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Abstract – The objective of this work was to evaluate the use of Landsat 8/OLI images to differentiate the 
age and estimate the total volume of Pinus elliottii, in order to determine the applicability of these data in 
the planning and management of forest activity. Fifty-three sampling units were installed, and dendrometric 
variables of 9-and-10-year-old P. elliottii commercial stands were measured. The digital numbers of the image 
were converted into surface reflectance and, subsequently, vegetation indices were determined. Red and near-
infrared reflectance values were used to differentiate the ages of the stands. Regression analysis of the spectral 
variables was used to estimate the total volume. Increase in age caused an addition in reflectance in the 
near-infrared band and a decrease in the red band. The general equation for estimating the total volume for 
P. elliottii had an R²adj of 0.67 with a Syx of 31.46 m³ ha-1. Therefore, the spectral data with medium spatial 
resolution from the Landsat 8/OLI satellite can be used to distinguish the growth stages of the stands and can, 
thus, be used in the planning and proper management of forest activity on a spatial and temporal scale.

Index terms: Pinus elliottii, remote sensing, vegetation indices, volume modeling.

Caracterização espectral de plantios florestais com imagens 
Landsat 8/OLI para planejamento e manejo florestal

Resumo – O objetivo deste trabalho foi avaliar o uso de imagens Landsat 8/OLI na diferenciação da idade e na 
estimativa do volume total de Pinus elliottii, para determinar a aplicabilidade desses dados no planejamento 
e no manejo da atividade florestal. Foram instaladas 53  unidades amostrais e mensuradas as variáveis 
dendrométricas de povoamentos comerciais de P. elliottii aos 9 e 10 anos. Os números digitais da imagem 
foram convertidos à reflectância de superfície e, posteriormente, foram elaborados índices de vegetação. A 
diferenciação da idade dos povoamentos baseou-se nos valores de reflectância da banda do vermelho e do 
infravermelho próximo. A análise de regressão das variáveis espectrais foi utilizada na estimativa do volume 
total. O aumento da idade propiciou um acréscimo da reflectância na banda do infravermelho próximo e uma 
redução na banda do vermelho. A equação geral de estimativa do volume total para P. elliottii apresentou R²aj 
de 0,67 com Syx de 31,46 m³ ha-1. Dessa forma, os dados espectrais de média resolução espacial provenientes 
do satélite Landsat 8/OLI podem ser utilizados na distinção das fases de crescimento dos povoamentos sendo, 
portanto, passíveis de utilização no planejamento e no manejo adequado da atividade florestal em escala 
espacial e temporal.

Termos para indexação: Pinus elliottii, sensoriamento remoto, índices de vegetação, modelagem do volume.

Introduction

The identification of tree species and the 
determination of the age of forest stands is traditionally 
carried out through field surveys (Goergen et al., 2016), 
but the use of remote sensing techniques streamlines 
the process of acquiring and organizing information. 
The understanding of vegetation attributes led to the 

need for reliable mapping with the use of spectral data 
(Dube & Mutanga, 2015).

The regular and accurate observation of the forest 
status, including the monitoring of possible damage 
caused by nutrient deficiencies, water stress, or 
diseases, facilitates the development of strategies and 
management for each situation (Tillack et al., 2014). 
Remote sensing of vegetation traits can be developed 
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to obtain a spatial and temporal view of the variables 
of interest, such as leaf area index, biomass, and 
volume, among others (Zhang et al., 2014). According 
to Ponzoni et al. (2015), the association of the spectral 
characteristics of an object with the physicochemical 
properties of the vegetation is done based on the 
radiometric variable and often using reflectance values.

Goergen et al. (2016) used Landsat 5/TM data to 
differentiate species of Eucalyptus sp. by applying 
multivariate analysis techniques. Similarly, Van 
Aardt & Norris-Rogers (2008) distinguished the 
age classes of Eucalyptus sp. and Acacia sp. stands 
based on Compact Airborne Spectrographic Imager 
(CASI) hyperspectral sensor data. Parameters such as 
vegetation behavior (Ponzoni et al., 2015; Goergen et 
al., 2016), dendrometric and/or biophysical variables 
(Canavesi et al., 2010; Berra et al., 2014; Tillack et al., 
2014; Dube et al., 2015) and structural characteristics 
are some of the variables on which orbital data have 
been applied for the spectral characterization of 
vegetation cover.

Nowadays, there are numerous hyperspectral and 
multispectral products available, including data from 
the Lidar technology, which has produced spatial and 
spectral good quality information. However, according 
to Carreiras et al. (2012), the applicability of these 
products is restricted due to the high cost involved 
in the acquisition, low spatial coverage, and the large 
volume of data for processing. Thus, it is impracticable 
to use these products for the characterization of 
biophysical parameters on a large scale.

In this context, Dube et al. (2015) highlighted the 
undergoing change in the selection of sensor data 
towards the use of broadband multispectral data, 
which includes greater coverage of images and free 
technology. Among the available products, the Landsat 
series offers free data and long-term time series, which 
is of great importance in the monitoring and evaluation 
of vegetation cover.

Aiming to continue this data collection, the 
National Aeronautics and Space Administration 
(Nasa) launched Landsat 8 satellite with two sensor 
instruments onboard: Operational Land Imager (OLI) 
and Thermal Infrared Sensor (TIRS) (Roy et al., 2014). 
This new satellite offers a greater range of coverage 
and spectral resolution than its predecessors, which 
can contribute to the understanding of vegetation 
behavior in the field.

The objective of this work was to evaluate the use 
of Landsat 8/OLI images to differentiate the age and 
estimate the total volume of Pinus elliottii Engelm, in 
order to determine the applicability of these data in the 
planning and management of forest activity.

Materials and Methods

The study area is located in the municipality of Rio 
Grande, in the Litoral Lagunar micro-region of the 
state of Rio Grande do Sul, Brazil (between latitudes 
32º33'22" and 32º41'03"S and longitudes 52º30'29" and 
52º25'20"W). The forest area is composed of P. elliottii 
and Eucalyptus grandis W. Hill.

According to the Köppen-Geiger classification, 
the area is under a humid subtropical climate (Cfa1), 
with average annual temperature of 16.5 to 18.0°C 
and average annual rainfall of 1,186 to 1,423 mm. 
The relief is flat in all its extension according to 
Shuttle Radar Topography Mission (SRTM) data. 
With regard to pedology, the soil was formed from 
quaternary sediments of Neossolo Quartzarênico 
(Quartzipsamment), with predominantly sandy 
characteristics.

The study was carried out in an area of 385.8  ha 
with 9-and-10-year-old P.  elliottii trees spaced at 
3x2 m. The planting was carried out in 2003 and 2004 
in separate areas but in contiguous plots. The 9-year-
old stands were planted in plots with sparse points of 
temporary water accumulation. This contributed to a 
lesser development of the individuals found in these 
locations.

A total of 25  sampling units (SU) were used in 
the 9-year-old stands and 28 SU in the 10-year-old 
stands. The 20x21 m (420 m²) rectangular SUs were 
systematically arranged every 5  ha. The diameter 
at breast height (DBH) and the total height of the 
individuals were measured in these units, so that the 
forest inventory was restricted to individuals with 
DBH equal to or greater than 10  cm within each 
SU. These variables were measured in August 2013. 
The total volume was calculated through allometric 
equations using the dendrometric variables measured 
in the inventory.

The spatial data used in this study were obtained 
free of cost from the Landsat 8/OLI sensor image 
on 8/30/2013 at orbit-point 221/083 from the United 
States Geological Survey (USGS). In this study, only 
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the spectral bands with the best response to vegetation 
were used. Therefore, the following bands were part of 
the analyses: B2 (blue); B3 (green); B4 (red); B5 (near 
infrared); B6 (short wave infrared 1); and B7 (short 
wave infrared 2).

The images are available to users in digital numbers 
and, in order to relate to vegetation parameters, 
conversion to physical values (reflectance) is necessary. 
For this procedure, the Envi software, version 5.1 (Harris 
Geospatial Solutions, Broomfield, CO, USA), was used 
by means of the fast line-of-sight atmospheric analysis 
of spectral hypercubes (FLAASH) algorithm. This 
algorithm uses the Moderate Resolution Atmospheric 
Transmission (MODTRAN) model to characterize 
the atmosphere and eliminate effects caused by water 
vapor particles, aerosol and gases, based on predefined 
information about the satellite, the aerosol content and 
the atmospheric composition at the time the image was 
captured by the sensor. In this process, the average 
ground level was considered to be 15 m, using mid-
latitude summer as the atmospheric model. The “rural” 
aerosol model was chosen, and a 100 km visibility at 
the time of imaging was established.

Spectral bands were used both individually and in 
combination, thus obtaining vegetation indices. The 
most relevant vegetation indices were used for forest 
cover analysis, as shown by Ponzoni et al. (2012), 
Berra et al. (2014) and Goergen et al. (2016). Seven 
vegetation indices were determined, thus allowing 
the evaluation of different vegetation aspects, as 
well as their comparison in terms of performance 
and sensitivity (Table  1). Values of the spectral 
response attributes presented by B2, B3, B4, B5, B6 
and B7  bands were extracted, and atmospherically 
resistant vegetation index (ARVI), difference 
vegetation index (DVI), green normalized difference 
vegetation index (GNDVI), moisture vegetation 
index (MVI), normalized difference vegetation index 
(NDVI), soil adjusted vegetation index in the soil 
effect minimization constants at 0.25 (SAVIL=0.25) and 
0.50 (SAVIL=0.50), and simple ratio vegetation index 
(SR) were estimated.

The best responses of healthy vegetation to the 
electromagnetic spectrum are found in the near 
infrared and red bands (Ponzoni et al., 2012). Thus, the 
spectral responses of the P. elliottii stands at different 
ages using red (B4) and near infrared (B5) bands were 

graphically arranged in the x and y plane, aiming to 
differentiate the growth stages.

Total volume and reflectance were represented 
by their respective averages, considering both the 
age difference between the samples and the whole 
set, including the two ages. Reflectance mean and 
standard deviation obtained from spectral variables 
were calculated using the R statistical software (R 
Core Team, 2016). According to Goergen et al. (2016), 
standard deviation is used to verify the internal change 
of the spectral variables in each plot.

The total volume for 9-and-10-year-old P.  elliottii 
stands, as well as for a single data set, was estimated 
using a general equation for estimating the volume 
for the species. Data sets were divided into subsets, 
one for calibration and another for data validation, 
which was done based on six SU of each age through 
the chi-square test (X²) at a significance level of 95% 
probability. 

Therefore, spectral variables were considered as 
the independent variable, and the total volume as the 

Table 1. Vegetation indices analyzed in this study(1).
Vegetation 
index

Formula Author

ARVI
ρ ρ ρ
ρ ρ ρ
NIR red blue

NIR red blue

− × +
− × +
( )
( )
2
2

Kaufman & Tanré 
(1992)

DVI ρ ρNIR red− Clevers  
(1988)

GNDVI
ρ ρ

ρ ρ
NIR green

NIR green

−

+

)
)

Sousa & Ponzoni  
(1998)

MVI
ρ ρ
ρ ρ
NIR SWIR

NIR SWIR

−
+

Sousa & Ponzoni  
(1998)

NDVI
ρ ρ
ρ ρ
NIR red

NIR red

−
+

Rouse et al.  
(1974)

SAVI
( )
( )

( )
ρ ρ

ρ ρ
NIR red

NIR red L
L

−
+ +

× +1 Huete et al.  
(1985)

SR
ρ
ρ
NIR

red

Jordan  
(1969)

(1)ARVI, atmospherically resistant vegetation index; DVI, difference veg-
etation index; GNDVI, green normalized difference vegetation index; 
MVI, moisture vegetation index; NDVI, normalized difference vegeta-
tion index; SAVI, soil adjusted vegetation index; SR, simple ratio vege-
tation index; ρblue, reflectance at blue; ρred, reflectance at red; ρgreen, reflec-
tance at green; ρNIR, reflectance at near infrared; ρSWIR, reflectance at short 
wave infrared; and L, soil effect minimization constant.
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dependent variable in the model. Through stepwise 
estimation, spectral variables that contributed the 
most to the volume estimation model were selected. 
The model resulting from this process was evaluated 
considering the following statistical criteria: adjusted 
coefficient of determination (R²adj), standard error of 
the estimate (Syx), Furnival index (FI), and F-test at 5% 
probability.

Regression constraints were calculated. Therefore, 
the homogeneity of variance was evaluated by the 
Bartlett test, the normality of the residuals by the 
Shapiro-Wilk test and the independence of the residuals 
by the Durbin-Watson test.

Results and Discussion

The spectral response analysis in B4 and B5 bands 
showed that the stands behaved differently in each 
growth stage (Figure 1). It was found that increasing 
age led to an increased reflectance in B5 band and to a 
higher absorption in B4 band.

Clevers et al. (2008) state that a leaf area index 
increase causes reflectance increase in B5 band and 
higher leaf pigment absorption in the visible region 
due to the greater amount of photosynthetically active 
leaves present in the individual. According to Ponzoni 
et al. (2012), this process is caused by the fact that 
reflectance in the near infrared region is associated 

with the internal leaf structure. Therefore, the more 
spaces in the internal leaf structure, the greater the 
reflectance in this region due to internal scattering. In 
turn, the visible region (blue, green, and red bands) is 
directly affected by the concentration of leaf pigments, 
because they absorb the electromagnetic radiation 
(EMR) for the production of photosynthesis, which is 
essential for plant survival and maintenance.

Based on field analysis and spectral data, it was 
observed that the stands under study are in the stages 
of canopy structure development and of adding 
business value. The 10-year-old stands have higher 
photosynthetic activity and a greater concentration of 
young leaves than the 9-year old stands, which thus 
reduces gaps in the canopy.

Therefore, the increase in reflectance in B5 
band as the stands develop can be explained by the 
improvement in scattering caused by the presence 
of green leaves in the canopy formation and by its 
level of coverage (Jensen, 2009; Ponzoni et al., 2012). 
In contrast, plants with high vegetative vigor absorb 
more EMR in B4 band (Jensen, 2009), which reveals 
the high photosynthetic activity, since leaf pigments 
absorb a greater amount of the radiation incident on 
the leaves, which is essential for their growth.

Carreiras et al. (2006) found that the increase in 
canopy coverage, considering the same background 
class, led to an increase in reflectance in B5 band 
and a decrease in B4 band, as observed in Landsat 
data. This is why Jensen (2009) states that, as the 
canopy develops, pixel reflectance tends to suffer less 
interference from the soil line. This process results 
in higher reflectance in B5 band, since the forest 
understory and litter have great effect on the radiance 
that reaches the sensor in this spectrum range. The 
spectral response of P. elliottii in both ages is summed 
up in Table 2.

These results agree with those found by Ponzoni 
et al. (2012, 2015) and Jensen (2009) on vegetation 
behavior. In this sense, the Landsat 8 data show the 
trajectory of forest growth, including the monitoring 
of the increased plantations, as well as the proximity 
to stagnation, also detecting short-term (annual) 
variations. 

Exploratory data analysis revealed the behavior of 
spectral variables (Table 3). The lowest reflectance 
values were observed in B2 and B4 bands, which 
agrees with the studies developed by Goergen et 

Figure 1. Spectral response of the 9-and-10-year-old Pinus 
elliottii stands according to the reflectance in B5 and B4 
bands.
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al. (2016) and López-Serrano et al. (2016). The 
fact that these wavelengths are associated with the 
increased absorption of EMR incident on the plant for 
photosynthesis explains this finding (Jensen, 2009; 
Ponzoni et al., 2012; Feilhauer et al., 2015). Regarding 
the spectral bands, the greatest deviations are found 
in B5, but, among the vegetation indices, the highest 
variation was detected in the SR index.

In the analysis of regression constraints, 9-year-
old stands exhibited variance homogeneity with a 
non-significant relationship (p = 0.770). The null 

hypothesis was accepted in the normality test (p 
= 0.106) and in the independence of residuals (p = 
0.0250). This same behavior was found for 10-year-
old stands, which met the assumption of regression 
constraints, presenting a probability of 0.1491 for 
homogeneity, 0.9043 for independence and 0.2671 for 
the normality of residuals.

The variables selected by the stepwise method in 
the process of modeling P. elliottii stand volume are 
shown in Table  4. For 9-year-old stands, the most 
accurate model presented  B5 band as the independent 
variable in its original form and converted to natural 
logarithm. This regression model showed an R²adj of 
0.71, including an estimation error of 29.39  m³ ha-1 
and FI of 44.77  m³ ha-1. For 10-year-old stands, the 
independent variable was DVI, presenting an R²adj of 
0.72, Syx of 18.80 m³ ha-1 and FI of 29.41 m³ ha-1. The 
general equation containing the 9-and-10-year-old 
SU stands showed a lower fit in comparison with the 
equations above, with an R²adj of 0.67, Syx of 31.46 m³ 
h-1, and FI of 49.21 m³ ha-1.

Chi-square test (X²) to validate the equations 
resulted  in calculated X² values lower than the 
tabulated X² value, so that one can infer that there was 
no significant difference between the actual and the 
estimated values. This was identified in all the fitted 
equations.

Although the fitted models for both ages exhibited 
close values, spectral variables showed better results 
for the 10-year-old stands. The results of the present 
study show that less canopy coverage is a negative 
factor in the modeling process with spatial data.

The 9-year-old plantations had less canopy closure 
compared with the 10-year-old ones, which was 
attributed to age. This factor resulted in a greater 
interference of litter in the spectral response stored 

Table 2. Spectral response of 9-and-10-year-old Pinus 
elliottii in B5 and B4 bands.(1)

Age Band
B5 B4

9 Lower reflectance: greater effect 
of litter on spectral response

Higher reflectance: due to reduced 
canopy structure (LAI) and lower 

EMR absorption

10

Higher reflectance: higher 
canopy development, greater 
presence of green leaves, and 

lower effect of litter

Lower reflectance: higher EMR 
absorption by photosynthetic 
pigments due to larger canopy 

structure
(1) LAI, leaf area index; EMR, electromagnetic radiation.

Table 3. Mean and standard deviation values of the spectral 
variables for each age and a single data set covering both 
ages.
Spectral variable(1) Stand  

9-year-old 10-year-old 9-and-10-year-old
B2 band 0.006±0.001 0.005±0.001 0.006±0.001
B3 band 0.023±0.001 0.021±0.001 0.022±0.001
B4 band 0.011±0.001 0.009±0.002 0.010±0.002
B5 band 0.268±0.005 0.283±0.005 0.276±0.009
B6 band 0.062±0.004 0.057±0.004 0.060±0.004
B7 band 0.024±0.002 0.021±0.002 0.023±0.002
ARVI 0.857±0.015 0.884±0.007 0.870±0.018
DVI 0.257±0.005 0.273±0.006 0.266±0.010
GNDVI 0.843±0.008 0.860±0.008 0.851±0.011
MVI 0.623±0.022 0.663±0.018 0.644±0.028
NDVI 0.920±0.009 0.936±0.005 0.928±0.011
SAVI25 0.607±0.009 0.630±0.007 0.619±0.014
SAVI50 0.729±0.011 0.756±0.009 0.743±0.017
SR 24.230±2.418 30.609±2.537 27.357±3.99
(1)B2 band, blue; B3 band, green; B4 band, red; B5 band, near infrared; 
B6 band, short wave infrared 1; B7 band, short wave infrared 2; ARVI, 
atmospherically resistant vegetation index; DVI, difference vegetation 
index; GNDVI, green normalized difference vegetation index; MVI, 
moisture vegetation index; NDVI, normalized difference vegetation in-
dex; SAVI, soil adjusted vegetation index; and SR, simple ratio vegetation 
index.

Table 4. Best fit models for  Pinus elliottii stands(1).
 Equation Model Syx R²adj FI F
Equation for  
9-year-old stand

V = -262,636.0 + 
428,721.0 × B5 - 

112,296.0 × ln(B5)

29.39 0.71 44.77 23.64**

Equation for  
10-year-old stand

V = -1,102.8 + 
4,835.2 × DVI

18.80 0.72 29.41  54.2**

General  
equation

V = -1,257.1 + 
5,228.0 × B5

31.46 0.67 49.21 82.4**

(1)General equation for 9-and-10-year-old cover stands. V, total volume 
(m³ ha-3); ln, natural logarithm; Syx, standard error of the estimate; R²adj, 
adjusted coefficient of determination; FI, Furnival index; F, significance 
value; B5, reflectance in B5 band; DVI, reflectance of the difference 
vegetation index. **Significant at a confidence level of 99%.
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by OLI sensor. In sparse locations, the presence of 
temporary flooding points contributed to the reduced 
canopy closure, causing the greatest litter effect on the 
reflectance value of the SU. Ponzoni et al. (2015) state 
that, when the vegetation cover is not homogeneous, 
factors such as litter, forest understory, and dry 
branches will have greater impact on the spectral 
response.

The sampled stands in this study were the same 
used by Berra (2013) in volume estimation studies 
when the two stands were 6 and 7 years old, based on 
Landsat 5/TM and ResourceSat-1/LISS-III spectral 
data. The total volume was explained by B3 and B5 
bands for the LISS-III sensor, with R²adj of 0.72 and 
Syx of 24.60 m³ ha-1. For the TM sensor, the variables 
selected in the model were B3, B5, and B6 bands, 
comprising 70% of the data variability with Syx of 
25.24 m³ ha-1.

Persson (2016) used Pleiades data to estimate 
forest attributes, and found that volume and basal 
area estimates were highly correlated; R² values were 
0.73 and 0.77, while errors were 25.4 and 26.9%, 
respectively. Sousa & Ponzoni (1998) estimated the 
total timber volume of Pinus spp. from Landsat 5/
TM data and showed that the dependent variable is 
explained by GNDVI and MVI.

The graphical analysis of residuals showed that 
the residual amplitude within the model selected 
to estimate the volume of 9-year-old stands was 
approximately 75  m³ ha-1 (Figure  2 A), and the 
estimated values ranged from 100 to 250  m³ ha-1. 
However, the model for 10-year-old stands exhibited 
less deviations (of approximately 40  m³  ha-1), with 
estimated volumes in the area under study ranging 
from 160 to 260  m³  ha-1 (Figure  2 B), while the 
general equation showed deviations close to 100 m³ 
-1ha (Figure 2 C).

This study showed a lesser residual amplitude than 
the results presented by Berra (2013), who found 
deviations equal to or greater than 75  m³ ha-1. The 
radiometric resolution of the sensors stands out for its 
sensitivity in detecting the radiation intensity, which 
interferes with the scale of distribution of gray levels. 
The images obtained by the OLI sensor have a 16-bit 
(216) radiometric resolution, so as to record differences 
in vegetation in a gray level scale ranging from 0 to 
65535, while the TM sensor records differences in 
the range of 0 to 256 (28) gray levels. The Landsat 
8/OLI data is valuable for research, planning and 

proper management of forest activity, especially in 
future forest inventories, for its great relevance in SU 
allocation, which makes it possible to reduce forest 
production costs.

Figure 2. Distribution of residuals within the equations 
for 9-year-old (A) and 10-year-old stands (B), and general 
equation (C).
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Conclusions

1.  The spectral data of the Landsat 8/OLI images 
proved to be efficient in differentiating the ages of P. 
elliottii stands, and may possibly serve as the basis for 
the spectral-temporal characterization of the canopies 
on spatial and temporal scales.

2. The spectral variables with the best response to 
the volume of P. elliottii are the B5 band and the DVI.
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