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Genetic algorithm and partial least square (GA-PLS) and kernel PLS (GA-KPLS) techniques were used to investigate the 
correlation between retention indices (RI) and descriptors for 117 diverse compounds in essential oils from 5 Pimpinella species 
gathered from central Turkey which were obtained by gas chromatography and gas chromatography-mass spectrometry. The square 
correlation coefficient leave-group-out cross validation (LGO-CV) (Q2) between experimental and predicted RI for training set by 
GA-PLS and GA-KPLS was 0.940 and 0.963, respectively. This indicates that GA-KPLS can be used as an alternative modeling tool 
for quantitative structure–retention relationship (QSRR) studies. 
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INTRODUCTION 

Essential oils also called volatile or ethereal oils are aromatic oily 
liquids obtained from different plant parts and widely used as food 
flavours.1 The composition of essential oil has been extensively in-
vestigated because of its commercial interest in the fragrance industry 
(soaps, colognes, perfumes, skin lotion and other cosmetics), in aro-
matherapy (relaxant), in cancer treatment, in pharmaceutical prepara-
tions for its therapeutic effects as a sedative, spasmolytic, antioxidant, 
antiviral and antibacterial agent. Recently it has also been employed 
in food manufacturing as natural flavouring for beverages, ice cream, 
candy, baked goods and chewing gum.2,3 Pimpinella is representing 
in Turkey by 23 spp. (5 endemic), 2 subspecies, and 2 varieties rep-
resenting 27 taxa.4 The most widely known and cultivated Pimpinella 
species is P. anisum. Pimpinella anisum (Anis) fruits (Aniseed) have 
been use in Turkish folk medicine as carminative, appetizers, seda-
tive, and agents to increase milk secretion.5 Aniseed is an important 
agricultural crop of Turkey. The main volatile compounds found in 
Pimpinella oils were monoterpenes, sesquiterpenes, trinorsesquiter-
penes and phenylpropanoids (propenylphenols, pseudoisoeugenols). 
These entire compounds have been identified by gas chromatography 
and gas chromatography-mass spectrometry (GC–MS).

However, in the case of GC the identification of chromatographic 
peaks is just carry out by means of comparison of retention indices 
with reference compounds. This means that due to the complexity 
of the matrix, some of the components may not be identify. On the 
other hand, such a study requires the availability of the standards for 
all components of the essential oil that sometimes are not available. 
For GC–MS technique, much more components are qualitatively 
and quantitatively analyzed, but the determination is performed only 
through the direct similarity searches in MS database attached to the 
GC–MS instruments. There exist at least two serious problems for 
this approach. First, the background cannot be accurately corrected. 

Second, there are always overlapping/ embedded peaks even under 
good separating conditions. Both problems can possibly result in 
wrong similarity matches in the MS library. In recent decades, 
by developing hyphenated techniques such as GC–MS and high 
performed liquid chromatography-mass spectrometry (HPLC–MS), 
with two-dimensional data, which can provide information both in 
the chromatographic and spectral directions in one run, have become 
available. Thus, the qualitative and quantitative analysis of compo-
nents can be performed not only with retention indices, peak heights 
and areas but also by ultra violent (UV) and/or mass spectra.6,7

Chromatographic retention for capillary column gas chromato-
graphy is the calculated quantity, which represents the interaction 
between stationary liquid phase and gas-phase solute molecule. This 
interaction can be related to the functional group, electronic and 
geometrical properties of the molecule.8,9

Mathematical modeling of these interactions helps chemists 
to find a model that can be used to obtain a deep understanding 
about the mechanism of interaction and to predict the retention 
indices (RI) of new or even unsynthesized compounds.10 Building 
retention prediction models may initiate such theoretical approach, 
and several possibilities for retention prediction in GC. Among all 
methods, quantitative structure-retention relationships (QSRR) are 
most popular. In QSRR, the retention of given chromatographic 
system was modeled as a function of solute (molecular) descriptors. 
A number of reports, deals with QSRR retention indices calculation 
of several compounds have been published in the literature.11-13 The 
QSRR models apply to partial least squares(PLS) method often 
combined with genetic algorithms (GA) for feature selection.14,15 

Because of the complexity of relationships between the property of 
molecules and structures, nonlinear models are also used to model the 
structure–property relationships. Nonlinear kernel-based algorithms as 
kernel partial least squares (KPLS) have been proposed.16, 17 The basic 
idea of KPLS is first to map each point in an original data space into a 
feature space via nonlinear mapping and then to develop a linear PLS 
model in the mapped space. According to Cover’s theorem, nonlinear 
data structure in the original space is most likely to be linear after 
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high-dimensional nonlinear mapping.18 Therefore, KPLS can efficien-
tly compute latent variables in the feature space by means of integral 
operators and nonlinear kernel functions. Compared to other nonlinear 
methods, the main advantage of the kernel based algorithm is that it 
does not involve nonlinear optimization. It essentially requires only 
linear algebra, making it as simple as the conventional linear PLS. In 
addition, because of its ability to use different kernel functions, KPLS 
can handle a wide range of nonlinearities. In the present study, GA-PLS 
and GA-KPLS were employed to generate QSRR models that correlate 
the structure of some compound; with observed RI. 

EXPERIMENTAL

Data set

Retention indices of essential oils from 5 Pimpinella species gath-
ered from central Turkey (Pimpinella anisetum, Pimpinella anisum, 
Pimpinella cappadocica var. cappadocica, Pimpinella flabellifolia 
and Pimpinella isaurica) was studied by GC-FID and GC–MS, which 
contains 117 compounds19 (Table 1). Quantification of essential oil 
components was performed on the basis of their GC-FID peak areas on 
the Innowax column and percentages of the characterized components. 
The identification of the volatile organic compounds was achieved 
through retention indices and mass spectrometry by comparison mass 
spectra of the unknown peaks with those stored in the Wiley GC–MS 
Library, MassFinder and the in-house “Baser Library of Essential Oil 
Constituents” which includes over 3200 genuine compounds with 
MS and retention data. The n-Alkanes (C9-C20) were used as refer-
ence points in the calculation of retention indices. Essential oils of 
Pimpinella species were subjected to silica gel column chromatography 
using n-hexane and diethyl ether according to previous procedures.19 
Structure elucidation of isolated compounds was achieved by 1D and 
2D NMR techniques (Bruker Avance DRX 300, 400 and 500) and 
LC-electrospray ionization-MS and GC–MS were used to confirm 
molecular weights. Isolated compounds were re-analyzed by GC–MS 
to confirm their identity with Pimpinella essential oil constituents and 
mass spectral fragmentation patterns. Essential oils were analyzed by 
GC using a Agilent Technologies 6890 system (SEM, Istanbul, Turkey) 
and an HP Innowax FSC (60 m × 0.25 mm i.d., 0.25 mm film thickness) 
with nitrogen as the carrier gas at 1 mL/min. Flame ionization detection 
and injector temperatures were performed at 250 oC. GC–MS analysis 
was also performed by Hewlett Packard G1800A GCD system (SEM, 
Istanbul, Turkey) and an HP Innowax FSC column (60 m × 0.25 mm, 
0.25 mm film thickness) was used with helium as the carrier gas (0.7 mL/
min). GC oven temperature and analytical conditions were as described 
above. Mass spectra were recorded at 70 eV. Mass range was from m/z 
35 to 425. The RI of these compounds was decreased in the range of 
2931 and 1032 for both Hexadecanoic acid and a-Pinene, respectively.

In order to evaluate the generated models, we used leave-group-
out cross validation (LGO-CV). This methodology systematically 
removed one group data at a time from the data set. A QSRR model 
was then constructed on the basis of this reduced data set and sub-
sequently used to predict the removed data set. This procedure was 
repeated until a complete set of predicted was obtained. 

Descriptor calculation

All structures were drawn with the HyperChem software (version 
6). Optimization of molecular structures was carried out by semi-
empirical AM1 method using the Fletcher- Reeves algorithm until the 
root mean square gradient of 0.01 was obtained. Since the calculated 
values of the electronic features of molecules will be influenced by the 
related conformation. In the current research an attempt was made to 

use the most stable conformations. Some electronic descriptors such as 
dipole moment and orbital energies of LUMO and HOMO were calcu-
lated by using the HyperChem software. Also optimized structures were 
used to calculate 1497 descriptors by DRAGON software20 version 3. 

Genetic algorithm

Genetic algorithm has been proposed by J. Holland in the early 
1970s but it was possible to apply them with reasonable computing 
times only in the 1990s, when computers became much faster. GA is 
a stochastic method to solve the optimization problems, defined by 
fitness criteria applying to the evolution hypothesis of Darwin and 
different genetic functions, i.e., crossover and mutation.21 Compared 
to the traditional search and optimization procedures, GA is robust, 
global and generally more straightforward to apply to situations 
where there is little or no a priori knowledge about the process to 
be controlled. Since GA does not require derivative information or 
a formal initial estimate of the solution region and because of the 
stochastic nature of the search mechanism, it is capable to search the 
entire solution space with a greater probability of finding the global 
optimum.22 In GA, each individual of the population, defined by a 
chromosome of binary values as the coding technique, represented 
a subset of descriptors. The number of genes at each chromosome 
was equal to the number of descriptors. The population of the first 
generation was selected randomly. A gene was given the value of one, 
if its corresponding descriptor was included in the subset; otherwise, 
it was given the value of zero. The GA performs its optimization by 
variation and selection via the evaluation of the fitness function h. 
Fitness function was used to evaluate alternative descriptor subsets 
that were finally ordered according to the predictive performance of 
related model by cross validation. The fitness function was proposed 
by Depczynski et al..23 The root-mean-square errors of calibration 
(RMSEC) and prediction (RMSEP) were calculated and the fitness 
function was calculated by Equation 1

	 h = {[(mc – n – 1)RMSEC2 + mpRMSEP2]/(mc + mp – n – 1)}1/2	(1)

where mc and mp are the number of compounds in the calibration 
and prediction set and n represent the number of selected variables, 
respectively. The parameter algorithm reported in Table 2.

Linear model

Partial least squares
PLS is a linear multivariate method for relating the process 

variables X with responses Y. PLS can analyze data with strongly 
collinear, noisy, and numerous variables24 in both X and Y. PLS re-
duces the dimension of the predictor variables by extracting factors 
or latent variables that are correlated with Y while capturing a large 
amount of the variations in X. This means that PLS maximizes the 
covariance between matrices X and Y. In PLS, the scaled matrices X 
and Y are decomposed into score vectors (t and u), loading vectors 
(p and q), and residual error matrices (E and F):

	 	 (2)

where a is the number of latent variables. In an inner relation, the 
score vector t is linearly regressed against the score vector u. 

	 Ui = biti+hi 	 (3)
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Table 1. The data set and the corresponding observed and predicted RI values by GA-KPLS for the training and test sets

No Name RI Exp RI Cal REa AbsEb

Training set
1 a-Pinene 1032 1030 0.19 2
2 Camphene 1076 1042 3.16 34
3 b-Pinene 1118 1086 2.86 32
4 d-3-Carene 1159 1238 6.82 79
5 Myrcene 1174 1193 1.62 19
6 a-Terpinene 1188 1197 0.76 9
7 Limonene 1203 1237 2.83 34
8 (Z)-b-Ocimene 1246 1184 4.98 62
9 g-Terpinene 1255 1233 1.75 22
10 (E)-b-Ocimene 1266 1292 2.05 26
11 Terpinolene 1290 1312 1.71 22
12 Isogeijerene 1304 1397 7.13 93
13 Geijerene 1338 1363 1.87 25
14 Clavukerin B 1455 1453 0.14 2
15 trans-Sabinene hydrate 1474 1439 2.37 35
16 d-Elemene 1479 1401 5.27 78
17 d-Ylangene 1493 1542 3.28 49
18 a-Copaene 1497 1525 1.87 28
19 Pregeijerene B 1503 1507 0.27 4
20 a-Bergamotene 1545 1580 2.27 35
21 Linalool 1553 1572 1.22 19
22 cis-Sabinene hydrate 1556 1607 3.28 51
23 Pregeijerene 1594 1684 5.65 90
24 Bornyl acetate 1597 1627 1.88 30
25 b-Elemene 1600 1638 2.38 38
26 Thymol methylether 1604 1612 0.50 8
27 Terpinen-4-ol 1611 1611 0.00 0
28 b-Caryophyllene 1612 1636 1.49 24
29 Sesquisabinene 1649 1721 4.37 72
30 b-Elemene 1650 1621 1.76 29
31 a-Himachalene 1661 1619 2.53 42
32 (Z)-Farnesene 1668 1584 5.04 84
33 cis-p-Mentha-2,8-dien-1-ol 1678 1650 1.67 28
34 a-Humulene 1687 1646 2.43 41
35 Guaioxide 1697 1728 1.83 31
36 g-Muurolene 1704 1712 0.47 8
37 g-Himachalene 1705 1794 5.22 89
38 Germacrene D 1722 1737 0.87 15
39 a-Zingiberene 1725 1723 0.12 2
40 Valensene 1740 1782 2.41 42
41 b-Bisabolene 1741 1791 2.87 50
42 Eremophilene 1743 1806 3.61 63
43 Bicyclogermacrene 1755 1770 0.85 15
44 d-Cadinene 1773 1743 1.69 30
45 (E,Z)-2,4-Decadienal 1779 1776 0.17 3
46 (Z)-Anethole 1780 1860 4.49 80
47 b-Sesquiphellandrene 1783 1824 2.30 41
48 Kessane 1785 1836 2.86 51
49 3,10-Dihydro-1,4- dimethylazulene 1787 1851 3.58 64
50 4,10-Dihydro-1,4- dimethylazulene 1815 1861 2.53 46
51 (E)-Anethole 1845 1842 0.16 3
52 Germacrene B 1854 1826 1.51 28
53 (E)-Geranyl acetone 1868 1803 3.48 65
54 2,5-Dimethoxy-p-cymene 1878 1870 0.43 8
55 Traginone 1881 1907 1.38 26
56 Dodecyl acetate 1893 1934 2.17 41
57 4-Hydroxy-2-methyl acetophenone 1942 1986 2.27 44
58 Chavicol acetate 1970 2087 5.94 117
59 Isocaryophyllene oxide 2001 1972 1.45 29
60 Caryophyllene oxide 2008 1968 1.99 40
61 1-Allyl-2,4- dimethoxybenzene 2012 2016 0.20 4

No Name RI Exp RI Cal REa AbsEb

Training set
62 Anisaldehyde 2065 2081 0.77 16
63 Humulene epoxide II 2071 2197 6.08 126
64 p-Cresol 2094 2099 0.24 5
65 Elemol 2096 2117 1.00 21
66 Globulol 2098 2166 3.24 68
67 Guaiol 2103 2114 0.52 11
68 Spathulenol 2144 2119 1.17 25
69 Dictamnol 2170 2134 1.66 36
70 T-Muurolol 2209 2158 2.31 51
71 trans-Isoosmorhizole 2212 2215 0.14 3
72 ar-Turmerol 2214 2237 1.04 23
73 a-Bisabolol 2232 2285 2.37 53
74 Carvacrol 2239 2258 0.85 19
75 Elemicine 2245 2257 0.53 12
76 trans-a-Bergamotol 2247 2165 3.65 82
77 4-(2-Propenyl)- phenylangelate 2252 2237 0.67 15
78 a-Cadinol 2255 2248 0.31 7
79 Alismol 2272 2360 3.87 88
80 Allohimachalol 2273 2234 1.72 39
81 4-(1-Propenyl)-phenyl-2-methyl bu-

tyrate
2284 2300 0.70 16

82 Caryophylladienol II 2324 2389 2.80 65
83 Anol 2343 2316 1.15 27
84 Octadecanal 2353 2353 0.00 0
85 Eudesma-4 (15),7-dien-1 -ol 2370 2383 0.55 13
86 Caryophyllenol II 2392 2451 2.47 59
87 4-(1-Propenyl)-phenyl tiglate 2406 2437 1.29 31
88 Pseudoisoeugenyl-2-methyl butyrate 2567 2670 4.01 103
89 Epoxy pseudoisoeugenyl-2 methyl 

butyrate
2698 2731 1.22 33

90 4-Methoxy-2-(3-methyloxiranyl)-
phenyl angelate

2825 2608 7.68 217

91 4-Methoxy-2-(3-methyloxiranyl)-
phenyl tiglate

2926 2786 4.78 140

92 Hexadecanoic acid 2931 2864 2.29 67
Test set   
93 a-Thujene 1035 1009 2.51 26
94 Sabinene 1132 1091 3.62 41
95 b-Phellandrene 1218 1196 1.81 22
96 p-Cymene 1280 1268 0.94 12
97 Longipinene 1469 1531 4.22 62
98 Bicycloelemene 1495 1504 0.60 9
99 b-Cubebene 1549 1647 6.33 98
100 trans-a-Bergamotene 1595 1593 0.13 2
101 trans-p-Mentha-2,8-dien-1-ol 1639 1772 8.11 133
102 Sabinaketone 1651 1637 0.85 14
103 Methyl chavicol 1687 1734 2.79 47
104 a-Terpineol 1706 1692 0.82 14
105 a-Himachalene 1740 1634 6.09 106
106 (E,E)-a-Farnesene 1758 1782 1.37 24
107 ar-Curcumene 1786 1788 0.11 2
108 Dehydrocostus lactone 1867 1801 3.54 66
109 a-Calacorene 1941 1982 2.11 41
110 Salvial-4(14)-en-1-one 2037 2183 7.17 146
111 Viridiflorol 2104 2162 2.76 58
112 trans-Methyl isoeugenol 2209 2351 6.43 142
113 Himachalol 2240 2289 2.19 49
114 b-Eudesmol 2257 2270 0.58 13
115 1,4-Dimethyl azulene 2291 2340 2.14 49
116 Chavicol 2353 2391 1.62 38
117 4-Methoxy-2-(1-propenyl)- phenyl 

angelate
2658 2412 9.26 246

a: Relative error. b: Absolute error
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where b is regression coefficient that is determined by minimizing 
the residual h. It is crucial to determine the optimal number of latent 
variables and cross validation is a practical and reliable way to test 
the predictive significance of each PLS component. There are several 
algorithms to calculate the PLS model parameters. In this work, the 
NIPALS algorithm was used with the exchange of scores.25

NONLINEAR MODEL

Kernel partial least squares
The KPLS method is based on the mapping of the original input 

data into a high dimensional feature space ℑ where a linear PLS 
model is created. By nonlinear mapping F:x∈ℜn → F(x)∈ℑ, a KPLS 
algorithm can be derived from a sequence of NIPALS steps and has 
the following formulation:26 1. Initialize score vector w as equal to any 
column of Y. 2. Calculate scores u = FFTw and normalize u to ||u|| = 
1, where F is a matrix of regressors. 3. Regress columns of Y on u: 
c = Y Tu, where c is a weight vector. 4. Calculate a new score vector 
w for Y: w = Yc and then normalize w to ||w||=1. 5. Repeat steps 2–4 
until convergence of w. 6. Deflate FFT and Y matrices:

	 FFT = (F – uuTF)(F – uuTF)T 	 (4)

	 Y = Y − uuTY 	 (5)

7. Go to step 1 to calculate the next latent variable.
Without explicitly mapping into the high-dimensional feature 

space, a kernel function can be used to compute the dot products 
as follows:

	 k(xi,xj) = F (xi)
T(F(xj)	 (6)

FFT represents the (n×n) kernel Gram matrix K of the cross dot 
products between all mapped input data points F(xi),i = 1,…,n. The 
deflation of the FFT = K matrix after extraction of the u components 
is given by:

	 K = (I − uuT)K(I − uuT) 	 (7)

where I is an m-dimensional identity matrix. Taking into account the 
normalized scores u of the prediction of KPLS model on training 
data  ^

Y is defined as:

	 ^
Y = KW(UTKW)–1UTY = UUTY	 (8) 

For predictions on new observation data  ^
Yt, the regression can 

be written as:

	 ^
Yt = KtW(UTKW)–1UTY 	 (9)

where Kt is the test matrix whose elements are Kij =K(xi, xj) where xi 
and xj present the test and training data points, respectively.

Software and programs

A Pentium IV personal computer (CPU at 3.06 GHz) with 
windows XP operational system was used. Geometry optimization 
was performed by HyperChem (version 7.0 Hypercube, Inc.); 
Dragon software was used to calculate of descriptors. MINITAB 
software (version 14, MINITAB) was used for the simple PLS 
analysis. Cross validation, GA-PLS, GA-KPLS and other calcu-
lation were performed in the MATLAB (Version 7, Mathworks, 
Inc.) environment.

Model validation

Validation is a crucial aspect of any QSPR/QSRR modeling.27 
The accuracy of proposed models was illustrated using the evalua-
tion techniques such as leave-group-out cross validation (LGO-CV) 
procedure and validation through an external test set.

Cross validation technique

Cross validation is a popular technique used to explore the 
reliability of statistical models. Based on this technique, a number 
of modified data sets are created by deleting in each case one or 
a small group (leave-some-out) of objects. For each data set, an 
input–output model is developed, based on the utilized modeling 
technique. Each model is evaluated, by measuring its accuracy in 
predicting the responses of the remaining data (the ones or group 
data that have not been utilized in the development of the model).28 
In particular, the LGO procedure was utilized in this study. A QSRR 
model was then constructed on the basis of this reduced data set 
and subsequently used to predict the removed data. This procedure 
was repeated until a complete set of predicted was obtained. The 
statistical significance of the screened model was judged by the 
correlation coefficient (Q2). The predictive ability was evaluated 
by the cross validation coefficient (Q2 or R2

cv) which is based on 
the prediction error sum of squares (PRESS) and was calculated 
by following equation:

	  	 (10)

Where yi, 
^yi and y– were respectively the experimental, predicted, 

and mean RI values of the samples. The accuracy of cross validation 
results is extensively accepted in the literature considering the Q2 
value. In this sense, a high value of the statistical characteristic 
(Q2 > 0.5) is considered as proof of the high predictive ability of 
the model.29 However, this assumption is in many cases incorrect 
and can be that exist the lack of the correlation between the high 
Q2 and the high predictive ability of QSPR/QSRR models has 
been established and corroborated recently.27 Thus, the high value 
of Q2 appears to be necessary but not sufficient condition for the 
models to have a high predictive power. These authors stated that 

Table 2. Parameters of the genetic algorithm

Population size 30 Chromosome

Average on variables per chromosome in the \
original population

Five

Regression method PLS and KPLS

Cross validation Leave-Group-Out

Number subset Four

Elitism True

Crossover Multi Point

Probability of crossover 50%

Mutation Multi Point

Probability of mutation 1%

Maximum number of components for PLS 10 

Number of runs 100
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an external set is necessary. As a next step, further analysis was also 
followed for chemical property of the new set of compounds using 
the developed QSRR model.

Validation through the external test set

Validating QSRR with external data (i.e. data not used in the 
model development) is the best method of validation. However the 
availability of an independent external test set of several compounds 
is rare in QSRR. Thus, the predictive ability of a QSRR model with 
the selected descriptors was further explored by dividing the full data 
set. The predictive power of the models developed on the selected 
training set is estimated on the predicted values of test set chemicals. 
The data set was randomly divided into two groups including training 
set (calibration and prediction sets) and test set, which consists of 
92 and 25 molecules, respectively. The calibration set was used for 
model generation. The prediction set was applied deal with overfitting 
of the network, whereas test set which its molecules have no role in 
model building was used for the evaluation of the predictive ability 
of the models for external set. The result clearly displays a significant 
improvement of the QSRR model consequent to non-linear statistical 
treatment and a substantial independence of model prediction from the 
structure of the test molecule. In the above analysis, the descriptive 
power of a given model has been measured by its ability to predict 
partition of unknown drugs. For instance, as to prediction ability, it 
can be observed in Figure 1 that scattering of data points from the 
ideal trend in test set is poor.

RESULTS AND DISCUSSION

Results of linear model 

To reduce the original pool of descriptors to an appropriate size, 
the objective descriptor reduction was performed using various cri-
teria. Reducing the pool of descriptors eliminates those descriptors 
which contribute with no information or whose information content 
is redundant with other descriptors present in the pool. After this 
process, 1007 descriptors remained. These descriptors were employed 
to generate the models with the GA-PLS and GA KPLS program. 
The best model is selected on the basis of the highest multiple cor-
relation coefficient leave-group-out cross validation (LGO-CV) (Q2), 
as well as the simplicity of the model. The best PLS model contains 
10 selected descriptors in 4 latent variables space. These descriptors 
were obtained constitutional descriptors (number of atoms (nAT), 
number of bonds (nBT) and number of Hydrogen atoms (nH)), to-
pological descriptors (polarity number (Pol)) and (Balaban distance 
connectivity index (J)), Burden eigenvalues (lowest eigenvalue n. 2 
of Burden matrix/weighted by atomic polarizabilities (BELp2) and 

lowest eigenvalue n. 6 of Burden matrix/weighted by atomic polariza-
bilities (BELp6)), atom-centred fragments (CH3R/CH4 (C-001)) and 
electronic descriptor (lowest unoccupied molecular orbital (LUMO) 
and dipole moment (µ)). For this in general, the number of components 
(latent variables) is less than number of independent variables in PLS 
analysis. The obtained statistic parameters of the GA-PLS model were 
shown in Tables 3 and 4. The PLS model uses higher number of des-
criptors that allow the model to extract better structural information 
from descriptors to result in a lower prediction error. The statistical 
parameters R2, Q2, least root mean squares error (RMSE), absolute 
error (AbsE) and relative error (RE) of prediction were obtained for 
GA-PLS proposed model. These parameters are probably the most 
popular measure of how well a model fits the data. The Root Mean 
Square Error (RMSE) is a frequently used measure of the difference 
between values predicted by a model and the values experimentally. 
The RMSE of a model prediction with respect to the estimated va-
riable Xmodel is defined as the square root of the mean squared error:

	 	 (11)

where Xobs is observed values and Xmodel is modeled values at time/
place i. The PLS model uses a higher number of descriptors that allow 
the model to extract better structural information from descriptors 
in order to result in a lower prediction error. With this mathematical 
model, we do not intend to explain the chromatographic phenomena 
but we propose a tool for the prediction of the performance of non-
evaluated compounds. 

Results of nonlinear model 

With the aim of improving the predictive performance of QSRR 
model, GA-KPLS modeling was performed. The leave-group-out 
cross validation (LGO-CV) has been performed. The n selected 
descriptors in each chromosome were evaluated by fitness function 
of PLS and KPLS based on the Equation 1. In this paper a radial basis 
kernel function, k(x,y)= exp(||x-y||2/c), was selected as the kernel 
function with c = rmσ2 where r is a constant that can be determined 
by considering the process to be predicted (here r set to be 1), m is 
the dimension of the input space and σ2 is the variance of the data.30 It 
means that the value of c depends on the system under the study. The 
7 descriptors in 2 latent variables space chosen by GA-KPLS feature 
selection methods were contained constitutional descriptors (number 
of atoms (nAT), mean atomic Sanderson electronegativity (scaled on 
Carbon atom) (Me)), Burden eigenvalues (lowest eigenvalue n. 2 of 
Burden matrix/weighted by atomic polarizabilities (BELp2), highest 
eigenvalue n. 2 of Burden matrix/weighted by atomic van der Waals 
volumes (BEHv2)), charge descriptors (maximum negative charge 
(qnmax)) and electronic descriptors (dipole moment (µ) and high 
occupied molecular orbital (HOMO)). 

For the constructed model, 5 general statistical parameters were 
selected to evaluate the prediction ability of the model for the RI. The 
statistical parameters R2, Q2, RE, AbsE and RMSE were obtained for 
proposed models. Each of the statistical parameters mentioned above 
were used for assessing the statistical significance of the QSRR model. 
Inspection of the results reveals a higher R2 and lowers other values 
parameter for the training and test sets GA-KPLS compared with 
their counterparts for GA-PLS. The GA-PLS linear model has good 
statistical quality with low relative error, while the corresponding 
errors obtained by the GA-KPLS model are lower. Plots of predicted 

Figure 1. Plot of predicted RI obtained by GA-KPLS against the experimental 
values
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Table 3. The statistical parameters of different constructed QSRR models

Model Training set

R2a Q2b REc RMSEd AbsEe Nf

GA-PLS 0.942 0.940 4.67 59.04 48.67 92

GA-KPLS 0.966 0.963 2.61 53.93 40.78 92

a: square correlation coefficient; b: square correlation coefficient leave-group-out cross validation; c: relative error; d: root mean square error; e: absolute 
error; f: number of compounds in training set

Table 4. The statistical parameters of different constructed QSRR models

Model Test set

R2a REb RMSEc AbsEd Ne

GA-PLS 0.914 6.13 93.20 71.84 25

GA-KPLS 0.938 3.52 81.60 58.4 25

a: square correlation coefficient; b: relative error; c: root mean square error; 
d: absolute error; e: number of compounds in test set

RI by GA-KPLS versus experimental RI values for training and test 
set are shown Figure 1. Obviously, there is a close agreement between 
the experimental and predicted RI and the data represent a very low 
scattering around a straight line with respective slope and intercept 
close to one and zero. This clearly shows the strength of GA-KPLS 
as a nonlinear feature selection method. This result indicates that the 
RI of essential oils possesses some nonlinear characteristics. 

Description of models descriptors

In the chromatographic retention of compounds in the polar sta-
tionary phases is related to the induced forces that are very important 
in retention of the compounds. The induced forces are related to the 
dipolar moment, which should stimulate dipole-induced dipole in-
teractions. Also, it is related to the dispersion forces. The dispersion 
forces related to steric factors, molecular size and branching. For 
these reasons, constitutional descriptors and electronic descriptors 
are very important. 

Electronic descriptors were defined in terms of atomic charges and 
used to describe electronic aspects both of the whole molecule and 
of particular regions, such atoms, bonds, and molecular fragments. 
This descriptor calculated by computational chemistry and therefore 
can be consider among quantum chemical descriptor. The eigenval-
ues of LUMO and HOMO and their energy gap reflect the chemical 
activity of the molecule. LUMO as an electron acceptor represents 
the ability to obtain an electron, while HOMO as an electron donor 
represents the ability to donate an electron. HOMO energy is a useful 
descriptor that presents information on the distribution of p electron 
and explains p-p charge transfer interactions of unsaturated com-
pounds. The lowest unoccupied molecular orbital (LUMO) energy 
can be interpreted as a measure of charge transfer interactions and/
or of hydrogen bonding effects.31,32

Constitutional descriptors are most simple and commonly used 
descriptors, reflecting the molecular composition of a compound 
without any information about its molecular geometry. The most 
common Constitutional descriptors are number of atoms, number 
of bound, absolute and relative numbers of specific atom type, ab-
solute and relative numbers of single, double, triple, and aromatic 
bound, number of ring, number of ring divided by the number of 
atoms or bonds, number of benzene ring, number of benzene ring 
divided by the number of atom, molecular weight and average 
molecular weight.

Burden eigenvalues descriptors defined as eigenvalues of a 
modified connectivity matrix, which could be called burden matrix 

B., the B matrix representing an H-depleted molecular graph. BCUT 
descriptor (Burden-CAS-University of Texas eigenvalues) are based 
on a significant extension of Burden approach, considering three 
classes of matrices whose diagonal elements correspond to 1) atomic 
charge-related values, 2) atomic polarizability-related values, and 3) 
atomic H-bond abilities.33

Topological descriptors are based on a graph representation of 
the molecule. They are numerical quantifiers of molecular topol-
ogy obtained by the application of algebraic operators to matrices 
representing molecular graphs and whose values are independent of 
vertex numbering or labeling. They can be sensitive to one or more 
structural features of the molecule such as size, shape, symmetry, 
branching and cyclicity and can also encode chemical information 
concerning atom type and bond multiplicity. Balaban index is a 
variant of connectivity index, represents extended connectivity and 
is a good descriptor for the shape of the molecules and modifying 
biological process. Nevertheless, some of chemists have used this 
index successfully in developing QSPR/QSRR models.

Charge descriptors were defined in terms of atomic charges and 
used to describe electronic aspects both of the whole molecule and 
of particular regions, such atoms, bonds, and molecular fragments. 
Charge descriptor calculated by computational chemistry and there-
fore can be consider among quantum chemical descriptor. Electrical 
charges in the molecule are the driving force of electrostatic inter-
actions, and it is well known that local electron densities or charge 
play a fundamental role in many chemical reactions, physic-chemical 
properties and receptors-ligand binding affinity.34

CONCLUSION 

In this study, an accurate QSRR model for estimating the retention 
indices (RI) of essential oils from five Pimpinella species gathered 
from central Turkey which obtained by GC and GC-MS was devel-
oped by employing the linear model (GA-PLS) and nonlinear model 
(GA-KPLS). The most important molecular descriptors selected 
represent the electronic, charge and constitutional descriptors that are 
known to be important in the retention mechanism of essential oils. 
Two models have good predictive capacity and excellent statistical 
parameters. The results obtained by GA-KPLS were compared with 
the results obtained by GA-PLS model. The results demonstrated 
that GA-KPLS was more powerful in the retention indices of the 
essential oils than GA-PLS. This model could accurately predict the 
partitioning of these components that did not exist in the modeling 
procedure. It was easy to notice that there was a good prospect for 
the GA-KPLS application in the QSRR modeling.
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