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Abstract

Resumo

Objective: To develop a convolutional neural network (CNN) model, trained with the Brazilian “Estudo Longitudinal de Saúde do 
Adulto Musculoesquelético” (ELSA-Brasil MSK, Longitudinal Study of Adult Health, Musculoskeletal) baseline radiographic examina-
tions, for the automated classification of knee osteoarthritis.
Materials and Methods: This was a cross-sectional study carried out with 5,660 baseline posteroanterior knee radiographs from 
the ELSA-Brasil MSK database (5,660 baseline posteroanterior knee radiographs). The examinations were interpreted by a radiolo-
gist with specific training, and the calibration was as established previously.
Results: The CNN presented an area under the receiver operating characteristic curve of 0.866 (95% CI: 0.842–0.882). The model 
can be optimized to achieve, not simultaneously, maximum values of 0.907 for accuracy, 0.938 for sensitivity, and 0.994 for specificity.
Conclusion: The proposed CNN can be used as a screening tool, reducing the total number of examinations evaluated by the radi-
ologists of the study, and as a double-reading tool, contributing to the reduction of possible interpretation errors.

Keywords: Osteoarthritis, knee; Radiography; Neural networks, computer; Machine learning; Diagnosis, computer-assisted; Epide-
miologic studies.

Objetivo: Desenvolver um modelo computacional – rede neural convolucional (RNC) – treinado com radiografias da linha de base 
do Estudo Longitudinal de Saúde do Adulto Musculoesquelético (ELSA-Brasil Musculoesquelético), para a classificação automática 
de osteoartrite dos joelhos.
Materiais e Métodos: Trata-se de um estudo transversal abrangendo todos os exames da linha de base do ELSA-Brasil Musculoes-
quelético (5.660 radiografias dos joelhos em incidência posteroanterior). Os exames foram interpretados por médico radiologista 
com treinamento específico e calibração previamente publicada.
Resultados: A RNC desenvolvida apresentou área sob a curva característica de operação do receptor de 0,866 (IC 95%: 0,842–
0,882). O modelo pode ser calibrado para alcançar, não simultaneamente, valores máximos de 0,907 para acurácia, 0,938 para 
sensibilidade e 0,994 para especificidade.
Conclusão: A RNC desenvolvida pode ser utilizada como ferramenta de triagem, reduzindo o número total de exames avaliados pelos 
radiologistas do estudo, e/ou como ferramenta de segunda leitura, contribuindo com a redução de possíveis erros de interpretação.

Unitermos: Osteoartrite do joelho; Radiografia; Redes neurais de computação; Aprendizado de máquina; Diagnóstico por computa-
dor; Estudos epidemiológicos.

INTRODUCTION

Osteoarthritis is one of the most prevalent health prob-
lems worldwide, especially in the elderly(1). Knee osteoar-
thritis stands out not only for its high prevalence but also 
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for the associated morbidity, being one of the main causes of 
years lived with disability(2). In the largest longitudinal study 
of musculoskeletal disease in Brazil(3), knee osteoarthritis 
was identified on radiographs in 18.1% of the participants.
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Knee osteoarthritis can cause pain, joint stiffness, 
reduced range of motion, and muscle weakness(4). Long-
term consequences include a reduction in the level of 
physical activity and changes in sleep, as well as depres-
sion and disability(4). There are also various economic and 
social repercussions(5): the direct costs (of treatments and 
surgical procedures); the indirect costs (of absenteeism, 
reduced employability, and early retirement); and the in-
tangible costs (of pain, reduced quality of life, and less 
social engagement). It is estimated that the total costs 
related to osteoarthritis can reach 1.0–2.5% of the gross 
domestic product in developed countries(6), and there is 
a tendency for such costs to increase because of the in-
crease in the prevalence of overweight and obesity, as well 
as because of the aging of the population(5).

The diagnosis of knee osteoarthritis can be based on 
clinical criteria, radiographic criteria, or both, the radio-
graphic criteria being considered more sensitive(7). In lon-
gitudinal epidemiological studies, the diagnosis is usually 
made on the basis of findings from knee radiographs(8), 
typically by using the Kellgren and Lawrence (KL) grading 
system(9). A KL grade of 0 or 1 indicates the absence of 
definitive knee osteoarthritis, whereas KL grades 2, 3, and 
4 indicate its presence.

The classification of radiographs in longitudinal 
studies is usually performed by specialist physicians and 
requires rigorous training, standardization, and calibra-
tion(3). Image analysis consists of semiquantitative grading 
of osteophytes and joint spaces, according to the radio-
graphic atlas. In large-scale research, this process becomes 
excessively time-consuming and costly, being subject to 
the level of experience of the observers. Therefore, studies 
have been developed with the aim of determining the fea-
sibility of using computational models for automated and 
semi-automated classification of knee osteoarthritis(10), in 
order to reduce the total number of images to be evaluated 
by humans(11).

Various artificial intelligence (AI) algorithms have 
been employed to evaluate medical images. Machine learn-
ing is a subfield of AI that includes models that can learn 
patterns and improve themselves by making comparisons 
within the database provided(10,12).

Classically, the development of image analysis algo-
rithms has been based on previously selected relevant attri-
butes. However, a more recent machine learning approach, 
known as deep learning, uses algorithms that identify, by 
themselves, the characteristics that would best classify 
data directly from images(11). Among the deep learning ar-
chitectures used in the analysis of imaging examinations, 
convolutional neural networks (CNNs) stand out. In com-
parison with other AI models, CNNs have demonstrated 
better performance on that task, especially since 2012, al-
lowing for greater speed and better reproducibility of read-
ings(11). The relationships among the various AI subfields 
are illustrated in Figure 1.

Figure 1. Stacked Venn diagram demonstrating the relationships among the 
various AI subfields.

In musculoskeletal radiology, a number of studies 
have investigated the use of AI in tasks such as the diag-
nosis/classification of fractures, the identification of liga-
ment/meniscal injuries, and the improvement of radiolo-
gist workflows(12).

The training and verification of the accuracy of 
computational models have been concentrated in clini-
cal and epidemiological studies conducted in the United 
States(10,13), and tools validated for use in other countries 
are therefore scarce. Two recent reviews of the topic(10,13) 
identified no studies that covered the population of Brazil, 
or even that of Latin America, in the training of the CNNs 
currently available for the radiographic diagnosis of knee 
osteoarthritis, thus demonstrating the need for greater ex-
ternal validation.

The Estudo Longitudinal de Saúde do Adulto (ELSA-
Brasil, Longitudinal Study of Adult Health), the largest lon-
gitudinal epidemiological study in Latin America(14), has, 
since 2012, included the assessment of musculoskeletal 
diseases through an ancillary study: the ELSA-Brasil Mus-
culoskeletal (ELSA-Brasil MSK). In addition to the assess-
ments already carried out in the ELSA-Brasil, the ELSA-
Brasil MSK incorporates questionnaires on disability/mus-
culoskeletal symptoms, the identification of risk factors for 
musculoskeletal diseases, and physical performance tests, 
as well as radiographs of the hands and knees(3).

The objective of the present study is to propose a 
computational model for classifying osteoarthritis in knee 
radiographs, trained with ELSA-Brasil MSK data. The 
software developed (source code and pre-trained model) is 
available from the GitHub repository (https://github.com/
jgdjulio/kneelsa).
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MATERIALS AND METHODS
Sample

The development of the computational model for au-
tomated analysis of radiographs was carried out on the ba-
sis of examinations carried out in the first visit of the EL-
SA-Brasil MSK cohort. At baseline, the ELSA-Brasil MSK 
included 2,901 active or retired employees of two large 
teaching and research institutions in the Brazilian state 
of Minas Gerais. The mean age of the participants was 
56 years (range, 38–79 years), and 52.9% were women. 
Radiographs of both knees were available for 2,830 of the 
participants; therefore, images of 5,660 knees were avail-
able for analysis. Details about the delineation and profile 
of the ELSA-Brasil MSK cohort are available elsewhere(3). 
The study was approved by the respective research ethics 
committees of the institutions involved, and participant 
data are kept confidential at the ELSA-Brasil data center.

Radiographic examination

Knee radiographs with digital processing were ob-
tained at a radiology clinic affiliated with the ELSA-
Brasil, located adjacent to the investigation center. The 
images were acquired in a bilateral posteroanterior view 
in fixed flexion, with a patented positioner (patent no. 
INPI BR102013033625-4) developed by the ELSA-Brasil 
MSK research team(15). All examinations were performed 
by a radiology technician or technologist duly trained and 
certified in accordance with the study protocol.

The radiographic acquisition protocol was evaluated 
in a previous study with a test-retest design, demonstrat-
ing adequate image quality and reproducibility of quan-
titative parameters(16). Other longitudinal studies, such 
as the Osteoarthritis Initiative (OAI) and the Multicenter 
Osteoarthritis Study (MOST), have employed similar pro-
tocols(17,18).

Human interpretation

The interpretation of the radiographs was carried out 
according to the following protocol, as previously pub-
lished and validated(3): all examinations were screened 
for “possible osteoarthritis” by two technologists indepen-
dently; and all examinations categorized, by at least one 
of the technologists, as “possible osteoarthritis” were re-
viewed by a radiologist with specific training. Data regard-
ing agreement between the reading of the ELSA-Brasil 
MSK radiologist and that of an external reader (a muscu-
loskeletal radiologist with an academic background who 

was responsible for readings in the Framingham Osteo-
arthritis Study and MOST), as well as regarding intrao-
bserver agreement for the ELSA-Brasil MSK radiologist, 
have been published previously(3). For the radiographic di-
agnosis of knee osteoarthritis, the interobserver kappa was 
0.755 (95% CI: 0.663–0.847) and the intraobserver kappa 
was 0.891 (95% CI: 0.807–0.975).

Radiographs with a KL grade of 0 or 1 were consid-
ered negative for osteoarthritis, whereas those with a KL 
grade of 2, 3, or 4 were considered positive. A binary clas-
sification (osteoarthritis = 0; osteoarthritis = 1) was used 
as a reference value by the neural network.

Computational model

Evaluating the most widely used AI techniques for 
evaluating medical images today(11,19), we highlight CNNs, 
artificial neural network models composed of intercon-
nected layers (conceptually analogous to biological neu-
rons), which implement a classification process. The first 
layers detect and extract the primitive attributes of the im-
ages (such as edges and texture elements), which are then 
processed and selected in the subsequent layers. Those 
attributes are integrated, with different weights, into the 
output layer, which predicts the class/outcome with the 
highest probability(11).

The CNN model proposed here uses pre-trained 
161-layer densely connected architecture, known as a 
dense convolutional network (DenseNet), as proposed by 
Huang et al.(20) and illustrated in Figure 2. In this archi-
tecture, subsequent layers also receive information from 
the initial layers, which avoids the loss of important in-
formation (image details) and allows the computational 
models to be more efficient.

Images were preprocessed by using raw data from bi-
lateral posteroanterior radiographs of the knees (Digital 
Imaging and Communications in Medicine files). Initially, 
the right and left knees were isolated, after which the im-
ages were enlarged and resized, in a square matrix, with 
localization of the regions of interest (femorotibial com-
partments), as shown in Figure 3.

To increase the number of images available for training 
the neural network, the following random data augmenta-
tion mechanisms were carried out from the torchvision.
transforms module of the PyTorch library, applied to the 
training sample: rotation (0.5°) and Gaussian blur; hori-
zontal inversion; and sharpness adjustment (factor = 0.5) 
and Gaussian blur. That was followed by resizing, center 

Figure 2. Schematic illustration of the DenseNet architecture. Pairs of layers are connected, allowing elements from the first layers (such as edges) to be used in 
the subsequent layers as well. Adapted from Huang et al.(20).
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cropping (CenterCrop function), and normalization. The 
examinations in the sample were divided into two mutu-
ally exclusive subsets (folds): training and testing.

Since the model output is a probability for each im-
age, it can be calibrated by optimizing the thresholds, 
which range from 0 to 1, a process known as threshold 
moving. In binary classification problems, the default de-
cision threshold is 0.5: if the probability is greater than 
this value, it is considered class 1; otherwise, it is consid-
ered class 0.

Data analysis

The binary classifications (osteoarthritis = 0; osteoar-
thritis = 1) made by the CNN were compared with those 
of the radiologist (reference values). The performance of 
the CNN was determined by using the metrics module of 
the scikit-learn library, version 1.0.2. For each threshold, 
the proportions of true-positive, true-negative, false-posi-
tive, and false-negative results were stored in vectors, from 
which the mean sensitivity, specificity, precision, accuracy, 
balanced accuracy, and weighted balanced accuracy, as 
well as the mean F1 and F2 scores, were calculated for 
the folds.

Accuracy is calculated by determining the ratio be-
tween the number of correct answers (true positives and 
true negatives) and the total number of examinations eval-
uated. In unbalanced samples, however, like those evalu-
ated in the present study, in which there are many more 
examples of normal examinations than altered ones, this 

metric may not adequately demonstrate the performance 
of the model. In this context, the use of balanced accuracy 
allows a better estimate of the CNN yield(21), being calcu-
lated according to the formula: (sensitivity + specificity) ∕ 2. 
Some authors also advocate the use of weighted balanced 
accuracy(21,22), which allows the attribution of different 
weights to each metric, having been calculated as follows: 
(2 × sensitivity + specificity) ∕ 3.

To calculate the area under the receiver operating 
characteristic curve (AUC) for the model, the predicted 
probabilities for each image were considered, calculated, 
and stored in lots of 128 examinations each. Those lots 
were compared with the true value by using the roc_auc_
score function of the scikit-learn library. That function 
plots the rate of correctly classified positives among all 
positive predictions (i.e., the true-positive rate) versus in-
correct positives among all negatives (i.e., the false-posi-
tive rate), at varying thresholds(23).

RESULTS

Considering the simple average of the two folds, we 
found that the CNN developed presented an accuracy of 
0.814 (at the point of maximum balanced accuracy), with 
a sensitivity of 0.755 and a specificity of 0.821. As can be 
seen in Figure 4, the AUC for the model was 0.866 (95% 
CI: 0.854–0.883).

Following the technique explained above, the model 
can be calibrated to achieve, not simultaneously, maxi-
mum values of 0.907 for accuracy, 0.938 for sensitivity, 

Figure 3. Demonstration of preprocessing.
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and 0.994 for specificity. The maximum F1 and F2 scores 
achieved were 0.553 and 0.619, respectively. Table 1 dem-
onstrates the maximum values achieved by the CNN, ac-
cording to the optimized metric.

DISCUSSION

The model developed showed good performance(24) 
for the radiographic diagnosis of knee osteoarthritis in 
the posteroanterior fixed-flexion view. The comparison 
between the efficiency of different AI models has yet to 
be standardized in the literature(25). Despite the fact that 
there is a historical predilection for accuracy, the AUC is 
currently considered the most appropriate metric for the 
assessment of performance(25).

In the recent major review on the use of machine 
learning algorithms for the assessment of osteoarthritis, 
Binvignat et al.(10) identified only two studies that pro-
posed diagnosing knee osteoarthritis from radiographs 
alone(26,27). Brahim et al.(26) achieved 82.98% accuracy 
(sensitivity: 87.15%; specificity: 80.65%) for differentiat-
ing between KL grades 0 and 2 with a decision support 
tool that was trained on 1,024 images from the OAI, com-
prising an equal number of grade 0 and grade 2 images. 
In that study, the AUC was not calculated. The model em-
ployed relies, in the segmentation process, on the manual 
delimitation of bone anatomical landmarks on the tibia, 
which limits its use in large-scale studies. It would be in-
teresting to include KL grade 1 radiographs and determine 

the accuracy in a sample with a larger number of patients 
without osteoarthritis (as occurs in the general popula-
tion), in order to determine the accuracy of the model in 
a context approximating that encountered in real life. Ti-
ulpin et al.(27) created a Siamese neural network for auto-
mated KL grading of knee radiographs. The authors used 
18,376 MOST radiographs to train the network, 2,957 
and 5,960 OAI images being used for validation and test-
ing, respectively. To estimate the performance of the mod-
el for diagnosing knee osteoarthritis, they considered KL 
grade ≥ 2, achieving an AUC of 0.93. During training, se-
rial examinations of participants (from all follow-up visits) 
and all available X-ray beam angulations (5°, 10°, and 15°) 
were used, which increased the robustness of the model.

Some techniques to deal with the imbalance between 
classes have been tried, such techniques including the 
data augmentation used in the present study, only on posi-
tive data, and changing the loss function (increasing by 
10 times the penalty for type II errors), neither of which 
had any effect on the AUC for the model. In fact, recent 
studies of tabular data(28) have demonstrated that these 
and other correction methods can even reduce the AUC, 
especially for well-performing models(22).

In the present study, calibration of the neural network 
through the definition of thresholds was the mechanism 
that had the greatest impact on the performance metrics. 
In fact, lowering the threshold for defining knee osteoar-
thritis increased the sensitivity of the model, whereas rais-
ing that threshold increased the specificity.

The model must be calibrated according to the intended 
application. Therefore, a model with greater balanced ac-
curacy would be more appropriate if its application is as a 
double-reading tool, whereas a more sensitive model would 
be preferable for use as a screening method(11). The same 
neural network with two or more thresholds, or even more 
than one neural network, could also be used, especially 
given the low computational and time costs related to the 
use of pre-trained models.

Given the specificity achieved by the model, its appli-
cation is viable in tasks such as checking possible incon-
sistencies (false negatives) in the database and defining 
priority in the queue of examinations to be analyzed. Its 
sensitivity allows its use as a possible screening tool for 
normal examinations, which would reduce the volume of 

Figure 4. Receiver operating characteristic curve for the model. The black dot 
demonstrates the threshold of highest balanced accuracy.

F2 score

0.479
0.575
0.618
0.600
0.401
0.239

Table 1—Accuracy, balanced accuracy, weighted balanced accuracy, sensitivity, specificity, precision, F1 scores, and F2 scores for each defined threshold.

Maximized metric

Sensitivity
Weighted balanced accuracy
Balanced accuracy
Fi score
Accuracy
Specificity

Threshold

0.010
0.040
0.140
0.314
0.712
0.900

Accuracy

0.400
0.649
0.814
0.881
0.907
0.902

Balanced 
accuracy

0.646
0.758
0.789
0.774
0.671
0.599

Weighted 
balanced 
accuracy

0.755
0.805
0.778
0.728
0.568
0.467

Sensitivity

0.973
0.899
0.756
0.636
0.363
0.203

Specificity

0.319
0.617
0.822
0.913
0.978
0.994

Precision

0.758
0.235
0.357
0.490
0.687
0.806

FI score

0.272
0.373
0.485
0.553
0.475
0.325
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examinations to be evaluated by radiologists. It is note-
worthy that the diagnosis of some diseases, such as knee 
osteoarthritis, usually requires the radiographic findings to 
be evaluated in conjunction with clinical, epidemiological, 
and laboratory data, with or without the findings obtained 
by other imaging methods, none of which were evaluated 
in the present study.

Because the CNN employed in our study is a “black-
box” model, it is important that its conclusions are based 
on aspects considered relevant for the diagnosis, in a way 
that is understandable to humans(29). This factor, known 
as the explainability or interpretability of the network, can 
be expressed in the form of attention maps, which high-
light the regions of the image most related to the predic-
tion made by the model (e.g., osteophytes, joint spaces, 
and sclerosis). Explainability tools for the CNN employed 
here are still under development, which constitutes a cur-
rent limitation of the model.

The training and validation of the CNN were based on 
the interpretation of two technologists and a radiologist, in 
accordance with the ELSA-Brasil MSK radiograph clas-
sification workflow and in compliance with strict quality 
control guidelines(3). However, the inclusion of examina-
tions from other longitudinal studies, with reports com-
posed by a committee of radiologists, could increase the 
robustness of the network, representing a future step in its 
development. Nevertheless, given the accuracy achieved, 
we can conclude that the model was able to learn how to 
interpret knee radiographs.

The ELSA-Brasil MSK radiographs were obtained by 
trained technologists, in a standardized manner, in a spe-
cific view, and using a positioner suitable for evaluating 
knee osteoarthritis. However, the view most often used in 
medical practice, despite being less accurate for assessing 
knee osteoarthritis, is the anteroposterior view with knee 
extension(8), and it is therefore not possible to extrapolate 
our results to outpatient or hospital settings in general. 
In addition, only one view (posteroanterior fixed-flexion) 
was employed to develop the CNN employed in our study. 
However, only 9.9% of individuals with radiographically 
confirmed knee osteoarthritis in the ELSA-Brasil MSK 
had isolated osteoarthritis identified on the lateral view(3). 
The performance of this CNN has yet to be tested in pop-
ulations from other studies (such as the OAI and MOST).

Another limitation is the reduction in image resolu-
tion during preprocessing, which is common in the devel-
opment of AI models. Despite enabling greater time-effec-
tiveness, this mechanism can limit the results because of 
the loss of subtle information from the examinations.

Improvements to the model presented, using images 
from subsequent waves of the ELSA-Brasil MSK, as well as 
image databases from other studies (such as the OAI and 
MOST), should contribute to increasing the performance 
and robustness of the network. Such improvements are be-
ing implemented and may be addressed in future works.

CONCLUSIONS

The CNN developed presents performance com-
parable to that of neural networks trained with radio-
graphs from international studies. The accuracy and 
AUC achieved allow its use as a double-reading tool in 
the ELSA-Brasil MSK, helping overcome the problem of 
the limited availability of trained radiologists, as well as 
reducing the costs of and time spent on interpreting knee 
radiographs.

Validation of the model in populations different from 
the one in which it was trained, in other longitudinal stud-
ies and in clinical practice, is important for its future adop-
tion. Therefore, we reiterate that the software developed is 
publicly available in the GitHub repository (https://github.
com/jgdjulio/kneelsa), which makes its external validation 
possible in future studies.
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