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Abstract – Land use/cover classification is one of the most important applications in remote sensing. However, 
mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the 
complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments 
related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of 
the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential 
role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands 
and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for 
high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual 
interpretation, but may not improve classification performance. In contrast, integration of optical and radar data 
did improve classification performance when the proper data fusion method was used. Among the classification 
algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good 
accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. 
However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods 
is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

Index terms: data fusion, multiple sensor data, nonparametric classifiers, texture.

Classificação de uso e cobertura da terra na  
Amazônia brasileira por meio de imagens de satélite

Resumo – A classificação de uso e cobertura da terra é uma das principais aplicações do sensoriamento remoto. 
Contudo, a precisão no mapeamento da distribuição espacial do uso/cobertura da terra é um desafio, principalmente 
em regiões tropicais úmidas, em razão do complexo ambiente biofísico e das limitações dos dados de sensoriamento 
remoto per se. Este trabalho revisa experimentos relacionados à classificação do uso/cobertura da terra na Amazônia 
brasileira, durante uma década. A partir de análise compreensiva dos resultados de classificação, conclui-se que 
a informação espacial, em dados de sensoriamento remoto, tem papel fundamental na melhoria da classificação 
de uso/cobertura da terra. A incorporação de imagens de textura, em bandas multiespectrais, e o uso de método 
baseado em segmentação são formas importantes de melhorar a classificação, especialmente para imagens de alta 
resolução espacial. A fusão de dados de imagens de resolução múltipla dentro de dados do sensor ótico é vital 
para a interpretação visual, mas pode não melhorar o desempenho da classificação. Em contraste, a integração de 
dados ópticos e de radar melhorou o desempenho da classificação, quando o método adequado de fusão de dados 
foi utilizado. Entre os algoritmos de classificação disponíveis, o classificador de máxima verossimilhança ainda é 
importante para se obter precisão razoável, mas algoritmos não paramétricos, como a análise por árvore de decisão, 
podem promover melhores resultados. Porém, algoritmos não paramétricos geralmente demandam mais tempo para 
obtenção da parametrização otimizada. O uso adequado de métodos baseados em hierarquia é fundamental para a 
precisão na classificação de uso/cobertura da terra, sobretudo em dados de sensoriamento remoto antigos.

Termos para indexação: fusão de dados, dados de sensor múltiplo, classificadores não paramétricos, textura.

Introduction

The Brazilian Amazon is the largest continuous 
primary forest in the world and has special importance 
for biodiversity, global nutrient cycles, and climate 

change. Since the 1970s deforestation has converted 
a large area of primary forest and cerrado (Brazilian 
savanna‑like vegetation) into agriculture, pasture, 
secondary succession, and agroforestry (Cardille & 
Foley, 2003; Carreiras et al., 2006; Sano et al., 2010). 
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Therefore, monitoring of deforestation in the Brazilian 
Amazon has received great attention in the past two 
decades in programs such as Prodes, Program for the 
Estimation of Deforestation in the Brazilian Amazon 
(Brasil, 2012a), and DETER, Real Time Deforestation 
Monitoring System (Brasil, 2012b). Considering that the 
areas of secondary forest are vital as a carbon sink and 
the pressure from agricultural expansion, the mapping and 
monitoring of secondary forest and agricultural lands has 
grown in significance (Lu, 2005; Lobell & Asner, 2004; 
Galford et al., 2008; Wardlow & Egbert, 2008). However, 
the complex biophysical environment and the existence 
of highly diverse species make it challenging to obtain 
accurate land use/cover classifications with remotely 
sensed data.
Mapping of land use/cover distribution is one of the 

most important applications in remote sensing, and 
research on improving land use/cover classification has 
long been an active research topic. Significant progress has 
been achieved, including the development of: advanced 
classification algorithms, such as neural network, decision 
tree, support vector machine, object‑based algorithms, 
sub‑pixel based algorithms, and contextual algorithms (Tso 
& Mather, 2001; Franklin & Wulder, 2002; Frery et al., 
2007; Lu & Weng, 2007; Rogan et al., 2008; Blaschke, 
2010); techniques that incorporate multi‑source data in a 
classification procedure, such as the integration of different 
spatial resolution or sensor images (Pohl & Van Genderen, 
1998; Ehlers et al., 2010; Zhang, 2010) and the integration 
of remote sensing and ancillary data (Harris & Ventura, 
1995; Li, 2010); and techniques for modifying classified 
images by using expert knowledge (Stefanov et  al., 
2001; Hodgson et  al., 2003) or for combining multiple 
classification results to generate a new one (Ceamanos 
et al., 2010; Chitroub, 2010; Zhu, 2010).
Lu & Weng (2007) reviewed methods and potential 

techniques to improve classification results. For land use/
cover classification in a specific study area, two critical 
steps are: to select suitable variables from remotely sensed 
and ancillary data; and to select a suitable algorithm for 
classification. Although much research on it has been done, 
it is still unclear which classification procedure is suitable 
for a specific study area, due to different classification 
systems used in previous research, different kinds of 
remotely sensed data and derived variables, and different 
classification algorithms. This paper will not provide a 
detailed overview of land use/cover classification methods, 
but attempts to provide a better understanding of land 

use/cover classification in the moist tropical regions of 
the Brazilian Amazon through a comprehensive analysis 
of our previous experiments (Lu, 2005; Lu et al., 2003a, 
2003b, 2004a, 2004b, 2007, 2008b, 2010, 2011b, 2012; 
Li et al., 2011, 2012). Some specific issues for improving 
classification performance will also be discussed. The 
structure of this review is as follows: brief description of 
the study areas and datasets used in the research; summary 
of land use/cover classification by incorporating spatial 
information into multispectral features; overview of multi-
sensor/multi‑resolution data fusion in improving land use/
cover classification; comparative analysis of different 
classification algorithms; description of a hierarchical‑ 
based procedure suitable for historical remote sensing 
image classification; and conclusions and discussion.

Study areas and datasets used

Three study areas, located in the Brazilian Legal 
Amazon, were selected for this research: Altamira, in the 
state of Pará; Machadinho d’Oeste, in the state of Rondônia; 
and Lucas do Rio Verde, in the state of Mato Grosso 
(Figure  1). Altamira is located along the Transamazon 
highway (BR‑230), in the state of Pará, in northern Brazil. 
The dominant native types of vegetation are mature 
moist forest and liana forest. Deforestation, since the 
early 1970s, has led to a complex landscape consisting of 
different succession stages, pasture, and agricultural lands 
(Moran et al., 1994; Moran & Brondizio, 1998; Li et al., 
2011; Lu et al., 2011b). Machadinho d’Oeste is located in 
northeastern Rondônia, near the borders with the states of 
Amazonas and Mato Grosso. Settlement began in the early 
1980s and since then land‑use/cover trajectories, following 
deforestation, have put in place a dynamic process of forest 
fragmentation (Batistella et al., 2003; Lu, 2005; Lu et al., 
2008a). Lucas do Rio Verde, in the state of Mato Grosso, 
was established in 1982 and has a relatively short history and 
small urban extent, but has experienced rapid urbanization 
and deforestation (Lu et al., 2011b). The major vegetation 
types include primary forest, cerrado, and limited areas 
of regenerating vegetation that appeared in recent years. 
Deforestation began in the late 1970s with the construction 
of the BR‑163 highway and expanded, especially after the 
establishment of the municipality of Lucas do Rio Verde 
(Lu et al., 2012).
Different sensor data were used in this research, and all 

the satellite images were geometrically rectified into the 
universal transverse mercator coordinate system. Landsat 
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and “Satellite Pour l’Observation de la Terre” (Spot) images 
were atmospherically calibrated into surface reflectance 
with the improved dark‑object subtraction method (Lu 
et  al., 2002, 2008b; Chander et  al., 2009). Radar data, 
including Alos Palsar L‑band and Radarsat C‑band, were 
used, and speckle reduction was implemented by using 
filtering methods (Lu et  al., 2007, 2011b). High spatial 
resolution images, such as Ikonos and QuickBird, were 
mainly used to support the selection of samples for land 
use/cover classification procedures.

In the Altamira study area, Landsat 5 Thematic Mapper 
(TM) imagery (acquired on July 2, 2008), Alos Palsar FBD 
(fine beam double polarization) Level 1.5 product with 
HH and HV polarization options (ground range, unsigned 
16‑bit integral number, 12.5 m pixel spacing) (Eorc, 2012) 
(acquired on July 2, 2009), QuickBird imagery (acquired in 
2008), and field survey data (collected in 2009) were used. 
The Alos Palsar L‑band HH and HV images were resampled 
to a pixel size of 10x10  m with the nearest‑neighbor 
sampling method during image‑to‑image registration. For 
a more detailed description of image preprocessing for 

Figure 1. Three study areas in the Brazilian Amazon – Altamira, in the state of Pará; Machadinho D’Oeste, in the state of 
Rondônia; and Lucas do Rio Verde, in the state of Mato Grosso.
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Landsat TM and Palsar L‑band data in the Altamira study 
area see Lu et al. (2011b).
For the Machadinho d’Oeste study area, fieldwork was 

conducted in 1998/1999 and in 2002/2003. Satellite images – 
Ikonos (May 28, 2001), Radarsat‑1 C‑band HH (September 
21, 2001), Spot HRG (high resolution geometrical) (June 
26, 2003), Landsat Enhanced Thematic Mapper Plus 
(ETM) (August 11, 2001), and Landsat TM (July 8, 2003) 
were used. The Spot HRG image has five bands, covering 
one panchromatic band with 5 m spatial resolution, two 
visible (green and red) bands, one near infrared (NIR) band 
with 10 m spatial resolution, and one shortwave infrared 
(SWIR) band with 20 m spatial resolution. The Radarsat‑1 
C‑band HH image was resampled to a pixel size of 15x15 m 
during the image‑to‑image registration. More details about 
image preprocessing for the Machadinho d’Oeste study 
area are provided in Lu et al. (2004b, 2007, 2008b).
For the Lucas do Rio Verde study area, QuickBird images 

(acquired in 2004 and 2008) were used in the urban‑rural 
landscape. QuickBird imagery has four multispectral 
bands (blue, green, red, and near‑infrared), with spatial 
resolution of 2.4 m, and one panchromatic band (visible 
wavelength) with spatial resolution of 0.6 m. In order to 
make full use of multispectral and panchromatic features in 
the QuickBird image, a wavelet‑based data fusion method 
was used to generate new multispectral data with improved 
spatial resolution of 0.6 m (Lu et al., 2010). For the county 
scale, three Landsat 5 TM images (acquired on September 
17, 2002; July 17, 2005; and May 22, 2008) were used 
for land use/cover classification. More details on image 
preprocessing for the Lucas do Rio Verde study area are 
provided in Lu et al. (2010, 2011b).

Land use/cover classification – from spectral 
signature to the combination of spectral  

and spatial features
Remote sensing data includes spectral, spatial, 

radiometric, and temporal resolution characteristics, as well 
as variations in polarization and angle (Althausen, 2002; 
Lefsky & Cohen, 2003). Most remote sensing applications, 
especially using medium and coarse spatial resolution 
images, are mainly based on spectral signatures for land 
use/cover classification. As  spatial resolution increases, 
the effective use of spatial information becomes a more 
important research topic. The common methods for using 
spatial information are textures and segmentation, which 
are the foci of this section on the roles of spatial information 
in improving land use/cover classification.

Texture often refers to the pattern of variation in intensity 
in an image. Many texture measures have been developed 
and used for land use/cover classification (Haralick et al., 
1973; Herold et al., 2003; Yu et al., 2006; Lu et al., 2010; Li 
et al., 2011). Of the many texture measures, the grey‑level 
co‑occurrence matrix (GLCM) has been extensively used 
for land‑cover classification (Marceau et al., 1990; Lu et al., 
2008b, 2011b). In this study, GLCM‑based texture measures 
(e.g., variance, homogeneity, contrast, dissimilarity, 
entropy, and second moment) with different window sizes 
(e.g., 5x5, 9x9, 15x15, 19x19, 25x25, and 31x31) were 
applied to different sensor data, such as Landsat TM, Spot 
Panchromatic, Palsar L‑band, and QuickBird images (Lu 
et al., 2007, 2008b, 2010; Li et al., 2011, 2012). Because 
many textural images are calculated with different texture 
measures, window sizes, and image bands, it is critical 
to identify the ones suitable for a given study. Therefore, 
separability analysis with transformed divergence, based 
on training sample plots of different land cover classes, 
is used to select potential single textural images and a 
combination of two or more textural images. When two or 
more textural images are selected, the correlation coefficient 
between textural images and the standard deviation of each 
textural image are used to identify the best combination, as 
described in Li et al. (2011). The selected textural images 
are then incorporated as extra bands into multispectral or 
radiometric images for land use/cover classification.
Another common method to use spatial information 

is based on image segmentation, i.e., partitioning of 
raster images into spatially continuous, disjointed and 
homogeneous regions, called segments, based on pixel 
values and locations (Blaschke et  al., 2004). Pixels that 
have similar spectral values, which are spatially connected, 
are grouped in a single segment. A critical step is to develop 
a segmentation image, which is often based on pixel, edge, 
and region methods (Blaschke et al., 2004; Yu et al., 2006). 
In the land cover classification using Landsat TM and 
Palsar data in Altamira, the segmentation‑based method 
included the following steps: image segmentation – a 
moving window assesses spectral similarity across space 
and over all input bands, and segments are defined based 
on user‑specified similarity thresholds; creation of training 
sites and signature classes based on image segments; 
and classification of the segments (Li et al., 2011). In the 
study with QuickBird imagery in Lucas do Rio Verde, 
the major steps were: producing a segmentation image 
from the QuickBird multispectral one and converting the 
segmentation image into a vector format image, removing 
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the segments with small areas; extracting the mean spectral 
value of each segment for each band, and conducting 
supervised classification for the mean‑spectral value image 
(Lu et al., 2010).

Role of spatial information in land use/cover 
classification in Altamira
In the Altamira study area, two textural images 

developed with dissimilarity texture measures on Landsat 

red and near‑infrared wavelength images and a window 
size of 9x9 pixels were used. Details are described in Li 
et al. (2011). Compared with spectral signatures, textural 
images have significantly different features in reflecting 
land use/cover types, as illustrated in Figure 2. Therefore, 
the incorporation of textural images and spectral 
signatures has the potential to improve land use/cover 
classification. In this study, two textural images were 
incorporated as extra bands into TM multispectral 
images for land use/cover classification with the 

Figure 2. Comparison of Landsat TM spectral and textural images in the Altamira study area: A, near infrared image  
(band 4); B, shortwave infrared image (band 5); C and D, two textural images based on dissimilarity on red wavelength  
(band 2) and near infrared (band 4) with a window size of 9x9 pixels.



1190 D. Lu et al.

Pesq. agropec. bras., Brasília, v.47, n.9, p.1185-1208, set. 2012

maximum likelihood classifier (MLC). For comparison, 
the  MLC was also used to classify Landsat TM 
multispectral bands into a thematic map. Meanwhile, 
a segmentation‑based classification was conducted for 
the TM multispectral bands (Li et  al., 2011). During 
image classification, a total of 254 sample plots (over 
3,800 pixels), covering the 11 land use/cover types (i.e., 
three primary forest types, three secondary succession 
stages, agro‑pasture, and four other classes) in which 
each land cover type had 15–30 plots, were used as 
training samples. After classification, a total of 338 test 
sample plots from the field survey and the QuickBird 
image were used for accuracy assessment. The error 
matrix approach was used to evaluate the classification 
accuracy. Producer’s and user’s accuracy for each 
land cover type, as well as overall accuracy and kappa 
coefficient for each classified image, were calculated 
from the error matrix (Congalton, 1991; Foody, 2002; 
Congalton & Green, 2008).
The accuracy assessment results for the Altamira 

study area are summarized in Table 1. In comparison 
with the classification results based on TM multispectral 
bands, the incorporation of textural images into 
multispectral bands slightly improved overall accuracy 

by approximately 3%, which improved upland and 
flooded forests, secondary succession stages, and 
non‑vegetated land cover classes. Even though the 
segmentation‑based method did not significantly 
improve overall accuracy in this study, it did improve 
accuracy for some land cover types, such as upland and 
flooded forests. Because the large spectral variation 
within the same land cover class is one of factors that 
results in land use/cover misclassification, the use of 
textures or segments in this study has proven valuable 
for improving forest classification due to the effects of 
complex forest stand structures.
In another experiment in Altamira for a relatively 

small area with Alos Palsar L‑band HH and HV 
images, four textural images were selected: two textural 
images developed from a L‑band HH image with 
second moment and a window size of 25x25 pixels, 
and with contrast texture measure and a window size 
of 31x31 pixels; and two textural images developed 
from a L‑band HV image with contrast and a window 
size of 25x25 pixels, and with second moment texture 
measure and a window size of 19x19 pixels (Li et al., 
2012). The selected textural images, compared with the 
original HH or HV image (Figure 3), have considerably 

Table 1. Comparison of accuracy assessment results based on different scenarios from the 2008 Landsat TM and 2009 Alos 
Palsar L-band images in Altamira, in the state of Pará, Brazil(1).

Land 2008 Landsat TM data 2009 Alos Palsar data

cover MLC Segmentation based MLC Segmentation based method

types Multispectral (MS) bands MS & textures method on MS bands HH & HV HH & HV & textures HH & HV & textures

PA UA PA UA PA UA PA UA PA UA PA UA

Upland forest 37.0 95.2 66.7 78.3 53.7 78.4 27.3 30.0 51.5 39.5 33.3 44.0

Flooding forest 93.8 50.0 100.0 66.7 93.8 75.0 80.0 54.6 73.3 61.1 80.0 63.2

Liana forest 95.5 66.7 81.8 66.7 95.5 68.9  -  - 25.0 15.8 58.3 21.2

SS1 84.0 61.8 92.0 57.5 72.0 58.1 31.6 46.2 42.1 50.0 42.1 53.3

SS2 67.9 90.5 78.6 95.7 67.9 82.6 54.2 33.3 66.7 64.0 62.5 68.2

SS3 89.7 74.3 79.3 85.2 72.4 63.6 23.8 27.8 23.8 38.5 28.6 35.3

Agro pasture 83.3 94.8 75.8 96.2 81.8 91.5 88.5 53.5 76.9 62.5 88.5 67.7

Water 68.2 100.0 72.7 100.0 77.3 100.0 95.8 100.0 83.3 95.2 91.7 88.0

Wetland 53.9 100.0 69.2 100.0 53.9 100.0 26.7 50.0 33.3 55.6 20.0 75.0

Urban area 100.0 71.1 100.0 79.4 100.0 77.1 30.4 77.8 60.9 87.5 60.9 77.8

Burn scars 100.0 87.5 92.9 100.0 100.0 93.3 - - - - - -

Overall accuracy 77.2 80.2 77.8 48.1 56.1 57.1

Kappa 0.75 0.78 0.75 0.42 0.51 0.52

(1)There are no burn scars in the Palsar L band data because the study area based on Palsar data is much smaller than the one based on the Landsat TM image. PA and UA, producer’s 
and user’s accuracy, respectively; mLC, maximum likelihood classifier. SS1, SS2 and SS3, initial, intermediate, and advanced succession vegetation, respectively.
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different characteristics in reflecting land cover types. 
When compared with Landsat TM multispectral 
imagery, Palsar data, either HH and HV images or the 
derived textural images, have relatively poor visual 
interpretation effects, making it difficult to use them 
for land use/cover classification.
Based on the field survey data and the 2008 

QuickBird image, a total of 220 sample plots (over 
3,500 pixels), covering the ten land cover types (no burn 
scars, compared with the classification with Landsat 
TM image), each consisting of 15–30 plots, were used 
for image classification. The MLC was used to classify 
Palsar L‑band HH and HV images, and to combined 
dataset of the HH and HV and four textural images 
into thematic maps. The segmentation‑based method 
was also used to classify the combination of HH, HV, 
and textural images into a thematic map. In order to 
compare the classification results, a total of 212 test 
sample plots were independently selected from the field 
survey and from the 2008 QuickBird image, and were 
used for accuracy assessment of each classified image, 
with 12–33 plots for each land cover. Classification 
evaluation results are also summarized in Table 1, in 
comparison with the accuracy assessment results of the 
Landsat TM data. Overall, the classification accuracy 
of the Palsar L‑band data was much lower than that 
of the Landsat TM image. Palsar L‑band HH and HV 

images made it especially difficult to separate different 
vegetation types. Incorporation of textural images 
into Palsar L‑band HH and HV images improved 
overall classification accuracy by approximately 8%. 
Almost all land cover types enhanced classification 
accuracies to a certain degree, but their accuracies 
were still much lower than those of the Landsat TM 
image. Figure 4 compares land use/cover classification 
results of the Landsat multispectral image to those of 
the combination of the Palsar HH, HV, and textural 
images. To clearly illustrate the major land use/
cover distribution, upland, flooding and liana forests 
were merged as forest; and initial, intermediate, and 
advanced succession stages were merged as secondary 
succession (SS). This indicates that urban, forest, and 
succession vegetation cannot be effectively separated 
from the Palsar L‑band due to their rough surfaces, 
resulting in similar high amplitude values (Figure 3). 
However, the segmentation‑based classification 
method, which considered the combination of HH, HV 
and corresponding textural images, slightly improved 
overall accuracy by approximately 1%, when compared 
with the result obtained by using the MLC on the same 
data source. The segmentation‑based method further 
improved the accuracies of flooded forest, liana forest, 
and agro‑pasture.

Figure 3. Comparison of Alos Palsar L band HH, HV, and derived textural images in the Altamira study area. A, B and C, L 
band HH, HH derived SM25, and CON31 textural images; D, E and F, L band HV, HV derived CON25, and SM19 textural 
images. SM25 and SM19 represent second moment with a window size of 25x25 pixels and of 19x19 pixels; CON31 and 
CON25 represent contrast with a window size of 31x31 pixels and of 25x25 pixels.
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Role of spatial information in land use/cover 
classification in Machadinho d’Oeste
In the Machadinho d’Oeste study area, the 2001 

Landsat ETM image was used to conduct land use/
cover classification, consisting of 12 land use/cover 
classes. Since the ETM panchromatic band has higher 
spatial resolution (15 m) than ETM multispectral 
bands (30 m), three textural images with mean 
texture measure and a window size of 15x15 pixels, 
variance and second moment texture measures with 
a window size of 21x21 pixels, were selected, based 
on separability analysis (Lu et  al., 2007). The MLC 
was used to classify the ETM multispectral image 
and the combination of ETM multispectral bands and 
textural images, based on the same training samples. 
Approximately 12–20 sample plots were selected for 
each class with a polygon size of 9 to 40 pixels for each 
plot, depending on the homogeneity of the land‑cover 
patch. After classification, a total of 345 sample plots 
from the field survey in 1998/1999 and in 2002/2003 
were used for accuracy assessment with the error 
matrix approach.
In another experiment in this study area with the 2003 

Spot image for vegetation classification, two textural 
images were developed from the Spot panchromatic 

image by using entropy texture measure with a 
window size of 9x9 pixels and by using dissimilarity 
with a window size of 15x15 pixels (Lu et al., 2008b). 
A  classification system with nine vegetation classes 
was designed (Lu et al., 2008b). Approximately 12–20 
sample plots for each vegetation class were selected as 
training samples. The MLC was then used to conduct 
vegetation classification based on Spot multispectral 
bands and on the combination of Spot multispectral 
and textural images separately. A  total of 306 test 
samples from the field survey in 2002/2003 and the 
2001 Ikonos image were used for accuracy assessment 
with the error matrix approach.
The accuracy assessment results based on the 

2001 Landsat ETM and the 2003 Spot images for 
the Machadinho d’Oeste study area are summarized 
in Table  2. For the 2001 ETM image, incorporation 
of textural images improved overall accuracy by 
approximately 1.8% for 12 land use/cover types, 
mainly for upland forest, flooding forest, and SS3. For 
the 2003 Spot image, incorporation of textural images 
improved overall accuracy by approximately 5.5% for 
nine vegetation types, particularly for upland open or 
dense forests, SS2, degraded and cultivated pastures. In 
comparison with ETM and Spot data, the textural images 

Figure 4. Comparison of classification results for the Altamira study area from different datasets: A, original TM image; B, 
Palsar L band data; C, TM multispectral and Palsar L band HH fusion image, with the wavelet merging technique.
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from higher spatial resolution images (Spot panchromatic 
band with 5 m vs. ETM panchromatic band with 15 m) 
play a more important role in improving vegetation 
classification performance. Both Landsat ETM and Spot 
HRG data have relatively poor classification performance 
for secondary successional stages (i.e., SS1, SS2 and SS3) 
(Table 2). The main reason is that the successional stages 
in this study area were relatively young (less than 13 
years) without clear boundaries between them (Lu, 2005; 
Lu et al., 2008b).

Role of spatial information in land use/cover 
classification in Lucas do Rio Verde
The research carried out in Altamira and Machadinho 

d’Oeste is based on the use of medium spatial resolution 
images – Landsat TM/ETM, Spot, and Alos Palsar. However, 
the following case study is based on the examination of 
a very high spatial resolution image for land use/cover 
classification in a complex urban‑rural landscape in Lucas 
do Rio Verde. A QuickBird image acquired on June 20, 2008 
was used, and the wavelet‑merging technique was adopted 
to integrate QuickBird multispectral and panchromatic 
data into a new multispectral image with spatial resolution 
of 0.6  m (Lu et  al., 2010). Two textural images were 

developed with mean and dissimilarity texture measures 
with a window size of 9x9 pixels on the fused QuickBird 
red‑band image (Lu et al., 2010). In the urban landscape, 
different impervious surface areas, such as building roofs, 
roads, and parking lots, have different spectral signatures 
and are confused with other land covers, including bare 
soils, water, wetland, and crop residues, due to their similar 
spectral signatures (Lu et al., 2010). Therefore, different 
impervious surface training sample classes were selected, 
representing low‑, medium‑, and high‑spectral‑value 
impervious surfaces, dirty roads, parking lots, and 
shadowed impervious surface. Other land covers included 
upland forest, riverine forest, agroforestry, grassland/
pasture, bare soils, shadows, cropped fields, water, and 
non‑forest wetlands. At least 15 sample plots for each 
training class were selected, based on visual interpretation 
on the QuickBird false color composite. The MLC was 
used to classify the fused QuickBird multispectral bands 
and the combination of multispectral and textural images 
into thematic maps. The segmentation‑based method was 
also used to classify the fused QuickBird multispectral 
image. Final classification results were merged into seven 
classes: forest, impervious surface area, pasture/grass, 
water, wetland, bare soils, and crop fields. A total of 300 

Table 2. Comparison of accuracy assessment results with maximum likelihood classification based on the 2001 Landsat ETM 
and the 2003 Spot HRG data, in Machadinho d’Oeste, in the state of Rondônia, Brazil(1).

Land cover 2001 ETM MS bands ETM MS & Pan textures 2003 Spot MS bands Spot MS & Pan textures

PA UA PA UA PA UA PA UA

Upland forest(2) 73.1 95.0 80.8 91.3 62.5 92.6 67.5 93.1

Upland open forest  -  -  -  - 58.3 58.3 100.0 75.0

Flooding forest 84.6 64.7 92.3 75.0 75.0 42.9 75.0 46.2

SS3 46.2 18.2 84.6 27.5 66.7 30.0 66.7 35.3

SS2 21.4 45.0 21.4 52.9 47.2 38.6 61.1 43.1

SS1 64.6 63.6 61.5 63.5 62.0 63.3 54.0 62.8

Degraded pasture 48.7 66.7 48.7 58.1 63.2 49.0 71.1 50.9

Cultivated pasture 90.9 94.3 96.4 94.6 66.0 86.8 84.0 95.5

Agroforestry 62.5 37.0 46.9 40.5 50.8 76.2 46.0 85.3

Coffee plantation 66.1 73.6 72.9 71.7 - -  - - 

Imperviousness/bare soils 90.9 100.0 90.9 100.0 -  -  -  -

Water 100.0 84.6 100.0 78.6 -  -  -  -

Non vegetated wetland 83.3 100.0 75.0 100.0 - -  - - 

Overall accuracy 65.2 67.0 59.2 64.7

Kappa 0.61 0.63 0.53 0.59
(1)PA and UA, producer’s and user’s accuracy, respectively; MS and Pan, multispectral bands and panchromatic band, respectively. SS1, SS2 and SS3, initial, 
intermediate, and advanced succession vegetation, respectively. (2)Upland dense forest for 2003 Spot MS bands and Spot MS and Pan textures.
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test samples for each classification result were randomly 
selected for accuracy assessment with the error matrix 
approach.
Accuracy assessment results among different 

classification methods are summarized in Table  3. 
Compared with the classification results based on 
multispectral bands, incorporation of textural images and 
use of the segmentation‑based method improved overall 
accuracy by 11.6% and 12.6%, respectively. Use of 
spatial information based on QuickBird image improved 
classification accuracy almost for every land cover 
type, which is especially valuable for forest, impervious 
surface, wetland, bare soils, and crop fields. Use of spatial 
information in the urban landscape reduced spectral 
variation within the same land cover classes, as well as 
the noise problem, which is common in per‑pixel based 
classification methods. Crop fields were misclassified 
as urban or pasture/grass by the  MLC (Figure  5), 
but this problem was significantly reduced when the 
segmentation‑based classification method was used. 
This case study indicates that the proper use of spatial 
information is fundamental for improving land use/cover 
classification when very high spatial resolution images are 
used.

A summary of spatial information in land use/cover 
classification
The comparison between Tables 1, 2, and 3 shows 

that spatial information becomes more crucial as 
spatial resolution increases. When spatial resolution is 
around 15–30 m, as in Landsat TM and ETM images, 
overall accuracy by incorporating textural images 

into multispectral data was only slightly improved by 
1.8–3%. When spatial resolution increases to 5–10 m, 
as in Spot HRG and Alos Palsar L‑band data, overall 
accuracy improved by 5–8%. In particular, the role 
of textures from radar data is more important than 
those from optical sensor data in improving land use/
cover classification accuracy. When spatial resolution 
increases as high as 0.6 m in the fused QuickBird image, 
the incorporation of textural images increased overall 
accuracy by 11.6% in an urban‑rural landscape. The 
comparison between the segmentation‑based method 
and the MLC indicates that the former is especially 
valuable for very high spatial resolution images, such 
as QuickBird, but much less effective for medium 
spatial resolution images, such as Landsat. This 
research implies the importance of incorporating spatial 
information into multispectral bands to improve land 
use/cover classification. As spatial resolution increases, 
the spectral variation within the same land cover is 
enlarged. Use of texture measures or segmentation can 
reduce spectral variation and improve classification 
accuracy.

Land use/cover classification – from 
individual sensor data to the integration of 

multi‑resolution/multi-sensor data

Data fusion is often used for the integration of 
multi-sensor or multi‑resolution data to enhance 
visual interpretation and to improve the performance 
of quantitative analysis (Klonus & Ehlers, 2007; 
Lu & Weng, 2007). Many data fusion methods, 

Table 3. Comparison of accuracy assessment results from the 2008 QuickBird image in Lucas do Rio Verde, in the state of 
Mato Grosso, Brazil(1).

Land cover Maximum likelihood classifier Segmentation-based

Multispectral (MS) image Combination of MS & texture method on MS image

PA UA PA UA PA UA

Forest 92.5 71.0 95.1 89.2 90.6 90.3

Imperviousness 95.1 76.5 90.9 85.1 87.8 92.3

Pasture/grass 75.0 62.3 74.5 77.8 75.0 71.7

Water 71.0 100.0 80.0 100.0 96.8 100.0

Wetland 31.0 52.9 88.9 72.7 100.0 82.9

Bare soils 69.7 82.1 87.1 93.1 93.9 86.1

Crop fields 75.4 86.7 89.9 91.2 84.1 95.1

Overall accuracy 75.7 87.3 88.3

Kappa 0.71 0.85 0.86
(1)PA and UA, producer’s and user’s accuracy, respectively.



Land use/cover classification in the Brazilian Amazon 1195

Pesq. agropec. bras., Brasília, v.47, n.9, p.1185-1208, set. 2012

such as principal component analysis (PCA), the 
wavelet‑merging technique, intensity‑hue‑saturation, 
and Ehlers fusion, have been developed to integrate 
spectral and spatial information (Pohl & Van Genderen, 
1998; Klonus & Ehlers, 2007; Dong et  al., 2009; 
Ceamanos et  al., 2010; Ehlers et  al., 2010; Zhang, 
2010). The major methods have been reviewed by 
Pohl & Van Genderen (1998) and Zhang (2010). Of 
the many fusion techniques, wavelet‑based merging 
has been regarded as a valuable method in improving 
land use/cover classification (Lu et al., 2007, 2008b), 
and therefore, it is used in this research.
In the wavelet‑based method, an image can be 

decomposed into high‑ and low‑frequency components. 
The low‑frequency component represents the lower 
spatial resolution image and the high‑frequency 
one represents the higher spatial resolution image, 
containing greater spatial details. In general, the high 
spatial resolution image is a single band, such as the 
Palsar L‑band, Radarsat C‑band, Landsat ETM and 

Spot panchromatic band. The low spatial resolution 
image is from a multispectral one, such as the Landsat 
TM/ETM or Spot multispectral images used. Since 
the substitution of the low spatial resolution image 
is done by using multispectral data, it is necessary to 
select a single image from the multispectral image to 
replace the low‑frequency image from the wavelet 
transform. Therefore, PCA is often used to convert 
the multispectral bands to a new dataset, and the first 
component (PC1) from the multispectral bands is used 
to replace the low‑frequency image, because PC1 
contains most of the information. The inverse wavelet 
transform is then used to convert the replaced dataset 
into a new multispectral one, which incorporates both 
multispectral and panchromatic or radar information, 
with improved spatial resolution (Lu et  al., 2011b). 
The wavelet theory has been discussed in detail in the 
literature (Chibani, 2006; Amolins et al., 2007; Hong 
& Zhang, 2008).

Figure 5. Comparison of classified images for the Lucas do Rio Verde study area based on the 2008 QuickBird image by using 
the: A, maximum likelihood classifier; and B, segmentation based method.
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Landsat TM and radar data fusion in Altamira
In the relatively small study area in Altamira, 

the 2008 Landsat TM multispectral and the Palsar 
L‑band HH images were used to generate a new fused 
multispectral image with spatial resolution of 15  m 
by the wavelet‑merging technique (Lu et al., 2011b). 
The same training and test samples, as described in 
section 3.1 for Palsar data classification, were used. 
The MLC was then used to classify the fused and the 
TM multispectral images into thematic maps with a 
classification system of ten land use/cover classes. The 
classification result based on the TM multispectral and 
Palsar L‑band HH data fusion was illustrated in Figure 4. 
Accuracy assessment results indicate that data fusion 
with the wavelet‑merging technique improved overall 
accuracy by approximately 4.8% (Table 4). Data fusion 
was especially valuable for improving the accuracy 
of successional vegetation classes, upland and liana 
forests, and agro‑pasture. Since the long wavelength 
radar data can penetrate the forest canopy into a certain 
depth to capture more information about understory and 
non‑photosynthetic vegetation (e.g., branch and stem) 
(Kasischke et al., 1997), incorporation of radar L‑band 
data into multispectral image may increase spectral 

information, improving spatial resolution (from 30 m 
in TM multispectral image to 15 m in fusion image) 
and classification performance.

Multi-sensor/multi‑resolution data fusion in 
Machadinho d’Oeste
In the Machadinho d’Oeste study area, a 2001 Landsat 

ETM and a Radarsat‑1 C‑band HH imagery were used for 
land use/cover classification (Lu et al., 2007). Because 
the Landsat ETM image has a panchromatic band with 
15  m spatial resolution, the wavelet‑based merging 
technique was used to merge the ETM multispectral 
bands and the panchromatic band, as well as to merge 
ETM multispectral bands and the Radarsat‑1 C‑band 
HH image into new datasets with spatial resolution of 15 
m. Approximately 12–20 sample plots were selected for 
each class with a polygon size of 9 to 40 pixels for each 
plot, depending on the homogeneity of the land‑cover 
patch. The MLC was then used to separately classify 
the fused images and the ETM multispectral image into 
thematic maps with a classification system of 12 land 
use/cover classes. After classification, a total of 345 
sample plots were used for accuracy assessment with 
the error matrix approach.
Accuracy assessment results for three Landsat 

ETM‑based data scenarios are summarized in Table 5. 
In comparison with Table 4, where data fusion of TM 
multispectral and Palsar L‑band data improved overall 
classification accuracy by 4.8%, the results in Table 5 
indicate that data fusion based on ETM multispectral 
bands and the panchromatic band or Radarsat‑1 C‑band 
data slightly reduced classification accuracy. When 
compared to the results from the ETM multispectral 
image, the ETM multispectral and panchromatic 
data fusion reduced overall accuracy by 4.3%. Most 
of the land cover types, except for SS3, had reduced 
classification accuracies. However, although the ETM 
multispectral and Radarsat C‑band HH data fusion 
slightly reduced overall accuracy by 0.6%, this fusion 
image did improve classification accuracies for upland 
forest, lowland forest, and SS3 classes, implying that 
incorporation of radar information into multispectral 
bands is valuable to improve vegetation classes 
having complex forest stand structure. Because the 
ETM panchromatic band and the multispectral bands 
have similar spectral features, the data fusion of ETM 
multispectral and panchromatic data cannot increase the 
spectral information. The improved spatial resolution 

Table 4. Comparison of accuracy assessment results with 
maximum likelihood classification from the 2008 Landsat 
TM image and the fusion image based on TM and Palsar L 
band HH images in Altamira, in the state of Pará, Brazil(1).

Land cover TM multispectral 
(MS) bands

Fusion of TM MS &  
Palsar L-HH

PA UA PA UA

Upland forest 69.7 88.5 75.8 89.3

Flooding forest 93.3 73.7 93.3 70.0

Liana forest 83.3 71.4 91.7 84.6

SS1 57.9 57.9 79.0 71.4

SS2 87.5 75.0 87.5 91.3

SS3 85.7 85.7 90.5 86.4

Agro pasture 73.1 82.6 80.8 91.3

Water 87.5 100.0 87.5 100.0

Wetland 80.0 92.3 80.0 100.0

Urban area 100.0 82.1 100.0 79.3

Overall accuracy 81.1 85.9

Kappa 0.79 0.84
(1)PA and UA, producer’s and user’s accuracy, respectively; SS1, SS2 and 
SS3, initial, intermediate, and advanced succession vegetation, respecti-
vely. The classification results in Table 4, considering TM multispectral 
bands, differ from those in Table 1 because of the different size of the study 
area and the number of land use/cover classes.
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in this fusion image is useful for visual interpretation, 
but not helpful for vegetation classification due to the 
increased spectral variation, reducing the classification 
accuracy. In contrast, Radarsat C‑band data represents 
different land cover features as Landsat multispectral 
bands. Therefore, the integration of the C‑band HH 
image into the multispectral bands improved the 
spectral information in the fusion image, besides spatial 
resolution. Because radar data can penetrate forest 
canopy to a certain depth to capture more information 
about vegetation stand structure, the fusion of radar and 
multispectral data improved vegetation classification, 
as confirmed in this study.
In another experiment in the Machadinho d’Oeste 

study area, based on the 2003 Landsat TM and Spot 
HRG images, the wavelet‑merging technique was 
used to combine Spot multispectral bands and the 
panchromatic band, and the TM multispectral and 
Spot panchromatic band into new datasets with 
spatial resolution of 5 m (Lu et al., 2008b). Training 
samples selected from the 2002/2003 field survey 
and the 2001 Ikonos data were used to classify the 
multispectral bands and fusion images into thematic 
images, respectively, by using the MLC, which was 
focused on nine vegetation types (Lu et  al., 2008b). 

Overall, data fusion based on Spot multispectral bands 
and panchromatic band improved overall accuracy by 
2.6% in Machadinho d’Oeste, but data fusion based 
on TM multispectral bands and the Spot panchromatic 
band reduced overall accuracy by 4.9% (Table  6). 
The Spot multispectral and panchromatic data fusion 
mainly improved the classification accuracies of upland 
open/dense forests, flooding forest, agroforestry, 
and degraded/cultivated pasture classes, but reduced 
classification accuracies of intermediate and advanced 
succession stages. In contrast, comparing the results 
from TM multispectral image, the data fusion based on 
TM multispectral and Spot panchromatic data reduced 
classification accuracies of most vegetation classes, 
except upland dense forest and intermediate succession. 
For some vegetation types, such as upland dense and 
flooding forests, having complex forest stand structure, 
the Landsat TM image with relatively coarse spatial 
resolution (i.e., 30 m) can provide better classification 
accuracy than the Spot multispectral image with higher 
spatial resolution (i.e., 10 m) (Table 6). However, for 
most of the vegetation classes having relatively simple 
stand structure, such as different succession stages, the 
Spot image provided better classification than the TM 
image.

Table 5. Comparison of accuracy assessment results with maximum likelihood classification, based on the 2001 Landsat 
ETM, Radarsat C-band HH, and fusion images, in Machadinho d’Oeste, in the state of Rondônia, Brazil(1).
Land cover Landsat ETM MS image Fusion of ETM MS & Pan Fusion of ETM MS and C-HH

PA UA PA UA PA UA

Upland forest 73.1 95.0 76.9 90.9 84.6 95.7

Lowland forest 84.6 64.7 84.6 61.1 92.3 80.0

SS3 46.2 18.2 69.2 22.5 76.9 25.6

SS2 21.4 45.0 21.4 36.0 26.2 47.8

SS1 64.6 63.6 53.9 61.4 55.4 61.0

Degraded pasture 48.7 66.7 40.5 53.6 46.0 58.6

Cultivated pasture 90.9 94.3 89.1 94.2 90.9 96.2

Agroforestry 62.5 37.0 53.1 34.0 56.3 36.0

Coffee plantation 66.1 73.6 57.6 68.0 62.7 71.2

Infrastructure 90.9 100.0 90.9 90.9 90.9 90.9

Water 100.0 84.6 100.0 78.6 100.0 78.6

Non-vegetated lowland 83.3 100.0 75.0 100.0 75.0 100.0

Overall accuracy 65.2 60.9 64.6

Kappa 0.61 0.56 0.60

(1)PA and UA, producer’s and user’s accuracy, respectively; MS and Pan, multispectral bands and panchromatic band, respectively; SS1, SS2 and SS3, initial, 
intermediate, and advanced succession vegetation, respectively; C-HH, Radarsat C-band HH image.
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A summary of multi-sensor/multi‑resolution data 
fusion in land use/cover classification
A comparative analysis of accuracy assessment  

results on different data fusion scenarios (Tables 4, 5,  
and   6) indicates that data fusion based on multi‑ 
resolution of optical sensor data cannot guarantee the 
improvement of land use/cover classification accuracy, 
although data fusion did improve visual interpretation 
performance by increasing spatial resolution. The 
fusion results based on the TM multispectral band 
and Spot panchromatic band and based on ETM 
multispectral bands and the panchromatic band 
reduced overall accuracy by 4.3–4.9%, compared 
with the results based on corresponding multispectral 
bands. The accuracy reduction may imply that the 
incorporation of the panchromatic band cannot increase 
the spectral information in the fused image, except by 
improving spatial information. Even though increased 
spatial resolution is helpful in visual interpretation, the 
increased spectral variation within the same land cover 
type may reduce the classification accuracy, mainly 
for forest types. However, incorporation of radar data, 
especially L‑band data, into multispectral image through 
data fusion techniques is valuable for improving forest 
classification. Incorporation of Palsar L‑band data into 
TM multispectral bands increased overall accuracy by 
4.7%, implying the importance of selecting suitable 
data sources in data fusion procedure.

Land use/cover classification – from 
parametric to nonparametric classification 

algorithms

Classification algorithms can be parametric and 
nonparametric. Nonparametric algorithms have received 
increasing attention because different spectral datasets 
or the combination of remote sensing and ancillary data 
are used in the classification procedure (Lu & Weng, 
2007). Various classification methods, such as artificial 
neural network (ANN), decision tree, fuzzy-set, support 
vector machine (SVM), and expert systems are available 
(Tso & Mather, 2001; Franklin & Wulder, 2002; Lu & 
Weng, 2007), but one critical issue is to select a suitable 
classification algorithm for a specific study area or 
purpose. In this research, six classification algorithms 
–  MLC, classification tree analysis (CTA), Fuzzy 
Artmap (a neural network method), K‑nearest neighbor 
(KNN), object‑based classification (OBC), and SVM 
– were examined based on Landsat TM multispectral 
bands and Palsar L‑band data.
The MLC is the most common parametric classifier, 

assuming normal or near normal spectral distribution for 
each feature of interest. This classifier is based on the 
probability that a pixel belongs to a particular class and 
takes the variability of classes into account by using the 
covariance matrix (Lillesand & Kiefer, 2000; Jensen, 
2005). However, the parametric algorithms are often 

Table 6. Comparison of accuracy assessment results with maximum likelihood classification, based on the 2003 Landsat TM, 
Spot HRG, and fusion images, in Machadinho d’Oeste, in the state of Rondônia, Brazil(1).

Land cover Spot HRG data TM and Spot PAN

Spot MS bands Fusion of Spot MS & PAN Fusion of TM MS & Spot PAN TM MS bands

PA UA PA UA PA UA PA UA

Upland dense forest 62.5 92.6 75.0 96.8 85.0 91.9 82.5 91.7

Upland open forest 58.3 58.3 66.7 72.7 25.0 13.6 83.3 31.3

Flooding forest 75.0 42.9 87.5 50.0 87.5 41.2 87.5 58.3

SS3 66.7 30.0 55.6 20.8 11.1 7.1 33.3 20.0

SS2 47.2 38.6 41.7 35.7 25.0 25.0 11.1 23.5

SS1 62.0 63.3 62.0 66.0 66.0 56.9 68.0 51.5

Degraded pasture 63.2 49.0 68.4 55.3 42.1 48.5 57.9 51.2

Cultivated pasture 66.0 86.8 66.0 91.7 66.0 86.8 66.0 89.2

Agroforestry 50.8 76.2 54.0 81.0 41.3 70.3 49.2 75.6

Overall accuracy 59.2 61.8 52.9 57.8

Kappa 0.53 0.56 0.46 0.52

(1)PA and UA, producer’s and user’s accuracy, respectively; MS and Pan, multispectral bands and panchromatic band, respectively; SS1, SS2 and SS3, initial, 
intermediate, and advanced succession vegetation, respectively.
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criticized due to the requirement of normal distribution, 
because this assumption is often violated, especially 
when multi‑source data are used. Nonparametric 
algorithms do not have this requirement and have more 
advantages than traditional parametric classification 
algorithms (Pal & Mather, 2003; Lu et al., 2004b).
CTA is a nonparametric statistical machine 

learning algorithm that has the advantages of being 
distribution‑free and easy to interpret over traditional 
supervised classifiers, and, therefore, has received 
increasing attention in remote sensing classification 
(Miller & Franklin, 2002; Zambon et al., 2006; Elnaggar 
& Noller, 2010). Fuzzy Artmap is one of the neural 
network classification methods that synthesize fuzzy 
logic and adaptive resonance theory (ART) models. 
Fuzzy Artmap network consists of four layers of 
neurons: input, category, mapfield, and output layers 
(Carpenter et al., 1992; Mannan et al., 1998). When using 
the Artmap algorithm, it is critical to identify optimal 
parameters, which is often very time‑consuming. KNN 
is one of the simplest, but widely used, supervised 
learning algorithms (Franco‑Lopez et al., 2001; Maselli 
et  al., 2005; McRoberts & Tomppo, 2007), based 
on the minimum distance from image pixels to the 
training samples to determine the K‑nearest neighbors. 
Selection of a suitable K value is crucial for a successful 
classification (Franco‑Lopez et  al., 2001; Tomppo & 
Halme, 2004) because it may affect the assignment 
of pixels to a class. OBC provides an alternative for 
classifying remotely-sensed images into a thematic 
map based on segments in comparison to the traditional 
per pixel‑based classification methods (Yu et al., 2006; 
Blaschke, 2010). The SVM is a relatively new supervised 
classifier, but has gained great attention in recent years 
(Camps‑Valls et  al., 2008; Camps‑Valls & Bruzzone, 
2009; Perumal & Bhaskaran, 2009; Tuia et al., 2011). 
A recent paper by Mountrakis et al. (2011) provided a 
detailed review of the SVM in remote sensing field.
The 2008 Landsat TM image and 2009 Palsar L‑band 

HH, HV, and textural images (Lu et al., 2011b) were used 
for land use/cover classification in the Altamira study 
area. In order to compare the classification capabilities 
among different classification algorithms, it is essential 
to use the same training sample plots and images, and 
independent test samples for evaluation of the classified 
results. In this research, a total of 432 sample plots were 
collected from the field survey in 2009 and from the 
2008 QuickBird image. Of the sample plots, 220 were 

used as training sample plots for image classification and 
another 212 were used as test sample plots for accuracy 
assessment. The error matrix approach was used to 
evaluate the classified results from each classification 
algorithm based on both Landsat TM and Palsar L‑band 
data.
For individual TM or Palsar data, selection of a 

suitable classification algorithm for land use/cover 
classification is important, but no single algorithm is best 
for each land cover type (Table 7). For example, if the 
classification result with the MLC, based on the Landsat 
TM multispectral image, is used as a benchmark, CTA, 
KNN, and OBC slightly improve overall accuracy, but 
Artmap and SVM slightly decrease overall accuracy. 
Examining individual classes, CTA mainly improved 
upland forest, initial succession stage, agro‑pasture, 
water, and urban area; KNN improved upland forest, 
initial succession stage, water, and urban area; OBC 
improved intermediate and advanced successional 
stages, and water; whereas Artmap and SVM improved 
non‑vegetation land covers. Comparing the results 
from Palsar L‑band data with those from Landsat TM 
multispectral bands, Palsar data have much lower 
classification performance than Landsat, no matter which 
classification algorithms were used. In the classification 
image from PALSAR data, urban area was significantly 
underestimated, while flooded forest was greatly 
overestimated (Figure 6). Urban area was misclassified 
as upland forest and liana forest. Palsar data provided 
overall accuracy of only 47.6–59.4%, compared with 
78.3–84.9% from the Landsat image (Table 7). Based 
on the classification results from Palsar data, CTA and 
Artmap provided relatively better performance than 
the others. In particular, CTA and Artmap provided 
good performance for upland forest, flooding forest, 
agro‑pasture, and water, but Palsar data seemed difficult 
to classify liana forest, different successional vegetation 
stages, and wetland, no matter which classification 
algorithms were used. Based on the classification 
accuracy, image processing time, and the analyst’s 
involvement in the classification procedure, MLC and 
CTA were recommended methods for this type of study. 
This research indicates that different classification 
algorithms have their own merits in land use/cover 
classification, which is also proven in previous research 
(Michelson et al., 2000; Pal & Mather, 2003, 2004; Lu 
et al., 2004b; Rogan et al., 2008; Li et al., 2011).
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Table 7. Comparison of accuracy assessment results from different classification algorithms based on Landsat TM multispectral 
data and Alos Palsar L band data(1).

Land cover MLC CTA Artmap KNN OBC SVM

types PA UA PA UA PA UA PA UA PA UA PA UA

Landsat TM multispectral bands

Upland forest 69.7 88.5 90.9 85.7 90.9 65.2 72.7 92.3 66.7 88.0 87.9 65.9

Flooding forest 93.3 73.7 86.7 72.2 73.3 64.7 80.0 70.6 86.7 68.4 86.7 81.3

Liana forest 83.3 71.4 75.0 81.8 58.3 100.0 83.3 58.8 83.3 71.4 50.0 100.0

SS1 57.9 57.9 68.4 59.1 52.6 71.4 63.2 57.1 57.9 55.0 47.4 53.0

SS2 87.5 75.0 75.0 78.3 79.2 70.4 83.3 83.3 91.7 81.5 62.5 83.3

SS3 85.7 85.7 81.0 94.4 33.3 63.6 95.2 74.1 90.5 86.4 61.9 56.5

Agro-pasture 73.1 82.6 76.9 87.0 88.5 82.1 69.2 81.8 69.2 81.8 73.1 73.1

Water 87.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.8 100.0 100.0 100.0

Wetland 80.0 92.3 86.7 86.7 100.0 100.0 73.3 100.0 80.0 92.3 100.0 100.0

Urban area 100.0 82.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 85.2 100.0 100.0

OCA 81.1 84.9 79.7 82.1 81.6 78.3

OKC 0.79 0.83 0.77 0.80 0.79 0.76

Alos Palsar L band HH, HV, and corresponding textural images

Upland forest 51.5 39.5 81.8 50.0 75.8 39.7 21.2 33.3 33.3 44.0 84.9 40.0

Flooding forest 73.3 61.1 80.0 60.0 80.0 70.6 73.3 52.4 80.0 63.2 80.0 54.5

Liana forest 25.0 15.8 16.7 25.0 16.7 100.0 25.0 14.3 58.3 21.2   

SS1 42.1 50.0 31.6 66.7 26.3 55.6 36.8 46.7 42.1 53.3 31.6 85.7

SS2 66.7 64.0 58.3 77.8 45.8 64.7 54.2 32.5 62.5 68.2 37.5 60.0

SS3 23.8 38.5 14.3 25.0 23.8 38.5 19.1 26.7 28.6 35.3 14.3 33.3

Agro-pasture 76.9 62.5 73.1 65.5 88.5 63.9 76.9 60.6 88.5 67.7 96.2 61.0

Water 83.3 95.2 95.8 92.0 100.0 92.3 95.8 100.0 91.7 88.0 95.8 88.5

Wetland 33.3 55.6 20.0 33.3 33.3 62.5 33.3 41.7 20.0 75.0 13.3 50.0

Urban area 60.9 87.5 73.9 60.7 60.9 66.7 34.8 72.7 60.9 77.8 52.2 66.7

OCA 56.1 59.4 59.4 47.6 57.1 56.6

OKC 0.51 0.54 0.54 0.42 0.52 0.51

(1)MLC, maximum likelihood classifier; CTA, classification tree analysis; Artmap, a neural network classification method that synthesizes fuzzy logic and 
adaptive resonance theory (ART) models; KNN, K-nearest neighbor; OBC, object-based classification; and SVM, support vector machine. PA, UA, OCA 
and OKC, producer’s accuracy, user’s accuracy, overall classification accuracy, and overall kappa coefficient, respectively. SS1, SS2 and SS3, initial, inter-
mediate, and advanced succession vegetation, respectively.

Land use/cover classification – from 
traditionally supervised classification methods 
to a hierarchical‑based classification method

Although many classification methods are available, 
as summarized in Lu & Weng (2007), they require 
representative training samples to implement image 
classification. For historical remote-sensing data, 
land‑use/cover classification is often difficult due to 
the lack of sufficient training samples that can be used 
for image classification. With free access and relatively 
long history of data availability, the application of 

Landsat images has been used to develop time series 
land use/cover datasets (Huang et  al., 2010; Thomas 
et  al., 2011). In this case study, a hierarchical‑based 
classification method was used, consisting of 
stratification and cluster analysis for land use/cover 
classification in the municipality of Lucas do Rio 
Verde, based on the 2002, 2005, and 2008 Landsat 5 
TM images (Lu et al., 2012).
Previous research has shown the difficulty in 

separating impervious surfaces from other land‑use/
cover types (e.g., bare soils, crop residues, and 
wetland) based on Landsat multispectral images (Lu 
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Figure 6. Comparison of classification results in the Altamira study area with maximum likelihood classification on the 
Landsat TM image for the entire study area (A); enlarged area for the black box in image a (B); classification tree analysis 
based on the Landsat TM image (C); and classification tree analysis based on the Palsar L band HH, HV, and corresponding 
textural images (D).

et  al., 2011c). Therefore, a hybrid method consisting 
of thresholding, cluster analysis, and manual editing 
was used to map impervious surface distribution 

(Lu et  al., 2011c). Primary forest mapping was then 
conducted with the combination of thresholding on 
the normalized difference vegetation index (NDVI) 
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image and cluster analysis (Lu et  al., 2011a). After 
masking impervious surfaces and forest classes 
from the Landsat multispectral bands, the remaining 
land‑use/cover classes included cerrado, regenerating 
vegetation (e.g., plantation), agricultural land, pasture, 
water, and wetland. Cluster analysis was then used to 
classify the spectral signatures of remaining pixels into 
50 clusters, and the analyst merged the clusters into 
cerrado, regenerating vegetation, agro‑pasture, water/
wetland, and mixed class (confused land covers). 
The mixed class was eventually classified through 
an iterative process of masking, cluster analysis, and 
recoding, that is: masking out all classified land use/
cover classes and leaving only the mixed pixels; using 
cluster analysis to classify spectral signatures of the 
mixed pixels into 30 clusters; merging each cluster 
into one of the land use/cover classes; and recoding the 
merged clusters into the same labels as the land use/
cover classification system (Lu et al., 2012). During the 
unsupervised classification, field survey data collected 
in 2009 and the 2008 QuickBird image were used to 
assist the cluster‑merging process.
Landsat TM images acquired in 2002, 2005, and 

2008, two QuickBird images acquired in 2004 and 
2008, and some field survey data collected in 2009 
were used in this research. After three dates of Landsat 
TM images were classified independently into thematic 
maps, consisting of six land use/cover classes (i.e., 
forest, cerrado, agro‑pasture, regenerating vegetation, 
water/wetland, and impervious surface area), a stratified 
random sampling method was used to select 300 sample 
plots for accuracy assessment of each classified image 
for 2002, 2005, and 2008 in order to independently 
develop each error matrix. The hierarchical‑based 
classification method provides overall accuracy of 
over 93% for each classified image, implying the 
feasibility and capability of this method in land use/
cover classification, even when training samples are not 
available for historical Landsat TM images (Table 8). 
Most of the study area was occupied by agro‑pasture, 
with limited areas of cerrado, regenerating vegetation, 
and impervious surfaces (Figure 7).
This research indicates that the hierarchical‑based 

classification method avoids the dilemma of the lack 
of training samples for historical remote-sensing data 
and made full use of the analyst’s experience and 
knowledge for accurately mapping land‑use/cover 
distribution (Lu et al., 2012).

State of the art and the way forward

Roles of spatial features in land use/cover 
classification
Traditional supervised classification is often based 

on spectral signatures, ignoring rich spatial information 
inherent in remote sensing data, especially high spatial 
resolution images. Even though spatial features have 
long been regarded as an important way of improving 
land use/cover classification, they have not been 
extensively applied in practice. The main reasons may 
include the limitation of spatial resolution in available 
remotely sensed imagery in the 1980s and 1990s, 
since high spatial resolution images, such as Ikonos 
and QuickBird, were mainly available after 2000; 
and the lack of standards to guide the identification 
of suitable methods for use of spatial characteristics. 
Although many texture measures have been developed, 
identifying suitable textures for a specific study requires 
significant time in image processing and determination 
of appropriate parameters for use in texture image 
creation. In addition, one texture is good for some land 
cover types, but may not be for others depending on 
patch size of the land cover types. The appropriate 
texture image for use is often site dependent because 
of different landscape features, such as the variety of 
land cover types and patch sizes. This is often the case 
when selecting the appropriate moving window sizes 
for use in analysis.
Another method for using spatial information is 

segmentation‑based, used to create isolated objects so 
that each object shares a homogeneous spectral response. 

Table 8. Comparison of accuracy assessment results by 
using the hierarchical-based classification method on the 
2002, 2005, and 2008 Landsat 5 TM images(1).

Land use/cover TM 2002 TM 2005 TM 2008

PA UA PA UA PA UA

Forest 91.4 96.4 89.1 94.2 94.4 100.0

Cerrado 81.8 87.8 80.9 82.9 80.0 87.8

Agro-pasture 98.2 97.3 96.5 974 98.2 94.7

Regenerating vegetation 100.0 84.4 96.7 93.5 96.3 81.2

Water/wetland 90.3 93.3 93.5 96.7 93.7 100.0

Imperviousness 90.0 87.1 100.0 83.9 93.9 93.9

Overall accuracy 93.0 93.0 93.7

Kappa 0.91 0.91 0.92
(1)PA and UA, producer’s and user’s accuracy, respectively.
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These objects may better represent the landscape 
than the original pixels. During the production of the 
segmentation image, it is important to identify suitable 
thresholds for edge detection and to determine the 
difference between neighboring segments. The selection 
of the thresholds seems subjective; mainly depending 
on the analyst’s experience and on the characteristics of 
land covers in the study area. No thresholds are optimal 
for all different land covers due to the complexity 
of the landscapes under investigation. However, the 
segmentation‑based method is valuable for very high 
spatial resolution images than for medium spatial 
resolution images, as shown in this research.

Roles of multi-sensor/multi‑resolution data fusion 
in land use/cover classification
Many fusion techniques are developed for impro-

ving visual interpretation based on multi‑resolution 
data with optical sensors (Ehlers et  al., 2010). This 
improvement of spatial resolution is helpful for the 
sites with relatively small patches of land cover 
types, mainly in urban landscapes. However, due 
to the complex stand structure in vegetation types, 
especially for primary forest and advanced succession, 
increased spatial resolution may enlarge the spectral 

variation within the same vegetation types, reducing 
the classification accuracy. There is a tradeoff between 
the patch size of land covers and the spectral variation 
caused by improved spatial resolution. Different data 
fusion methods have different capabilities in preserving 
the spectral fidelity while improving spatial resolutions 
(Lu et al., 2011b). It is vital to understand the role of 
a specific data fusion method in enhancing particular 
land cover types. For visual interpretation, data fusion 
of the same sensor data, such as ETM, Spot, and 
QuickBird, having multispectral and panchromatic 
data, can effectively improve spatial resolution while 
preserving spectral features, but may not add much 
information for quantitative analysis, such as land use/
cover classification, because of their similar spectral 
features. In contrast, data fusion between optical and 
radar data may be not suitable for visual interpretation 
because of the differences in reflecting land surface 
features, but can incorporate new features from radar 
data into multispectral data, improving land use/cover 
classification performance, especially vegetation types, 
as confirmed in this research. More research should be 
done on the development of new data fusion methods 
to effectively incorporate optical multispectral bands 
and radar data for improving quantitative analysis 
performance.

Figure 7. Comparison of classification results for the municipality of Lucas do Rio Verde, based on the 2002 and 2008 
Landsat TM images, by using the hierarchical based classification method.
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Roles of nonparametric classification algorithms in 
land use/cover classification
Nonparametric classification algorithms have 

some advantages over traditional algorithms in data 
requirement, but nonparametric algorithms often require 
the determination of many parameters, which is often 
time‑consuming and challenging to optimize. The lack 
of clear, standardized guidelines for the determination 
of the parameters requires much experimentation by 
the analyst. For example, Artmap requires lengthy 
trials for identifying optimized parameters, as learning 
rate and vigilance. In OBC, much time is required 
to develop a suitable segmentation image, and 
intensive trials are often required to identify suitable 
parameters. CTA and KNN require much less time for 
image classification compared with Artmap and OBC 
because fewer parameters are used in these algorithms. 
This research shows that no single classification 
algorithm is perfect for each land use/cover type, but 
that each has its own merits. Therefore, it is important 
to develop new methods to combine the merits of 
different algorithms to produce a new result with 
high classification accuracy for each land cover type 
(Ceamanos et  al., 2010; Chitroub, 2010; Zhu, 2010). 
When multisource data are used in a classification, 
parametric classification algorithms, such as the MLC, 
are typically not appropriate. Advanced nonparametric 
classifiers, such as decision tree, evidential reasoning, 
or the knowledge‑based approach, appear to be the 
best choices.

Development of new methods for historical remote 
sensing image classification
Time-series Landsat images have been used for 

developing land‑use/cover data due to their free public 
access (Masek et  al., 2008; Vogelmann et  al., 2009; 
Huang et  al., 2010; Thomas et  al., 2011). However, 
the limitations of remote-sensing data per se (spectral, 
spatial, and radiometric resolutions), atmospheric 
conditions, the complex vegetation composition and 
stand structure, and the lack of reference data that can 
be used for training samples during image classification 
make it difficult to develop high‑quality time-series 
land‑use/cover datasets (Lu & Weng, 2007). Therefore, 
the challenge is to develop a method to accurately map 
land‑use/cover distribution from historical remote-
sensing data without using training samples during the 
classification procedure. A unsupervised classification 

method is often used when no training samples are 
available. However, different analysts may produce 
significantly different results when merging clusters 
into meaningful land use/cover classes, depending on 
the analyst’s knowledge, familiarity with the study area 
under investigation, and the amount of change that the 
area may be experiencing.
The hierarchical‑based method used in this research 

adopts four key steps in the classification procedure: 
stratification of land use/cover classes to reduce 
the spectral confusion among different classes; the 
analyst’s knowledge and experience from field survey, 
high spatial resolution images, as well as Google Earth 
images in addition to other ancillary data; manual 
editing in each step to remove the misclassified classes 
that could not be separated automatically from the 
spectral signatures; and post‑processing based on 
bi‑temporal classified images to further correct the 
misclassification between some land cover classes. 
One advantage of this method is that it does not require 
training samples during image classification, which 
is critical for land use/cover classification based on 
historical remote-sensing data. The disadvantage is 
the need for human involvement, because the analyst’s 
experience and knowledge or familiarity with the study 
area might affect the classification results.
The different vegetation phenologies, atmospheric 

conditions, and land use/cover change history make 
it difficult for land use/cover classification based 
on historical remote sensing images. One potential 
solution is to develop stable and reliable variables from 
time-series multispectral images so that the same rules 
developed in the latest date images, based on training 
sample plots, can be transferred to historical images. 
Previous research has indicated that proper use of 
spectral mixture analysis has the potential to develop 
fractional images having physical meanings (Lu et al., 
2003b) and has proven valuable for developing time-
series impervious surface data (Lu et  al., 2011c). 
A  combination of decision tree classifier and expert 
knowledge may be used to classify fractional images 
into thematic maps.

Development of an optimal classification procedure 
for land use/cover classification
The success of an image classification depends on 

many factors, such as the availability of a sufficient 
number of representative sample plots, high‑quality 
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remotely sensed imagery, design of a proper 
classification system, geometric errors between 
images and sample plots, and the analyst’s skills and 
experiences (Lu & Weng, 2007). Uncertainty and 
error propagation in the image‑processing chain is an 
important factor influencing classification accuracy. 
Identifying the weakest linkage in the chain and 
then reducing the uncertainties are critical for the 
improvement of classification accuracy. In practice, 
it is often difficult to identify the best classifier for 
a specific study without conducting a comparative 
analysis of different classification algorithms. However, 
accuracy assessment is mainly based on test samples 
without further examining the spatial distribution and 
patterns of classification errors. It is fundamental to 
examine the spatial patterns of classification errors and 
to identify the major factors influencing classification 
errors in different locations, in order to take measures 
to reduce the errors.
The land use/cover classification is a complex 

procedure that may include the following steps: 
statement of research problem, design of a classification 
system, collection of ground truth data, selection of 
suitable remote sensing data, image preprocessing and 
feature selection, selection of classification algorithms, 
post‑processing of the classified image, and accuracy 
assessment (Lu & Weng, 2007). Each step should be 
carefully designed and processed. It is also necessary 
to make full use of different features in remotely 
sensed data (e.g., spectral, spatial, and temporal) 
and ancillary data (e.g., DEM data in mountainous 
regions and population density in the urban landscape) 
during the classification procedure. Since different 
spatial resolution images are readily available, how to 
effectively integrate multi‑scale remotely sensed data 
has become another research topic for improving land 
use/cover classification accuracy, especially for large 
areas.

Final considerations

Land use/cover classification in the moist tropical 
regions of the Brazilian Amazon is a challenge due 
to the complexity of the biophysical environment. 
The spectral signatures of remotely sensed data, for 
medium spatial resolution images, such as Landsat, 
are still the most important features in land use/cover 
classification. However, classification performance can 

be improved by the effective use of spatial features, 
such as textures, especially when higher spatial 
resolution images, such as Spot and QuickBird, are 
used. Data fusion of multi‑resolution images, such as 
Landsat ETM and Spot, which have multispectral and 
panchromatic bands, can improve visual interpretation 
performance, but may not improve land use/cover 
classification accuracy. However, data fusion of 
Landsat TM and radar data (especially Palsar L‑band 
data) improved vegetation classification. For the 
selection of classification algorithms, the MLC is still 
the common method for land use/cover classification, 
but some nonparametric algorithms, such as CTA, may 
provide better classification accuracy than the MLC, 
particularly when multi‑source data are used. 
Nonparametric algorithms often require much longer 
time to optimize the parameters used in a specific 
algorithm, and the results often rely on the identified 
parameters and the datasets used. A sufficient number 
of representative sample plots are usually required 
for land use/cover classification; however, it is often 
difficult to use them for historical remote sensing 
image classification. Therefore, the development of 
new methods suitable for historical remote sensing data 
is especially valuable. The hierarchical‑based method 
used in this research provides a potential solution to 
this issue.
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