DIGESTÃO FOTOQUÍMICA, ASSISTIDA POR MICROONDAS, DE ÁGUAS NATURAIS: APLICAÇÃO EM ESTUDOS DE PARTIÇÃO E ESPECIAÇÃO DO COBRE

Fernando F. Sodré, Patricio G. Peralta-Zamora e Marco T. Grassi*

Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990 Curitiba - PR

Recebido em 14/7/03; aceito em 8/3/04; publicado na web em 19/7/04

MICROWAVE-ASSISTED PHOTOCHEMICAL DIGESTION OF NATURAL WATERS: APPLICATION IN PARTITION AND SPECIATION STUDIES OF COPPER. The efficiency of a new procedure for the digestion of natural waters, based on a microwave-activated photochemical reactor was evaluated in this work. Fluorescence spectra showed a 99% reduction in the emission of a 40 mg L⁻¹ humic acid solution after 15 min of UV irradiation. In the presence of H₂O₂, only 3 min were necessary to accomplish a reduction of almost 100% in the emission and 6 min to reduce the concentration of dissolved organic carbon by 95%. The copper recovery from synthetic samples containing commercial humic acid, from soil suspensions, as well as from natural waters varied between 91.5 and 106.6%. The digestion of dissolved and unfiltered samples was successfully accomplished in 6 and 12 min, respectively. No contaminations or sample losses were observed. Results of copper speciation in natural waters showed that this metal is predominantly bound to natural ligands. Only 3-6% of the total recoverable copper is present in the labile form.

Keywords: natural water digestion; speciation; partitioning.

INTRODUÇÃO

A partição de metais entre as fases dissolvida e particulada exerce uma influência importante sobre seu transporte, reatividade e biodisponibilidade para a biota aquática. Mais do que isso, sabe-se hoje que a toxicidade de metais não pode ser atribuída, exclusivamente, à concentração total dissolvida. Conseqüentemente, o conhecimento da especiação química de metais é um aspecto determinante na avaliação de seu verdadeiro impacto ambiental¹.

Uma variedade de ligantes orgânicos e inorgânicos exerce um papel fundamental no controle da partição e da especiação de espécies metálicas em sistemas aquáticos naturais¹⁻⁴. Uma das principais propriedades destes ligantes é a capacidade de formar complexos estáveis com metais e, em virtude disso, reduzir o potencial tóxico destas espécies^{1,5}. No material particulado em suspensão, estes ligantes compreendem uma grande variedade de compostos, geralmente, minerais, partículas orgânicas incluindo substâncias húmicas, microorganismos e tecidos biológicos e partículas inorgânicas cobertas por material orgânico^{3,4}. Na fração dissolvida, os principais compostos responsáveis pela complexação de espécies metálicas são os compostos orgânicos em solução, principalmente as substâncias húmicas aquáticas.

A quantificação dos teores de metais, tanto na fração dissolvida, quanto na amostra *in natura*, contendo o material particulado em suspensão, está associada a uma etapa de digestão que leve à solubilização da espécie de interesse, seja pela completa destruição dos ligantes naturais, ou ainda pela degradação parcial de compostos interferentes⁶. A presença da matéria orgânica dissolvida, por exemplo, pode resultar em interferências na quantificação de metais quando se emprega espectrometria de absorção atômica, quimiluminescência e técnicas voltamétricas de redissolução⁷⁻⁹. Segundo van den Berg¹⁰, a presença da matéria orgânica em análises voltamétricas pode comprometer a determinação da concentração de metais por meio da formação de metalo-complexos estáveis e inertes

à detecção, além de competir com a espécie de interesse pela superfície do eletrodo de trabalho, reduzindo assim a sensibilidade da medida e provocando o aparecimento de sinais interferentes.

São muitos os procedimentos propostos na literatura para a digestão de amostras de águas naturais⁷⁻¹³. A digestão pode ser conduzida em batelada, com o emprego de recipientes abertos ou fechados¹⁴, ou ainda de maneira contínua^{6,15,16}. Independentemente do tipo de digestão, estes procedimentos baseiam-se, essencialmente, na ação de uma fonte ininterrupta de aquecimento em associação ao poder oxidante de um componente que age diretamente na amostra. Temperaturas elevadas podem ser obtidas empregando-se chapas aquecedoras, blocos digestores ou fornos microondas. Neste último caso, a magnitude do aquecimento depende exclusivamente das propriedades dielétricas das moléculas presentes na amostra¹⁷. Além disso, a velocidade e a eficiência do aquecimento dielétrico são superiores aos obtidos por fontes convencionais¹⁸. O aquecimento por microondas também resulta em um aumento na velocidade analítica e um incremento nas condições de digestão, ao mesmo tempo em que reduz a formação de subprodutos originados pelo superaquecimento^{14,19}. A utilização de radiações na faixa de microondas, aliada ao poder oxidante de diversos reagentes, tem sido muito freqüente em química analítica^{20,21}. Substâncias como o ácido nítrico, o ácido perclórico, o ácido hipocloroso, o hipoclorito de sódio, entre outras, têm um excepcional poder de oxidação e vêm sendo largamente utilizadas para a destruição de matrizes orgânicas interferentes²². Entretanto, em análises que envolvem a determinação da concentração de metais-traço, existe uma grande preocupação com relação ao processamento e adição de reagentes à amostra^{23,24}. Devido às baixas concentrações da espécie de interesse (nmol L-1 a pmol L-1), a adição de reagentes pode ser uma fonte real de contaminação, além de contribuir para a diluição da amostra8. Em alguns casos, a contaminação gera erros superiores a duas ordens de magnitude em relação à concentração dos metais presentes na amostra24.

Uma alternativa bastante eficiente para a destruição da matéria orgânica dissolvida presente em águas naturais consiste na utilização de processos fotoquímicos de oxidação²⁴⁻²⁶. Estes processos ba-

seiam-se na geração *in situ* do radical hidroxila (*OH), de elevado poder de oxidação ($E^0 = 2.8 \text{ V}$), que é capaz de romper ligações de caráter covalente e induzir a mineralização completa dos ligantes orgânicos presentes na amostra. Além disso, este procedimento proporciona uma redução significativa no tempo de digestão e nas quantidades de reagentes empregados^{24,26}. A irradiação da amostra com luz ultravioleta pode motivar o aparecimento de 'OH pela simples fotólise da matéria orgânica dissolvida. Entretanto, uma digestão mais efetiva pode ser obtida pela adição de pequenas quantidades de peróxido de hidrogênio, por exemplo.

O efeito sinérgico da utilização do aquecimento por microondas e da irradiação da amostra com luz ultravioleta pode representar uma redução significativa no tempo de digestão de amostras de águas naturais para análise de metais-traço^{21,24}. A combinação entre os dois métodos torna-se mais eficiente quando a radiação ultravioleta é gerada por microondas a partir de uma lâmpada ou um reator exposto a um campo eletromagnético^{17,27,28}.

Este trabalho propõe o emprego de um método alternativo para a digestão de amostras de águas naturais utilizando um reator fotoquímico ativado por microondas. O procedimento foi testado em estudos envolvendo a partição e a especiação química do cobre em amostras sintéticas, preparadas em laboratório, assim como em amostras de águas naturais.

PARTE EXPERIMENTAL

Reator fotoquímico ativado por microondas

O procedimento de digestão proposto neste trabalho baseia-se na ação da radiação ultravioleta gerada em um reator ativado por microondas. O reator UV LAB EL 10, comercializado pela Umex (Dresden, Alemanha), possui capacidade para processar até 15 mL de amostra e é constituído por dois corpos cilíndricos concêntricos de diferentes diâmetros. Um esquema representativo do reator fotoquímico é mostrado na Figura 1. O corpo interno é de quartzo de elevada permeabilidade à radiação UV, enquanto que o corpo externo é constituído de vidro de borossilicato, de baixa permeabilidade ao UV. O espaço entre ambos é preenchido com vapor de mercúrio à baixa pressão. A energia gerada em um forno microondas doméstico é suficiente para promover a excitação dos átomos de mercúrio, que passam a emitir radiação UV de elevada intensidade no comprimento de onda de 254 nm.

Figura 1. Representação esquemática do reator fotoquímico UV LAB EL 10 utilizado nos experimentos de digestão

Otimização do procedimento de digestão

Inicialmente, foi preparada uma solução de ácido húmico comercial (Aldrich - 35% de C) a 40 mg L⁻¹, em água do tipo Milli-Q (Millipore). Uma alíquota de 15 mL desta solução foi transferida para o reator que foi então inserido, sem a tampa, no forno microondas (Electrolux ME 900). Durante a digestão, foram empregados ciclos de até 3 min de irradiação, utilizando-se a potência máxima nominal do forno microondas, ou seja, 900 W. Um béquer contendo 1 L de água foi colocado no forno juntamente com o reator, para dispersar o calor gerado e evitar perdas por ebulição da amostra. Entre cada ciclo de irradiação a água contida no béquer foi trocada e o reator permaneceu em banho de gelo durante cerca de 5 min. A degradação do ácido húmico foi avaliada através de medidas de fluorescência, realizadas em um espectrofotômetro de emissão de fluorescência (Hitachi F4500), utilizando os comprimentos de onda de excitação e emissão de 315 e 440 nm, respectivamente9. A eficiência do processo de digestão foi avaliada na ausência e na presença de peróxido de hidrogênio. Neste caso, foram adicionados 12 µL de H₂O₂ 30% (Biotec). Em algumas amostras também foram determinados os teores de carbono orgânico total (Shimadzu TOC5000) durante o procedimento de digestão.

Testes de recuperação

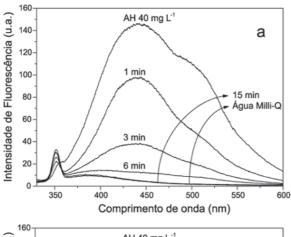
A eficiência da digestão também foi avaliada a partir de testes de recuperação de cobre em soluções contendo ácido húmico comercial e em suspensões preparadas com um Latossolo Vermelho distroférrico (LV*d*) de características químicas, físicas e mineralógicas bem definidas²⁹.

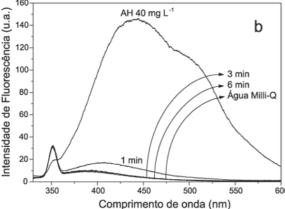
Alíquotas de uma solução 20 mg L¹ de ácido húmico foram enriquecidas com 5, 10 e 20 μg L¹ de cobre (Tritisol, Merck) e mantidas sob agitação durante 24 h. Em seguida, foram acidificadas para pH < 2 com HNO $_3$ (Merck) e digeridas durante 6 min na presença de 12 μL de H_2O_2 . As suspensões foram preparadas empregando-se 10, 20 e 50 mg L¹ de solo, previamente moído em gral de porcelana e passado em peneira de 0,074 mm para uniformizar a dimensão dos agregados e evitar diferenças na sorção de metais²9. As suspensões foram então enriquecidas com 10, 20 e 50 μg L¹ de cobre e mantidas sob agitação durante 24 h. Em seguida, foram acidificadas para pH < 2 e digeridas durante 12 min na presença de 24 μL de H_2O_2 , sendo que 12 μL foram adicionados no início e o restante, após 6 min de digestão.

A digestão também foi avaliada empregando-se amostras de águas naturais. Foram coletadas amostras de águas superficiais nos Rios Iraí e Iguaçu, em pontos localizados na Região Metropolitana de Curitiba. As amostras foram filtradas a vácuo em sistema fechado utilizando membranas de acetato de celulose (Schleicher & Shuell), com 0,45 µm de porosidade, para separar a fração dissolvida. Todo o procedimento de coleta, filtração e preparo de amostras foi baseado no uso de técnicas limpas^{22,23}. As alíquotas reservadas para análise de cobre total dissolvido foram enriquecidas com 2, 5 e 10 µg L⁻¹ de cobre e a amostra *in natura*, com 10, 20 e 30 µg L⁻¹ deste metal. Após agitação, foram imediatamente acidificadas com HNO₃ e submetidas à digestão no reator ativado por microondas.

A determinação dos teores totais de cobre nas amostras foi conduzida por voltametria de redissolução anódica com pulso diferencial (VRAPD), e adição de padrões. As análises voltamétricas foram executadas em um potenciostato EG&G PAR M394, com eletrodo de mercúrio SMDE EG&G PAR 303A.

Especiação química


A especiação química do cobre foi realizada em amostras dos rios Iraí e Iguaçu. A determinação de cobre lábil foi conduzida por VRAPD através da técnica de competição de ligantes, utilizando-se etilenodiamina (EN) como ligante sintético de competição³⁰. Uma


alíquota da fração dissolvida, previamente acidificada, foi digerida empregando-se a metodologia proposta neste trabalho e, em seguida, enriquecida com EN até que a concentração final do ligante de competição fosse de 1,0 mmol L⁻¹. O pH foi ajustado para 8,0±0,2 e a alíquota foi mantida em repouso durante uma noite. Nesta amostra, foi determinada a corrente de intensidade máxima, aqui denominada $I_n^{m\acute{a}x}$, assim como a concentração total de cobre na fração dissolvida (CuTD) pelo método de adição de padrões. Os parâmetros da medida voltamétrica foram varredura de -0,6 a 0,0 V, velocidade de varredura de 8 mv s⁻¹, 15 min de deposição e 8 min de purga inicial. Uma outra alíquota da fração dissolvida, inalterada e não digerida, foi submetida ao mesmo procedimento analítico utilizado para determinação voltamétrica de CuTD, exceto que o ligante de competição foi adicionado apenas a alguns segundos do fim do período de deposição. Nesta amostra foi determinada a intensidade de corrente inicial, aqui denominada I_n^0 . A concentração de cobre lábil foi finalmente calculada a partir da multiplicação do valor de CuTD pelo valor obtido pela razão $I_p^0/I_p^{m\acute{a}x}$.

RESULTADOS E DISCUSSÃO

Na etapa de otimização do procedimento, a duração máxima de cada ciclo de digestão foi fixada em 3 min. Sob estas condições, a perda de amostra por ebulição foi inferior a 0,1%. Desta forma, todas as soluções foram submetidas à digestão em ciclos de até 3 min de duração.

Na Figura 2 encontram-se os espectros de fluorescência obtidos para diferentes tempos de digestão em uma solução 40 mg L⁻¹ de

Figura 2. Espectros de emissão de fluorescência para uma solução 40 mg L^1 de ácido húmico na ausência (a) e na presença (b) de H_2O_2 em diferentes tempos de irradiação

ácido húmico. Uma vez que as substâncias húmicas constituem os principais componentes orgânicos presentes em águas naturais, a utilização de ácido húmico comercial é recomendada como forma de mimetizar o comportamento da matéria orgânica dissolvida natural^{9,16,25,26}. Pode-se observar, na Figura 2a, que a intensidade de emissão apresentou uma redução de cerca de 99% após 15 min de irradiação.

O procedimento de digestão de amostras apresentado neste trabalho promoveu uma redução significativa no tempo necessário para destruição da matéria orgânica dissolvida, quando comparado com resultados presentes na literatura^{9,16}. Para uma solução de ácido húmico a 15 mg C L⁻¹, Achterberg e van den Berg¹⁵ relataram a necessidade de utilizar 330 min para total destruição da amostra irradiada com luz UV gerada a partir de uma lâmpada a vapor de mercúrio. Campos e colaboradores⁹ avaliaram a eficiência de um reator artesanal na fotodegradação de soluções de ácido húmico a 4, 6, 8 e 12 mg C L⁻¹. Para a solução mais diluída, foram necessários 30 min para se atingir uma redução de aproximadamente 99% da emissão de fluorescência. Para as soluções mais concentradas, foram necessários até 120 min de exposição à irradiação.

Quando a solução 40 mg L-1 de ácido húmico foi tratada com H₂O₂ (Figura 2b), foram necessários apenas 3 min para se atingir praticamente 100% de redução da emissão de fluorescência e 6 min para uma redução superior a 95% nos teores de carbono orgânico dissolvido. Neste caso, o tempo de digestão apresentou-se reduzido devido à fotólise direta do peróxido de hidrogênio em meio aquoso, que gera radicais 'OH de elevada reatividade²⁵⁻²⁶. O radical hidroxila ataca uma gama de compostos orgânicos alifáticos e aromáticos com constantes de velocidade que variam na faixa de 10⁶ a 10¹⁰ L mol⁻¹ s^{-1 31}. A utilização de peróxido de hidrogênio durante o procedimento mostrou-se bastante eficiente para a digestão de amostras de águas naturais. Apenas uma pequena quantidade de H2O2, foi necessária para reduzir o tempo de digestão em cerca de 80%, sem representar uma fonte de contaminação e diluição da amostra. Além disso, após 6 min de irradiação foi observada a ausência de peróxido residual³², que pode interferir na determinação de metais em análises voltamétricas.

Um teste conduzido com o auxílio de um tubo de ensaio de borossilicato foi realizado para se comparar a eficiência da radiação UV com outros fatores, tais como radiação microondas, temperatura (cerca de 75 °C) e presença de H₂O₂. Tanto o reator quanto o tubo de ensaio possuem capacidade para processar cerca de 15 mL de amostra. A Figura 3 mostra a concentração relativa de ácido húmico, obtida pela intensidade máxima de fluorescência determinada em 440 nm, em função dos tempos de digestão obtidos com a utilização do reator ativado por microondas e do tubo de ensaio. Na Figura 3a, observa-se que uma solução 40 mg L⁻¹ de ácido húmico apresentou uma redução considerável da emissão de fluorescência utilizando o reator ativado por microondas. Para a solução contida no tubo de ensaio, a emissão permaneceu praticamente constante. Quando as soluções contendo ácido húmico foram enriquecidas com H2O2 (Figura 3b), observou-se uma rápida redução inicial da emissão de fluorescência para a solução contida no reator fotoquímico ativado por microondas. Utilizando-se o tubo de ensaio, ao contrário, observou-se um aumento de cerca de 40% no sinal de fluorescência logo no início do processo.

Os resultados apresentados indicam que a radiação UV gerada pelo reator mostrou-se essencial na digestão das soluções contendo ácido húmico. Assim, fatores como radiação microondas e temperatura não foram suficientes para promover a degradação do material na mesma escala de tempo observada com a utilização do reator ativado por microondas. A presença de H_2O_2 proporcionou comportamentos diferentes em relação à emissão de fluorescência das solu-

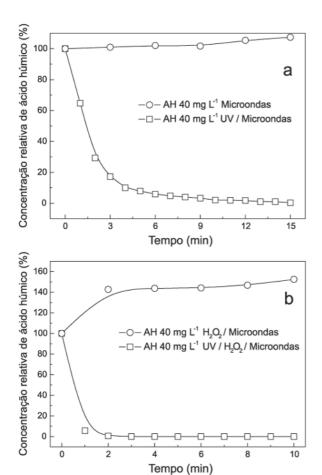


Figura 3. Concentração relativa de ácido húmico expressa como porcentagem do sinal de emissão de fluorescência em 440 nm ($\lambda_{exc} = 315$ nm). (a) AH 40 mg L^{-1} e (b) AH 40 mg L^{-1} na presença de 12 μ L de H_2O_2 . Amostras processadas em um tubo de ensaio de borossilicato (\bigcirc) e no reator fotoquímico ativado por microondas (\square)

ções contendo ácido húmico. Quando se emprega o reator fotoquímico, a radiação UV é responsável pela geração de radicais hidroxila de elevada reatividade a partir da fotólise direta do peróxido de hidrogênio. Por outro lado, o aumento do sinal de fluorescência observado para a solução processada no tubo de ensaio pode ser conseqüência do poder oxidante do H_2O_2 , que degrada parcialmente a matéria orgânica gerando sub-grupamentos fluoróforos⁹, ou ainda pela supressão do sinal de fluorescência no início do processo.

Para testar a eficiência do reator em uma amostra de água salina, uma alíquota da solução 40 mg L⁻¹ de ácido húmico foi enriquecida com uma mistura contendo NaCl, MgSO₄ e NaHCO₃ (salinidade 34,2). Neste caso, foi observada uma redução superior a 97% do

sinal de emissão do ácido húmico em 27 min de irradiação. Este aumento no tempo de digestão, em comparação às soluções não-salinas, pode ser resultado da competição existente entre a matéria orgânica e o bicarbonato por radicais 'OH gerados no processo fotoquímico²⁵.

Testes de recuperação de cobre

Todas as determinações de cobre por VRAPD foram realizadas em triplicata, obtendo-se desvios médios inferiores a 10%. A Tabela 1 apresenta os resultados obtidos para os testes de recuperação de cobre em soluções 20 mg L-1 de ácido húmico. Observa-se que em apenas 6 min de digestão foram obtidas porcentagens de recuperação de cobre na faixa de 98,8 a 103%. A digestão de amostras contendo ácido húmico mostrou resultados promissores para a determinação de metais na fração dissolvida. Entretanto, a determinação do teor total de uma espécie metálica em águas naturais exige um método de digestão um pouco mais drástico, devido à presença de material particulado em suspensão. Assim sendo, a concentração de metal total recuperável é determinada na amostra in natura e, consequentemente, na presença de matéria orgânica dissolvida e de material particulado em suspensão. Os resultados obtidos para a determinação de cobre em suspensões preparadas com o LVd, em tempos de digestão superiores àqueles adotados para soluções contendo ácido húmico, mostraram-se satisfatórios, com percentuais de recuperação na faixa de 91,5 a 106,6% (Tabela 2).

Amostras de águas naturais dos Rios Iraí e Iguaçu também foram analisadas com relação à recuperação de cobre. A Tabela 3 mostra os resultados obtidos para amostras coletadas em janeiro de 2002. Os parâmetros de digestão foram estabelecidos a partir dos testes de recuperação realizados em soluções contendo ácido húmico e suspensões de solo. Para determinação do cobre total recuperável foram necessários 12 min de digestão na presença de 24 µL de H₂O₂ e para a digestão da fração dissolvida foram necessários apenas 6 min com a adição de 12 µL de H₂O₂. Além de bons resultados com relação à recuperação de cobre (95,4 a 107,4%), é possível observar valores distintos entre os teores de cobre determinados nas frações dissolvidas e na amostra in natura, para ambos os rios. Os testes de recuperação de cobre mostraram resultados que possibilitam a utilização do reator fotoquímico ativado por microondas para digestão de amostras de águas naturais, sem a ocorrência de erros provenientes da adição de grandes quantidades de reagentes. Mesmo para a fração

Tabela 1. Testes de recuperação para uma solução $20~mg~L^{\text{-1}}$ de ácido húmico comercial enriquecida com cobre (µg $L^{\text{-1}}$) e irradiada durante 6 min na presença de H_2O_2

[Cu] adic.	[Cu] det.	Rec. (%)
5,00	5,14	102,8
10,0	10,4	103,9
20,0	19,8	98,8

Tabela 2. Testes de recuperação para suspensões de solo enriquecidas com cobre (µg L-1) e irradiadas durante 12 min na presença de H,O,

	Suspensões de solo (mg L-1)						
	10,0		20,0		50,0		
[Cu] adic.	[Cu] det.	Rec. (%)	[Cu] det.	Rec. (%)	[Cu] det.	Rec. (%)	
10,0	9,84	98,4	9,58	95,8	9,93	99,3	
20,0	18,2	91,5	20,8	104,1	20,4	101,9	
50,0	51,4	102,8	52,1	104,2	53,3	106,6	

particulada, onde os componentes inorgânicos são pouco solúveis em água e são normalmente dissolvidos por meio de processos mais drásticos²², o procedimento de digestão mostrou-se eficiente.

Em amostras de águas naturais, grande parte do metal encontrase fortemente associado à matéria orgânica, sendo que em materiais inorgânicos, tais como óxidos e silicatos do tipo 1:1, acredita-se que o metal se encontra preferencialmente adsorvido por forças de ligação predominantemente eletroativas e, portanto, dependentes do pH²⁹. Neste caso, a redução do pH da amostra para valores inferiores ao ponto de carga zero destes componentes é suficiente para promover a dissolução de grande parte dos metais associados à fração particulada. Assim, apenas a destruição da matéria orgânica e a redução do pH podem ser suficientes para a determinação de metais por voltametria de redissolução, tanto para a fração dissolvida, quanto para a amostra *in natura*.

Os resultados obtidos para a partição do cobre em amostras dos rios Iraí e Iguaçu encontram-se na Tabela 4. Os teores de cobre obtidos neste trabalho são compatíveis com dados apresentados na literatura^{9,30}. Para o Rio Iguaçu, observam-se níveis superiores de cobre total recuperável e dissolvido, respectivamente 6,63 e 2,86 µg L⁻¹, em comparação às concentrações determinadas para o Rio Iraí, que são iguais a 2,37 μg L⁻¹ para a fração total recuperável e 1,48 μg L⁻¹ para o cobre presente na fração dissolvida. Os resultados contidos na Tabela 4 também permitem observar comportamentos distintos quanto a partição do cobre entre o material particulado em suspensão e a fração dissolvida, quando são comparados os dois rios. Para o Rio Iguaçu, cerca de 57% do cobre encontra-se associado ao material particulado e aproximadamente 43% permanece na fração dissolvida. No Rio Iraí observa-se um comportamento contrário, onde a maior parte do cobre, cerca de 62%, encontra-se presente na fração dissolvida, enquanto 38% estão ligados ao material particulado em suspensão. Estes resultados refletem comportamentos típicos observados nestes corpos de água33 e também estão de acordo com aqueles encontrados na literatura, nos quais os componentes presentes na fração dissolvida podem ser responsáveis pela complexação de 40 a 50% do cobre recuperável presente na amostra³⁴. No caso do Rio Iraí, o elevado teor de cobre na fração dissolvida pode ser conseqüência da presença de compostos coloidais que são computados nesta fração, embora tenham características de material sólido^{1,2,33}.

A aplicação da técnica de competição de ligantes, empregando etilenodiamina como ligante de competição^{30,33}, permite a avaliação da especiação química do cobre em águas naturais através da detecção de uma fração denominada lábil, que corresponde ao somatório das concentrações livre e cineticamente reversíveis do metal. Os resultados obtidos para amostras típicas dos rios Iraí e Iguaçu também são mostrados na Tabela 4. É possível observar que no caso do Rio Iguaçu, aproximadamente 3% do cobre encontra-se na forma lábil, ou seja, aquela considerada biodisponível. Para o Rio Iraí, nota-se que a fração lábil corresponde a cerca de 6% do total recuperável. A diferença de comportamento observada para o metal nos dois rios deve-se, provavelmente, às características de ambos. O Rio Iguaçu apresenta teores mais elevados de sólidos suspensos totais e também de carbono orgânico dissolvido, o que contribui para uma diminuição das concentrações lábeis do metal. Ao contrário, o Rio Iraí apresentou teores mais baixos de sólidos suspensos totais e carbono orgânico dissolvido. Tais características resultam em níveis mais elevados do cobre na fração denominada lábil.

CONCLUSÕES

O procedimento de digestão para amostras de águas naturais proposto neste trabalho mostrou-se bastante eficiente na destruição da matéria orgânica dissolvida e proporcionou igualmente bons resultados para a digestão de amostras *in natura*, ou seja, aquelas contendo material particulado em suspensão.

Testes de recuperação para cobre realizados em soluções contendo ácido húmico comercial, em suspensões de solo e em amostras de águas naturais apresentaram resultados satisfatórios, tanto para a fração dissolvida quanto para a amostra *in natura*. Os percentuais de recuperação situaram-se na faixa entre 90 e 110%.

A digestão de águas naturais pôde ser realizada em um tempo de apenas 6 min no caso de amostras filtradas e de 12 min para amostras *in natura*. Além disso, todo o procedimento foi desenvolvido sem a ocorrência de contaminações ou perdas significativas da espé-

Tabela 3. Testes de recuperação para a fração dissolvida e para a amostra *in natura* de águas naturais, coletadas em janeiro de 2002, enriquecidas com cobre (μg L⁻¹)

	Fração dissolvida*			Amostra in natura**		
	[Cu] adic.	[Cu] det.	Rec. (%)	[Cu] adic.	[Cu] det.	Rec. (%)
Rio Iraí	0,00	3,80	-	0,00	11,2	-
	2,00	5,80	100,0	10,0	20,9	98,5
	5,00	9,17	107,4	20,0	31,5	101,9
	10,0	13,4	95,9	30,0	42,2	103,5
Rio Iguaçu	0,00	2,69	-	0,00	4,48	-
	2,00	4,67	99,0	10,0	15,1	106,3
	5,00	7,87	103,6	20,0	23,6	95,4
	10,0	12,7	100,6	30,0	34,6	100,4

^{*}Amostras irradiadas durante 6 min na presença de 12 µL de H₂O₂. **Amostras irradiadas durante 12 min na presença de 24 µL de H₂O₃.

Tabela 4. Especiação química do cobre (μg L⁻¹) em águas dos Rios Iraí e Iguaçu coletadas em março de 2002

	CuTR	CuTD	Cu particulado	Cu complexado*	Cu lábil*
Rio Iraí	2,37	1,48 (62)	0,89 (38)	1,34 (56)	0,14 (6)
Rio Iguaçu	6,63	2,86 (43)	3,77 (57)	2,66 (40)	0,20 (3)

CuTR - cobre total recuperável, CuTD - cobre total dissolvido. Entre parênteses, a porcentagem de cobre associado a cada fração. *Cobre presente na fração dissolvida.

cie de interesse. De uma maneira geral, o procedimento aqui apresentado constitui-se em uma alternativa viável em estudos de partição e especiação de metais em águas naturais quando comparado com métodos convencionais de digestão.

REFERÊNCIAS

- 1. Allen, H. E.; Hansen, D. J.; Water Environ. Res. 1996, 68, 42.
- 2. Benoit, G.; Rozan, T. F.; Geochim. Cosmochim. Acta. 1999, 63, 103.
- 3. Shi, B.; Allen, H. E.; Grassi, M.T.; Ma, H. Z.; Water Res. 1998, 32, 3756.
- 4. Grassi, M. T.; Shi, B.; Allen, H. E.; J. Braz. Chem. Soc. 2000, 11, 516.
- Guo, L.; Hunt, B. J.; Santschi, P. H.; Ray, S. M.; Environ. Sci. Technol. 2001, 35, 885.
- Achterberg, E. P.; Braungardt, C. B.; Sandford, R. C.; Worsfold, P. J.; Anal. Chim. Acta 2001, 440, 27.
- Guéguen, C.; Belin, C.; Thomas, B. A.; Monna, F.; Favarger, P. Y.; Dominik, J.; Anal. Chim. Acta 1999, 386, 155.
- 8. Florian, D.; Knapp, G.; Anal. Chem. 2001, 73, 1515.
- Campos, M. L. A. M.; Mello, L. G.; Zanette, D. R.; Sierra, M. M. de S.; Bendo, A.; Quim. Nova 2001, 24, 257.
- van den Berg, C. M. G. Em Chemical Oceanography; Riley, J. P., ed.; Academic Press: London, 1988.
- 11. Müller, F. L. L.; Gulin, S. B.; Kalvøy, A.; Mar. Chem. 2001, 76, 233.
- 12. Kovacevic, Z. L.; Sipos L.; Talanta 1998, 45, 843.
- Balconi, M. L.; Borgarello, M.; Ferraroli, R.; Realini, F.; Anal. Chim. Acta 1992, 261, 295.
- 14. Lamble, K. J.; Hill, S. J.; Analyst 1998, 123, 103R.
- Braungardt, C.; Achterberg, E. P.; Nimmo, M.; Anal. Chim. Acta 1992, 377, 205.

- Achterberg, E. P.; van den Berg, C. M. G.; Anal. Chim. Acta 1994, 291, 213
- 17. Klán, P.; Literák, J.; Relich, S.; J. Photochem. Photobiol., A 2001, 143,
- Iwaguch, S; Matsumura, K.; Tokuoka, Y.; Wakui, S.; Kawashima, N.; Colloids Surf., B 2002, 25, 299.
- Walter, P. J.; Chalk, H. M.; Kingston, H. M. Em Microwave Enhanced Chemistry: Fundamentals, Sample Preparation and Applications, Kingstone, H. M.; Haswell, S. J., eds.; ACS: Washington D.C., 2002.
- Jin, Q.; Liang, F.; Zhang, H.; Zhao, L.; Huan, Y.; Song, D.; TrAC, Trends Anal. Chem. 1999, 18, 479.
- 21. Oliveira, E. de; J. Braz. Chem. Soc. 2003, 14,174.
- Krug, F. J.; I workshop on methods of sample praparation, Piracicaba, Brasil, 1996.
- 23. Campos, M. L. A. M.; Bendo, A.; Viel, F. C.; Quim. Nova 2002, 25, 808.
- 24. Benoit, G.; Hunter, K. S.; Rozan, T. F.; Anal. Chem. 1997, 69, 1006.
- 25. Wang, G. S.; Hsieh, S. T.; Hong, C. S.; Water Res. 2000, 34, 3882.
- 26. Wang, G. S.; Liao, C. H.; Wu, F. J.; Chemosphere 2001, 42, 379.
- 27. Církva, V.; Hájek, M.; J. Photochem. Photobiol., A 1999, 123, 21.
- Klán, P.; Literák, J.; Hájek, M.; J. Photochem. Photobiol., A 1999, 128,
- 29. Sodré, F. F.; Lenzi, E.; Costa, A. C. S. da; Quim. Nova 2001, 24, 324.
- 30. Scarano, G.; Bramanti, E.; Zirino, A.; Anal. Chim. Acta 1992, 24, 123.
- Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B.; J. Phys. Chem. Ref. Data 1988, 17, 513.
- 32. Oliveira, M. C.; Nogueira, R. F. P.; Gomes Neto, J. A.; Jardim, W. F.; Rohwedder, J. J. R.; *Quim. Nova* **2001**, *24*, 188.
- 33. Grassi, M. T.; Sodré, F. F.; J. Phys. IV 2003,107,1283.
- Windom, H. L.; Byrd, T.; Smith, R. G.; Huan, F.; Environ. Sci. Technol. 1991, 25, 1137.