are the atmospheric downward and upward 
radiations, respectively. Among them, the atmospheric profile information τ, L↓, and 
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L↑ can be queried on the NASA website (http://atmcorr.gsfc.nasa.gov) by entering the 
imaging time, center latitude and longitude, and other corresponding parameters. 

The derivation shows that the radiance B(LST) of a blackbody with a temperature of LST 
(Ermida et al., 2020) in the thermal infrared band is:

B(LST) =
[Lλ – L↑ – τ × (1 – ε) × L↓]

ε
						         Eq. 11

The LST was obtained according to the inverse function of Planck’s formula, and was 
calculated as follows:

K2

ln + 1
K1

B(LST)

LST = 							          Eq. 12

in which: K1 and K2 are radiation constants. Table 2 summarizes the values of the radiation 
constants K1 and K2 in the Landsat 5/7/8 thermal infrared band.

DEM correction for LST

The optical image itself does not have the concept of altitude, but there is a heat exchange 
effect between the underlying surface and the atmosphere, so LST will be affected by 
altitude. Studies have shown that when the terrain has vertical fluctuations, altitude is 
negatively correlated with air temperature and ground temperature (Liu and Li, 2005). 
The LST was corrected to eliminate overestimation as follows:

LST’ = LST – H × i								           Eq. 13

in which: LST’ is the corrected surface temperature (K), H is the altitude (m), and i is the 
correction coefficient, which is 0.0064 K km-1 (Bailey and Bailey, 2009).

TVDI

The water stress value obtained from the TVDI through the feature space can be used 
to estimate SM. Sandholt et al. (2002) conducted a lot of SM analysis and found a series 
of SM contours in the characteristic space of LST and NDVI, that is, the slope of LST and 
NDVI under different moisture conditions. Based on this, the TVDI was proposed. This 
was calculated as follows:

TVDI =
LST’ – LST’min

LST’max – LST’min

							          Eq. 14

LST’min = a1 + b1 × VI								           Eq. 15

LST’max = a2 + b2 × VI								           Eq. 16

in which: LST’ is the surface temperature of any pixel; LST’min and LST’max are the lowest 
(wet edge equation) and highest (dry edge equation) surface temperatures corresponding 
to VI, respectively; a1 and a2 are the coefficients of the dry edge equations; and b1 and 

Table 2. Values of constants K1 and K2 of Landsat 5/7/8 TIR bands

Radiation constants Landsat 5 TM Band 6 Landsat 7 ETM+ Band 6 Landsat 8 TIRS Band 10

K1/(W·m-2·sr-1·μm-1) 607.76 666.09 774.89

K2/ K 1260.56 1282.71 1321.08
Note: The parameters in the table were obtained from the literature (Jafari and Hasheminasab, 2017).
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b2 are the coefficients of the wet edge equations. In addition to the NDVI, this study 
also used the SAVI and aSAVI to establish feature spaces of LST-SAVI and LST-aSAVI, 
respectively, and fit the feature space and dry-wet edge equations.

Verification of inversion accuracy

The measured SM and image data for 2020 and 2021 were used for modeling and 
verification. We randomly separated 77 % (100 points) of the SM dataset as the modeling 
set, and the remaining 23 % (30 points) was used as the validation set. Different soil layers 
(0.00-0.10, 0.10-0.20, and 0.20-0.30 m) were modeled and verified. Model construction 
evaluation used the model simulation value and the real value determination coefficient 
R2; accuracy verification used the verification set and the simulation value determination 
coefficient R2 and root mean squared error (RMSE).

Trend line analysis

Linear propensity estimation is a method of estimating the trends of evaluation parameters 
in a time series, changes in spatial distribution patterns, and transitions or sudden 
changes with time by the least squares method. This method can effectively simulate 
the changing trend of each pixel, thereby reflecting the spatial change characteristics 
of SM in different time periods (Han et al., 2019). The formula is:

θslope =
n × ∑n 

i i2 – (∑n
i i)2

n × ∑n 
i=1 i × SMi – ∑n 

i i ∑n 
i SMi 						         Eq. 17

in which: θslope is the slope of the trend line; n is the cumulative number of years of 
monitoring; and SMi is the SM in the i-th year. When θslope >0, the variation trend of SM 
increases, that is, the SM content tends to increase; θslope = 0 means that SM content 
remained stable, while θslope <0 indicates that SM content decreased.

RESULTS

Model

LST–VI feature space

The linear fitting results of the least squares regression of the four VIs and LST in 2020 
and 2021 are shown in figure 3. According to the theory of TVDI, the corresponding 
surface temperature on the dry edge decreases with an increase in the VI, and the 
corresponding surface temperature on the wet edge increases with an increase in the 
VI. Thus, the dry and wet edges or their extension lines intersect to form an angular 
shape (LST–VI feature space). That is, in the feature space, the dry edge and the wet 
edge show negative and positive correlations with VI and LST, respectively. Find out 
the feature space of VIs to form a trapezoid or triangle to meet the TVDI construction 
based on the slope of the dry-wet edge equation. The wet edges of the feature spaces of 
SAVI-LST and aSAVI-LST showed a weak positive correlation, and the shape of the feature 
space was trapezoidal. However, the MSAVI-LST feature spaces (Figure 3c) showed the 
same negative correlation as that on the dry edge and the slopes of the dry and wet 
edges were almost the same. This indicates that extension lines representing the dry 
and wet edges of the feature space cannot form an angular shape. At the same time, 
in the NDVI-LST feature space, the absolute value of the slope of the dry edge was much 
larger than that of the wet edge, which means that the dry edge dropped faster than 
the wet edge, and it could intersect on the extension line to form an angular shape.

In summary, to obtain a credible TVDI value, the MSAVI needs to be eliminated, the 
dry and wet edges of NDVI, SAVI, and aSAVI were all approximately linear, and ranges 
of R2 were between 0.73-0.89 and 0.20-0.55, respectively, with a good fitting effect. 
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The fitting effect of the wet edge was worse than that of the dry edge. The reason 
may be that the vegetation in the study area belongs to the xerophyte types, such as 
desert and semi-desert. This type of vegetation has a special organization adapted to 
desert and arid habitats, which inhibits the loss of water, resulting in a slightly poorer 
linear fitting effect on wet edges. Therefore, these three VI-LST feature spaces were 
used for TVDI calculations to reflect the relationship between vegetation and ground 
surface temperature.

SM-TVDI Model and Validation

Figure 4 showes the NDVI, SAVI, and aSAVI combined with SM (0.00-0.10 and 
0.10-0.20 m) fitting relationship. Based on the p<0.05 significance level test, all 
showed a good fitting result (R2 was from 0.53-0.70 and 0.20-0.36; RMSE was from 
1.30-2.98 %). However, the fitting result of SM and TVDI at 0.20-0.30 m was R2 ≤0.15 
and RMSE >2.95 %, which obviously cannot meet the calculation of TVDI or achieve 
the same as the trend observed in many research results.

The VIs had close relationships with 0.00-0.10 m SM (surface layer). However, as the 
soil layer deepened, the relationship between SM and VIs gradually became discrete 
or even had no correlation. Therefore, the inversion model performed the inversion for 
the 0.00-0.20 m SM layer and eliminated the 0.20-0.30 m SM, as it was not well-fitted 
(Figures 4g, 4h and 4i). Only SM for 0.00-0.20 m were retrieved. When constructing 
the SM inversion model, the R2 corresponding to the aSAVI increased by 0.04 and 0.01 
compared with that for the SAVI, indicating that the modification of SAVI had a positive 
effect on SM inversion in this study area. The SM fitting relationships corresponding to 
aSAVI with a good fitting effect (0.00-0.10 m: R2 = 0.70, RMSE = 1.30 %; 0.10-0.20 m: 
R2 = 0.36, RMSE = 2.05 %) was selected as the inversion models (SM0.00-0.10 m = –6.11 × 
TVDI + 5.96; SM0.10-0.20 m = –6.47 × TVDI + 6.91), and their accuracy was verified.

The 0.00-0.10 and 0.10-0.20 m SM inversion models were used to verify the accuracy of 
the image extraction prediction and verification sets (Figure 5). The 0.00-0.10 m SM model 
was verified (R2 = 0.71 and RMSE = 1.15 %), and the predicted and measured sets were 
almost evenly distributed on both sides of the ideal state. The selected SM model of the 
0.00-0.10 m soil layer can accurately reflect the water content of 0.00-0.10 m soil layer in 

(a)Dry = -23.88x+313.27
R2 = 0.89

Wet = -7.51x+253.63
R2 = 0.20

340
330
320
310
300
290
280
270
260
250
240
230
220

LS
T 

(K
)

(e)

Dry = -10.50x+313.31
R2 = 0.82

Wet = -2.31x+296.42
R2 = 0.22

330

320

310

300

290

280

LS
T 

(K
)

NDVI
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b)

Dry = -25.56x+333.11
R2 = 0.79

Wet = 30.00x+224.40
R2 = 0.54

(f)

Dry = -22.73x+333.42
R2 = 0.73

Wet = 11.12x+286.07
R2 = 0.49

SAVI
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(c)Dry = -11.35x+312.30
R2 = 0.67

Wet = -11.61x+258.36
R2 = 0.40

(g)

Dry = -8.38x+313.96
R2 = 0.88

Wet = -1.92x+296.27
R2 = 0.32

MSAVI
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(d)

Dry = -28.73x+330.91
R2 = 0.82

Wet = 27.95x+226.72
R2 = 0.55

(h)
Dry = -22.05x+329.01
R2 = 0.76

Wet = 8.70x+288.33
R2 = 0.46

aSAVI
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3. The LST–VI feature space. Red and blue sample points fit to form the dry and wet edges. (a) - (d) representative feature 
space formed by NDVI, SAVI, MSAVI and aSAVI with LST in 2020, respectively. (e) – (h) feature space formed by NDVI, SAVI, MSAVI, 
and aSAVI with VIs-LST in 2021, respectively.
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the study area. The inversion effect of this model for 0.00-0.10 m met the requirements 
for monitoring moisture variations in the study area. Accuracy of the 0.10-0.20 m model 
was verified (R2 = 0.43 and RMSE = 1.40 %), and the data were mainly distributed on 
one side of the prediction set, which was larger than the real data, which led to the 
deviation of the estimation model. At the same time, the different fitting accuracies of 
different soil layers verified the difference in the degree of combination of optical remote 
sensing in inverting surface and deep soil indexes. In summary, the retrieval effect of 
0.00-0.10 m SM was better than that of 0.10-0.20 m, and both provided a convincing 
explanation for SM.

Application of the SM model

Variation in the mean value of SM from 2000 to 2021

0.00-0.10 m

The mean value of SM constantly decreased while fluctuating (Figure 6a), and the 
fluctuation trend of the three regions was basically synchronous (0.50-3.50 %). During 
the entire period, the mean SM values in the entire study area, irrigated region, and 
the periphery of irrigated regions were 1.85, 2.47, and 1.36 %, respectively, with the 
irrigated region much higher than the its periphery (1.82 times).
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Figure 4. Construction of SM and TVDI models of various VIs. Blue point represent distribution of the measured SM and TVDI values, 
and black line represents the fitting results of both variables. The fitting results of SM with TVDINDVI, TVDISAVI, and TVDIaSAVI in the 
0.00-0.10 m (a–c), the 0.10-0.20 m (d-f), and the 0.20-0.30 m (g-i) soil layers, respectively. 



Liu et al. Inversion of soil moisture and its feedback on ecological restoration...

13Rev Bras Cienc Solo 2022;46:e0220113

In terms of the four periods, only CTSRB II showed an increasing trend. During the 
pre-CTSRB period, the mean value of SM was in a state of declining volatility (0.60-2.62 %) 
and reached its lowest value in 2006 (0.60, 0.80, and 0.47 % in the entire study 
area, irrigated region, and the periphery of irrigated regions, respectively). Then, for 
CTSRB I, the fluctuation state of SM was the same as that of pre-CTSRB in the first 
and mid-term (2000-2004). The decline rate of mean SM from 2007 to 2009 in the 
three regions (the entire study area, irrigated region, and the periphery of irrigated 
regions) was 0.50 %/year, 0.52 %/year, and 0.48 %/year, respectively. The mean value 
of SM increased in 2009-2010, and all three regions reached extremely high levels 
(2.42, 2.95, and 2.12 %, respectively) in 2010. In CTSRB II, there was a one-year 
delay (the orange circle in Figure 6a) in the process of SM decreasing in the periphery 

Figure 5. Accuracy verification of prediction models and measured values. Blue points represent 
the distribution of the SM values of verification and prediction sets, and the black line represents 
the fitting result of the two sets. (a) 0.00-0.10 m, and (b) 0.10-0.20 m.
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Figure 6. Average variation of SM in the study area under time series. Blue, red and green lines 
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over years, respectively; orange virtual coil represents the years in which the SM variation was 
inconsistent across different soil layers, and the gray box indicates the years in which the inversion 
results were greatly affected by cloud cover. Annual mean change in SM in three different regions 
of 0.00-0.10 m (a), and 0.10-0.20 m (b) soil layers.
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of irrigated regions compared to the irrigation regions (4 years), and the rate of  
decrease was 64.71 % of that of the irrigated regions.

From 2013 to 2016, all three regions showed different degrees of increase. Soil moisture 
in the periphery of irrigated regions (0.43 %) increased steadily, and the irrigated region 
changed sharply (1.10 %). After this time, the SM of the three regions showed more 
consistent changes. Likewise, the mean value of SM during CTSRB-end also declined, 
but the decline was not too large. The ranges of variation in the entire study area, 
irrigated region, and the periphery of irrigated regions were 1.33-2.01, 1.77-2.68 and, 
0.74-1.58 %, respectively.

0.10-0.20 m

Overall, the annual average SM of 0.10-0.20 m was larger than that of 0.00-0.10 m, but 
the variation trend of the two soil layers was relatively consistent (Figure 6b). The SM 
in the irrigated region was 1.6 times that of the periphery of irrigated regions, but in 
2009, with the implementation of restoration measures, the peak value of the irrigated 
region and the valley bottom in the periphery of irrigated regions were both delayed, 
which was different from 0.00-0.10 m. Specifically, the entire study area and periphery 
of irrigated regions peaked in 2010 (3.17, 2.85 %) but the irrigated region was delayed 
until 2011 (3.33 %). The periphery of the irrigated regions reached the bottom of the 
valley in the same pattern as 0.00-0.10 m, that is, compared to the entire study area and 
the irrigated region reaching the bottom of the valley in 2012, the periphery of irrigated 
regions showed a lag and bottomed out in 2013.

Spatial variation in the trend of SM in different periods

0.00-0.10 m

The spatial distribution of the slope line (θslope) of SM in different periods is shown in 
figures 7a, 7b, 7c, 7d and 7e. During pre-CTSRB (Figure 7a), more than 90 % of the three 
study regions showed a decreasing trend and only a few places showed an increasing 
trend. The boundary between the irrigated region and the periphery of irrigated regions 
was not obvious and showed a sharp decreasing trend (<-0.2). In CTSRB I (Figure 7b), 
SM increased sharply compared to the previous period; however, this varied spatially: 
first, most of the irrigated region continued to show a significant downward trend, and 
only a small area in the south of the central part had a significant increasing trend. 
Second, in the middle and northeastern part of the periphery of the irrigation region, 
there was a strip-like increase trend of SM (0.01-0.20), and all the others except the 
southeast part changed from a significant decreasing trend to a decreasing trend. Finally, 
the central and northeast SM of the whole region showed an increasing trend, while the 
southwest showed little change compared with pre-CTSRB. During CTSRB II, due to the 
implementation of ecological water conveyance measures, SM showed a significant 
increasing trend in the entire region, especially in the irrigation region.

However, this trend varied spatially: first, the variation trend of SM in the irrigated 
region showed a significant increasing trend (>0.20), which was 0.40 higher than that 
in CTSRB I. Second, there was a hysteresis phenomenon in the SM variation in the 
periphery of the irrigation region; however, it basically showed an increasing trend, 
except in the southwest. Finally, in the entire region, the variation was more obvious 
in the central part than in the other parts. The variation trend of SM during CTSRB-end 
was related to the lagged phenomenon of water migration, which showed a decreasing 
trend from southwest to northeast in the whole region, but the range of the increasing 
trend was obviously reduced. The basic variation trend of SM in the irrigation region 
was increased (southeast and central) directly to a significant decrease (northwest), 
while the periphery of the irrigation region shows a steadily decreasing trend. The 
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Figure 7. Spatial distribution of θslope and cumulative percentage of area for SM in different soil layers and periods. Red, orange, 
gray, blue and dark blue indicate that SM obviously decreased, decreased, remains constant, increased and obviously increased in 
different periods, respectively. I, II and III represent the entire region, irrigation region and periphery of irrigation region, respectively.  
(a) - (e) and (f) – (j) denote the SM change trend image during the pre-CTSRB, CTSRB-I, CTSRB-II, CTSRB-end and entire period in  
0.00-0.10 m and 0.10-0.20 m soil layers, respectively. (a’) – (e’) and (f’) – (j’) show the corresponding pixel proportion maps, respectively.
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changing trend in the periphery of the irrigation area is less than the complexity of 
the irrigation area, and the boundary between the two areas is very clear.

Soil moisture showed a slight decline throughout the studied period. First, the irrigation 
region had a downward trend as a whole (-0.20–0.01) but an increasing trend in parts 
of the central and northeastern regions. Second, the southwest and northeast parts of 
the irrigated region showed a decreasing trend, but in the middle part of the irrigated 
region, SM did not change (-0.01–0.01) in addition to the increasing trend. Finally, there 
was a decreasing-increasing-decreasing trend in the entire region from northeast to 
southwest, and the distribution of regions where SM did chang was uneven.

0.10-0.20 m

During the pre-CTSRB period of SM (Figures 7f, 7g, 7h, 7i and 7j), the decrease in SM in 
different regions was slightly lower than that of topsoil. First, the northeastern part of 
the irrigation region showed an increasing trend, and the decrease at the other layers 
was slower than in 0.00-0.10 m. Second, the overall periphery of the irrigation region 
decreased sharply compared with the topsoil and became a steadily decreasing trend. 
Moreover, SM in the northwest of the irrigation region and southeast of the periphery 
of the irrigation region had increasing trends. The CTSRB I, CTSRB II, and CTSRB-end 
periods had the same changing trends as the corresponding periods of the surface 
soil, but with different changing trend distributions. Specifically, the trend is caused 
by an insignificant gap in the distribution of the trend variation, and the distribution 
of CTSRB I and CTSRB-end of 0.10-0.20 m sharply increased compared with that 
of SM in the topsoil layer, while the distribution of both changed and unchanged 
soil layers decreased. CTSRB II showed a significant decrease-decrease-increase 
trend, while the other periods showed a decrease. From the entire period, the SM of  
0.10-0.20 m showed an increasing trend and the part corresponding to the decrease of  
0.00-0.10 m showed an increasing or unchanged trend.

Relationship between mean θslope and the percentage of area where SM fell 
in different periods

0.00-0.10 m

The area and content of SM change in the three regions (the entire region, irrigated 
region, and periphery of the irrigated region) during pre-CTSRB were all reduced, and 
the area reduced by SM was more than 96 % (Figure 8a). The periphery of the irrigated 
region had the largest reduction in area (99.10 %), and the irrigated region had the 
largest reduction in SM content (θslope = 0.28). 

The CTSRB I period showed the same trend as the previous period, but the area and 
content decreased compared with the previous stage. The three regions showed an 
increasing trend in the CTSRB II stage and the increased area (85.64 %) and SM content 
(0.17) of the irrigation region were the highest. CTSRB-end continued the trends of 
CTSRB-II. There was no significant difference between the SM content and decreased area 
of the three regions. Finally, in the entire period, the content of SM (-0.02, -0.01, -0.01) 
almost did not change, but the distribution area of SM reduction showed a decreasing 
trend: irrigation region > entire region > non-irrigation region. It was also found that the 
content of SM was obvious negatively correlated with the decreasing area (R2 = 0.92); 
that is, as the distribution area of SM decreased, its content increased. Based on these 
results, SM tended to increase during the total period.

0.10-0.20 m

At 0.10-0.20 m (Figure 8b), the trends of SM content and area change in the four periods 
were basically the same. However, R2 decreased from 0.92 to 0.74, and the accuracy of 
the performance also decreased in CTSRB I, CTSRB II, and CTSRB-end. During pre-CTSRB, 
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the distribution areas of the SM reduction in 0.10-0.20 m in the entire study area, 
irrigated regions, and periphery of the irrigated regions were reduced by 89.77, 85.21 
and, 92.02 %, respectively, compared with the 0.00-0.10 m, and the SM content was 
also reduced. The variation in SM in CTSRB I was larger than that in 0.00-0.10 m. 
There was no significant difference between CTSRB II and CTSRB-end of 0.00-0.10 m. 
In the whole time series, the SM content of 0.10-0.20 m did not change sharply, and 
the distribution area of SM reduction showed an opposite trend to that of 0.00-0.10 m, 
with the periphery of the irrigated area increasing the most (81.50 %). Similarly, there 
was a negative correlation (0.74) between the reduced distribution content and the 
content of 0.10-0.20 m SM, but the trend of 0.10-0.20 m layer was opposite to that of  
0.00-0.10 m layer, and it tended to decrease.

DISCUSSION

Water migration in different periods

Soil moisture is an important driving force of the ecosystem, and its migration law 
is an important factor that provides a scientific basis for ecological water demand, 
ecological restoration, and water resources management (Yang and Fu, 2017). With the 
implementation of the ecological water transportation project in CTSRB II, significant 
changes occurred in the spatiotemporal distribution of SM in different soil layers and 
between irrigated regions and the periphery of irrigated regions. There are several 
reasons for these changes: first, soil types with a large proportion of sand are generally 
in arid and semi-arid areas, and the proportion of sand decreases as the soil deepens. 
Second, the water storage capacity of the soil in the irrigated region is higher than 
that in the periphery of the irrigated region (Mesbah and Kowsar, 2011). Finally, the 
vegetation grown in these two regions differed greatly in the degree or ability of SM 
utilization. Precipitation and evapotranspiration are key factors affecting the life cycle 
of vegetation in the periphery of irrigated regions, especially in arid and semi-arid 
areas (Li et al., 2014).
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Figure 8. Trend line slope of SM. Blue, red and green points represent the entire study area, 
irrigation area and periphery of irrigation area, respectively. Each closed green figure represents 
the SM change trend and area distribution of the same soil layer in the same period, and black 
line represents the fitting results of these two variables. (a) 0.00-0.10 m, (b) 0.10-0.20 m.
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Therefore, the micro-environment differences between irrigated regions and their 
peripheries may lead to differing or even opposite water migration results. Indeed, 
in this study, the direction of ecological water transport during CTSRB-end was opposite 
to that of SM. This indicates that the amount of water transported to the region was 
not enough to replenish the lost water (especially in the northeast portion of the study 
area). The main possible reasons are water infiltration fast and soil water supersaturation 
(Cox et al., 2018) and surface evaporation and loss caused by the climate (Lang et al., 
1974). From the perspective of evapotranspiration, the northeast regions were much 
larger than the southwest after the movement of water; from the water saturation point 
of view, when the northeast regions reached saturation, the southwest maybe the time 
when SM increased sharply; from the perspective of water infiltration, the difference in 
DEM were caused SM gathers and disperses in a local region.

Relationship between SM and VC

From the relationship between VC and SM (Figure 9), we can see that the SM change 
trends of 0.00-0.10 and 0.10-0.20 m were relatively consistent. In pre-CTSRB, irrigation 
consumed a lot of groundwater, and SM (rising) can theoretically meet the growth of 
vegetation; however, VC (declining) does not match it. That is, adequate water supply 
but poor vegetation growth (Zhou et al., 2013).

In CTSRB I, SM fluctuated greatly, but VC showed a single peak shape and reached 
its peak in 2008. The CTSRB was launched in 2006 to curb the trend of destruction by 
planting grass and shrubs with strong stress resistance. In the initial stage of introducing 
new vegetation, there was a greater demand for SM, but as the environment tempers it, 
a part of the vegetation species was naturally selected to remain. Through the continuous 
repetition of this process, the environmental carrying capacity of the study area was 
enhanced, so the SM fluctuated and the VC showed different stages of rapid growth and 
decline to stability.

Figure 9. Relationship between VC and SM. Red columns indicates VC over time; blue and orange 
lines represent the mean SM of the study area in the 0.00-0.10 and 0.10-0.20 m soil layers, 
respectively. Green circle indicates the year that SM and VC had the same trend.

Vegetation Coverage
0.00–0.10 m SM
0.10–0.20 m SM

SM
 (%

)

Ve
ge

ta
tio

n 
Co

ve
ra

ge

0.30

0.25

0.20

0.15

0.10

0.05

0.00
2000 2006 2010 2016 2021

Years

4.00

3.00

2.00

1.00

0.00



Liu et al. Inversion of soil moisture and its feedback on ecological restoration...

19Rev Bras Cienc Solo 2022;46:e0220113

The SM and VC in CTSRB II showed a competitive relationship (wane and wax) during 
2011-2014, and the two showed the same upward trend from 2015 to 2016. This stage 
is a continuation of the previous period and plays the role of evaluation and remedy 
in terms of the degree of recovery. This stage can be summarized as the process of 
vegetation domestication from 2011 to 2014, and the vegetation adapted to the study 
area from 2015 to 2016; SM also has a trend of picking up. 

During CTSRB-end, the SM (decrease) and vegetation showed opposite changes. 
Specifically, vegetation was only affected by the decline in SM in 2018 and remained 
at a high level (>0.22) in the subsequent period. In summary, the fluctuation range of 
the VC was weaker than that of the SM. On the one hand, it shows that the introduced 
vegetation adapted to the environment of the study area and contributed to ecological 
improvement (Thieltges et al., 2006). On the other hand, the regulatory feedback of 
vegetation and water promoted soil restoration to a certain extent (Li et al., 2018). 
Similarly, the weakness and particularity of the soil will affect this feedback (Yang et al., 
2014). Therefore, the insignificant change in vegetation and the deterioration of the 
ecological environment indicate that the interaction mechanism of these two can contain 
degradation or positively affect secondary succession (Zhao et al., 2018).

Ecological effects evaluation of the CTSRB from the perspective of SM

Unconventional changes in SM are major factors that cause soil disturbance and erosion, 
and climatic factors (precipitation, temperature, and groundwater level) often lead to 
relative changes in SM, thereby affecting the carrying capacity of soil (Allman et al., 
2017). A lack of SM will eventually lead to a decline in the quality of soil and vegetation 
(Guo, 2021a). Therefore, the soil-carrying capacity can reflect the relationship between 
organisms and the environment.

In arid and semi-arid regions, it is difficult for vegetation on the periphery of irrigated 
areas to obtain groundwater; therefore, SM is mainly derived from precipitation (Guo, 
2021b). Due to limited precipitation, the balance between vegetation and SM determines 
the area’s ecological environment. The threshold of the soil’s ability to carry water in the 
periphery of irrigated areas determines the quality of the environment.

The regulation of the relationship between water and vegetation is not limited to SM 
but also impacts soil quality; that is, the environmental carrying capacity of soil. In 
Luvisol, Stagnic Luvisol, Gleysols, and Cambisols, SM and other factors affect the soil 
carbon emission capacity, which subsequently affects the organic carbon content 
in cultivated areas (Wang et al., 2015). In northern Finland (60 - 70 °N), changes in 
SM, frost, and snow in the winter can change the soil carrying capacity, especially in 
bare regions without tree cover (Kellomaki et al., 2010). The relationship between SM 
and groundwater can reflect the carrying capacity to a certain extent (Besser et al., 
2017). The depletion of local groundwater and the carrying capacity of soil has been 
greatly restricted, leading to soil degradation. To further increase revenue, farmers 
were no longer satisfied with the current harvest, and reclaiming farmland at will, so 
gradually formed a vicious cycle, which was “development of agriculture-consumption 
of soil carrying capacity-blind irrigation-soil degradation” (Aarnoudse et al., 2012; 
Han et al., 2019). The improvement of vegetation in different areas can promote 
ecological restoration to contain degradation (Hedl et al., 2017). Whether vegetation 
improvement can achieve a good ecological restoration effect depends on selecting 
appropriate vegetation populations and retaining vegetation after natural selection. 

In summary, the soil carrying capacity in irrigated areas in this study area decreased 
due to agricultural development. It is difficult for vegetation in non-irrigated areas to 
actively access groundwater, thus relying on precipitation to maintain the balance 
between vegetation and SM. Moreover, precipitation in the study area (arid and semi-arid) 
is limited, and there is a gap between soil water supply and demand (Ren et al., 2014). 
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The soil in the periphery of the irrigated areas was limited by an insufficient supply of 
SM, which reduced the soil quality, even leading to erosion or degradation. Therefore, 
to use soil sustainably and efficiently, it must be improved or repaired. Good ecological 
restoration projects can play a positive role in local development. Indeed, looking 
at the five years since the end of the CTSRB, the capacity to preserve moisture and 
water storage increased; starting from an insufficient supply of groundwater before 
2006, the soil carrying capacity increased throughout the project life. The project also 
showed its promoting effect through the stabilization of VC, demonstrating that the 
project improved the soil carrying capacity and indicating that the project promoted 
the ecological restoration of the entire region.

In addition, different scholars evaluated the ecological restoration effect of CTSRB 
from the perspectives of groundwater level (Hao et al., 2017), vegetation coverage 
(Youhao et al., 2007), desertification (Sun et al., 2006), and vegetation diversity 
(Wu et al., 2021), and proved that CTSRB played a positive role in the restoration of the 
Minqin ecological environment. This study took a different approach and interpreted the 
ecological restoration effect of the CTSRB from the perspective of SM. This approach 
constitutes not only an effective attempt to evaluate the effect of CTSRB ecological 
restoration but also provides evidence for the evaluation of the effect of ecological 
restoration projects in arid regions around the world.

Relationship between SM changes, groundwater level and vegetation 
restoration

Before 2006, the study area supported agricultural development, utilizing a large amount 
water resources, especially groundwater resources. This emphasis on economy rather 
than ecology resulted in a sharp decline in groundwater levels, obvious vegetation 
degradation, and increasingly serious eco-environmental problems. In our study, the SM 
of the 0.00-0.20 m soil layer showed a downward trend during pre-CTSRB, and the SM 
decline was greater in the 0.00-0.10 m layer than the 0.10-0.20 m layer. Studies have 
shown that the groundwater level (Hao et al., 2017) and vegetation (Wu et al., 2021) 
of the Minqin area during the CTSRB period was more recovered than the pre-CTSRB 
period. During CTSRB, compared with pre-CTSRB, SM of 0.00-0.10 m gradually decreased 
while the soil layer of 0.10-0.20 m gradually increased. We can infer that under the effects 
of CTSRB, ecological environment conditions such as groundwater level and vegetation 
improved in the Minqin basin, while soil moisture increased (Wu et al., 2010).

Zheng et al. (2021) found that during restoration efforts aiming to revert farmlands 
to forests and grasslands, the initial growth of vegetation corresponds to the sharp 
decrease and stable consumption of soil moisture. The amount of water needed for 
growth decreases and the soil moisture increases to a certain extent, which is similar 
to our findings of fluctuating water levels in the study area during the CTSRB-I and II 
periods. Rüdiger Bunk et al. (2017) found that the groundwater level in the study area 
rose in recent years, which can effectively reduce the vertical infiltration rate of water, 
and further curb the rapid infiltration of SM. The retention of this component of SM can 
promote vegetation growth and ecological restoration. Therefore, we believe that SM 
may not directly promote ecological restoration, but increases in SM can indirectly reflect 
improved ecological environments.

CONCLUSIONS
aSAVI was established by adjusting L and increasing the SWIR band by SAVI, and the 
LST was corrected by DEM. The improved TVDI model improves the inversion accuracy, 
and the model can predict the SM of 0.00-0.20m soil layer better (SM0.00-0.10 m = –6.11 × 
TVDI + 5.96; SM0.10-0.20 m = –6.47 × TVDI + 6.91). However, MSAVI was not sensitive to 
the performance of the study area.
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The mean value of SM (soil moisture) constantly decreased while fluctuating, and the 
fluctuation trends of the entire study area, irrigated region, and periphery of irrigated 
regions were all basically synchronous. Soil moisture decreased in most areas during 
pre-CTSRB (0.00-0.10 m: 97.72 %, 0.10-0.20 m: 87.74 %) → increased in individual areas 
during CTSRB I (0.00-0.10 m: 15.19 %, 0.10-0.20 m: 15.39 %) → increased in most areas 
in CTSRB II (0.00-0.10 m: 63.08 %, 0.10-0.20 m: 63.4 %) → the increased area shifted 
from the central and eastern part of the previous period to the central and western part 
during CTSRB-end (0.00-0.10 m: 61.84 %, 0.10-0.20 m: 61.94 %). The change trend in the 
0.10-0.20 m soil layer was larger than that in 0.00-0.10 m layer. The areas of increased 
SM in the past 22 years were 21.35 % at 0.00-0.10 m and 59.66 % at 0.10-0.20 m. There 
was a negative correlation between the mean θslope of SM, and the percentage of area 
where SM had fallen in different periods.

With the CTSRB implementation, the decline rate of SM in the study area gradually slowed 
down, while the area where SM content increased gradually expanded. Therefore, from 
the perspective of SM, CTSRB influenced ecological restoration in Minqin Basin.

Although we only provided the evaluation of a short period after the completion of 
the project, the shortcoming is that it is easy to generalize, but we also quantified the 
evaluation of ecological restoration with single data or auxiliary data. The next step is 
to conduct a continuous follow-up evaluation or add modeling and mechanism studies 
such as SM and salt vegetation interaction.
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