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This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration 
levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The 
method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural 
network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six 
performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the 
presented pollutant time series by using compact networks.
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INTRODUCTION

Pollution is one of the most relevant problems of metropolitan 
areas. With population growth and economical increases leading to 
new industry, environmental health problems have captured society’s 
interest. Problems that affect the ecosystem, such as noise pollution; 
garbage and its disposal; and, in particular, air pollution, have a direct 
effect on people’s health.1,2 

There are numerous air quality indicators that show pollution 
effects on people’s health.1,2 Some of the most important ones inclu-
de particulate matter (PM10), carbon monoxide (CO), sulfur dioxide 
(SO2), and nitrogen dioxide (NO2). When an indicator’s concentration 
level exceeds an established air quality safety threshold, severe he-
alth problems may affect humans.1,2 There are many environmental 
agencies around the globe that develop their own policies and have 
established air quality standards and indicators regarding allowed 
atmospheric pollutant levels. Environmental agencies use the indi-
cators as a monitoring measure, using a network of pollution and 
atmospheric sensors. The measurement results are observations 
equally spaced and ordered in time (e.g., hourly, daily, and monthly), 
resulting in a time series of pollutant concentrations. 

Methods used for time-series prediction are native to the statistics 
field, such as the autoregressive (AR) model and the autoregressive 
moving average (ARMA) model.3,4 Various intelligent models, such 
as artificial neural networks (ANNs),5,6 particle swarm optimization 
(PSO),7-10 genetic algorithms,11 and fuzzy logic,12-13 have been proposed.

In the forecasting field, particularly for air pollution proble-
ms,6,7,11,14-18 ANNs have been successfully applied.6,15 Brunelli used 
a recurrent neural network (Elman model) to predict daily maximum 
concentrations of SO2, O3, PM10, NO2, and CO in the city of Palermo.6 
Kurt et al. applied a feed forward ANN trained by back propagation 
with seven nodes in the input layer and ten nodes in the hidden layer 
to predict three air pollution indicator (SO2, PM10, and CO) levels for 
the next three days for districts in the greater Istanbul area.15 

However, use of an ANN requires the choice of a set of parameters 

and an appropriate architecture for the problem solution. Intelligent 
hybrid models7,9-13,16,18-19 that are a combination of different intelligent 
methods are proposed with the aim of achieving better prediction 
performance, with the intent of combining the strong points of several 
algorithms into a single system. There are some studies in the literatu-
re that use these ideas, where an intelligent search method is combined 
with an ANN to enhance a predictive system. Lu et al. combined a 
PSO model with an ANN to predict pollutant levels in the downtown 
area of Hong Kong.7 Wang and Lu proposed a multilayer perceptron 
(MLP) model trained by a PSO algorithm, and applied the hybrid 
approach for one step ahead (1-day) forecasting for daily maximum 
ozone (O3) levels in the Tsuen Wan and Tung Chung areas.16 Grivas 
and Chaloulakou used an optimization procedure based on a genetic 
algorithm for the selection of input variables for ANN models,17 and 
used the system for prediction of PM10 hourly concentrations in the 
greater Athens area.

The focus of this study is to employ a PSO algorithm for tuning 
and training an ANN. The resulting model is applied to time-series 
forecasting. On the basis of the authors’ knowledge of research 
literature, PSO has not been extensively used to predict time series 
of gaseous pollutants. In addition, a novelty of this study is the use 
of PSO to not only reach the relevant lags used in the prediction, but 
also to determine the best neural network architecture to forecast 
pollutant concentration levels. 

TIME SERIES

A time series is a set of observations of a variable of interest, 
representing a sequence of observations ordered in time. The variable 
is observed in discrete temporal points, usually equally spaced, and 
the analysis of such temporal behavior involves a description of the 
process or of the phenomenon that generated the sequence.3,20 A time 
series can be defined by Equation 1,

	 Xt = {Xt ∈  | t = 1, 2, 3 … N}	 (1)

where t is the temporal index and N is the number of observations. 
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Therefore, Xt is a sequence of observations ordered and equally 
spaced in time. The application of forecasting techniques relies on 
the ability to identify underlying regular patterns in the dataset that 
make it possible to create a model capable of generating subsequent 
temporal patterns.3,20 

A crucial point regarding the time-series prediction problem is 
to capture the temporal relationship of the given series data. Hence, 
through observation of the correct time lags, the dynamics that gene-
rated the real series can be reconstructed. This hypothesis is based on 
Takens theorem,21 which indicates that such reconstruction is possible. 
However, a major problem is the correct choice of relevant time lags. 
Therefore, the methodology used in this study is based on the search 
for the relevant time lags that provide a correct characterization of 
the process that governs a temporal series.9,19

ARTIFICIAL NEURAL NETWORKS

ANNs are computational modeling tools that find a wide variety 
of applications in modeling complex real-world problems.5,22 ANNs 
can be defined as structures composed of simple, adaptive, and mas-
sively interconnected processing elements (referred to as artificial 
neurons or nodes) that are capable of performing data processing 
and knowledge representation. 

A single neuron, or perceptron, shown in Figure 1, has two basic 
components. First, a weighted sum, s = Sn

i=1wixi + b of the inputs x1, 
x2, x3, …, xn, is calculated, where wiis the respective weight (synaptic 
weight) of the input xi and b is the bias of the neuron. Second, an 
activation function f(s) gives an output according to the result of s. 
A range of functions can assume the role of an activation function, 
including sigmoid, linear, and hyperbolic tangent functions.

A multilayer neural network or MLP consists of two or more 
layers, as follows: input layer, hidden layer(s), and output layer 
(Figure 2). When formed by two layers, it only possesses the input 
layer and the output layer. Each node in the input layer receives a 
unique input signal. Actually, the nodes in this layer are usually 
passive, meaning they do not process data, but only receive signals 
on their input and send them to the nodes in the next layer.5,22 When 
the network is formed by three or more layers, the layer(s) between 
the input and output layers is(are) denominated hidden layer(s). A 
hidden layer processes the signals sent to it by calculating a weighted 
summation and using a specific activation function. Then, the output 
layer receives the signals from the previous layer by performing a 
weighted summation and applying a particular activation function 
to the resultant sum. 

In this study, the neural networks used have the sigmoid function 

and the linear function as the activation functions of the hidden and 
output layers, respectively.

The dataset used for training, validating, and testing the neural 
network is divided into three groups. First, the training set, which 
usually consists of half or more of all data gathered. It is used by 
the ANN to adjust its weights and biases. Second is the validation 
set, which is used for validating the network training. It checks the 
network’s capability to generalize a series of input data. Finally, the 
test set is used to evaluate the network’s performance.5 The latter 
two sets consist of data that have not been previously presented to 
the network.

The training process is performed until any stop criterion is 
achieved. The errors associated with the stop criteria are the validation 
(generalization) and training errors. The test error is the network’s 
performance measurement based on the test set. The training, valida-
tion, and test errors are evaluated by comparing the actual observed 
data to the predicted data.

PARTICLE SWARM OPTIMIZATION

The PSO algorithm was developed by Eberhart and Kennedy 
in 1995.8 It is an evolutionary algorithm inspired by the behavior of 
flocks of birds or schools of fish searching for food. The algorithm 
seeks to optimize a population of random solutions. Each particle 
(individual) has a position and velocity, representing the solution 
to the optimization problem and the direction of the search in the 
search space. Particles adjust speed and position according to their 
best experiences. The algorithm determines the local best found by 
each particle individually and the global best, which is known by 
the entire swarm. 

The PSO theory assumes that in a population with size M, each 
individual i, where 1 ≤ I ≤ M, has a present position Xi, an associated 
velocity Vi, and a local best solution li In addition, each particle has a 
fitness function, which is the particle’s measure of merit and evalua-
tes the particle’s solution adequacy in solving a given problem. The 
particle local best is simply the best solution obtained by it up to the 
current iteration. The global best solution Xg is the best solution among 
all the particles. Parameters c1 and c2 are the acceleration constants of 
the particles, and influence the velocity at which the particles move 
in the search space. For each iteration cycle, the particle velocities 
are updated (accelerated) in the direction leading to the local and 
global minima: 

	 Vi(t) = wVi(t – 1) + c1r1(li – Xi(t)) + c2r2(Xg – Xi(t))	 (2)

Figure 1. A single model of a neuron

Figure 2. ANN model in this study
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The particles’ positions are updated using simple discrete 
dynamics:

	 Xi(t) = Xi(t –1) + Vi(t),	 (3)

where the term w is the inertia weight, and is used to balance the 
local and global search abilities of the algorithm, controlling the 
influence of previous information when updating the new velocity. 
Usually, the term w decreases linearly from 1 to approximately 0 
during the process.7 The parameters r1 and r2 are generated from a 
uniform random sequence in the interval [0, 1].

In the PSO algorithm, each individual in the population evolves 
according to its own experience, estimating its own quality. Since the 
individuals are social beings, they also exchange information with 
their neighbors. These two types of information correspond to indivi-
dual learning (cognitive: local knowledge) and cultural transmission 
(social: knowledge of the best position in the swarm), respectively. 
The algorithm is formulated as follows:8

1.	 Initialize parameters such as the acceleration constants, inertia 
weight, number of particles, maximum number of iterations, 
velocity boundaries, initial and constrained velocities and posi-
tions, and eventually the error limit for the fitness function.

2.	 Evaluate the particles’ fitness function values, comparing with 
each other, therefore setting the local best and global best.

3.	 In accordance with Equations (2) and (3), calculate a particle’s 
new speed and position, and then update each particle.

4.	 For each particle, compare the current fitness value with the local 
best. If the current value is better, update the local best fitness 
value and particle position with the current one.

5.	 For each particle, compare the current fitness value with the global 
best. If the current value is better, update the global best fitness 
value and particle position with the current one.

6.	 If a stop criterion is achieved, then stop the procedure, and output 
the results. Otherwise, return to step 2.

PROPOSED METHOD

This section describes the specifics for each of the models pro-
posed in this study.

PSO is used to find the best possible MLP structure (input and 
hidden layers’ size) and to train the MLP characteristics (weights and 
biases). The following remarks are necessary to understand how PSO 
is employed to train the MLP model using Equations (2) and (3): 
•	 One MLP neural network corresponds to one particle in PSO 

(with position and velocity properties). The components of each 
particle include the network structure (input and hidden layer 
sizes), the weights matrix, and the biases (hidden and output  
layers).

•	 The number of particles, in other words, the population size, de-
fines how many MLPs will be used to search the optimal network 
and its characteristics.

•	 All MLP individual characteristics (weights, bias, and structure) 
are updated serially during the search process for the optimal 
solution. Updates are made on the basis of Equations (2) and (3). 
The proposed hybrid system combines two intelligent techniques, 

PSO and ANNs. The idea is that each individual of the population, 
which is an ANN, is adjusted and has its structure dimensioned by 
PSO. Therefore, PSO will determine the following:
•	 The maximum number of time lags (MAX_LAGS). PSO searches 

in the interval [1, MAX_LAGS] for the relevant lags that better 
characterize the time series for each individual of the population.

•	 The number of hidden neurons; initially, a maximum number of 
neurons (MAX_NHIDDEN), so that PSO can search in the interval 

[1, MAX_NHIDDEN] for the optimum number of hidden neurons 
for each individual of the population.
With this methodology, it is possible to minimize the search 

time to determine the most compact network structure capable of 
representing the data. 

PSO, when calculating new velocities and positions, uses those 
values to update the number of units in the input layer, the number 
of neurons in the hidden layer, the weights (of the hidden and output 
layers), and the biases (of the hidden and output layers). In this 
study, four combinations of the PSO algorithm with MLP ANNs 
are explored.

PSO updates the parameters within these models. Then, a ne-
twork simulation is conducted to evaluate the network’s adequacy 
using the fitness function shown in Equation 4. This process is 
ended if any stopping criterion is reached. The model variations 
are as follows: 

In the first two models, only PSO updates the network’s archi-
tecture, and weights and biases matrices: 
1.	 PSO-MLP: The PSO algorithm adjusts the ANN parameters, 

where the input lags are time window observations.
2.	 PSO-MLP with nonconsecutive lags (NCL): The PSO algorithm 

has the ability to choose a nonconsecutive sequence of time lags. 
This characteristic is applied to achieve a more compact network 
structure, thus leading to lower computational costs.
In the last two models, the PSO and the Levenberg–Marquardt 

(LM) gradient descent algorithm are used to adjust network archi-
tecture and weights and bias matrices.
3.	 PSO-MLP-LM: At each predetermined stage in the algorithm 

(e.g, every 100 iterations), or at a stagnation point (e.g, when 
PSO is no longer able to enhance its prediction), the MLP trains 
the network. Training is also performed by the LM in an attempt 
to avoid stagnation.

4.	 PSO-MLP-LM with NCL: This model has two abilities. The first 
is it can choose a non-consecutive sequence of time lags and the 
second is the use of the LM in order to try to avoid stagnation.
The PSO individuals are evaluated by the following fitness 

function:

	 .	 (4)

The fitness function is used to evaluate the model’s performance. 
In this study, more adapted PSO individuals have higher fitness values, 
approaching a value of 1.

The termination conditions for PSO are as follows:
•	 The maximum number of PSO iterations (100)
•	 The size of the population (swarm) reaches 60 particles
•	 Training process error below 10−4 

The stop criteria for the neural network training algorithm (LM) 
in this study are as follows:
•	 Maximum number of iterations (1000) 
•	 Validation or generalization error greater than 5% 

PERFORMANCE MEASURES

For the problem of time-series forecasting, there is no single me-
tric universally adopted by researchers to evaluate a model’s predictive 
adequacy. In the present study, six metrics are considered to allow a 
better appreciation of the forecasting system performance.6,9,19 First 
is the mean square error (MSE), which is one of the most common 
performance measures applied to neural networks:14

	 ,	 (5)
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where n is the number of patterns, targetj is the desired output (series 
real value) for the j-th pattern, and outputj (model response) is the 
predicted value for the j-th pattern.

The second relevant measure is Theil’s U statistic, which com-
pares the performance of the predictive model with a random-walk 
(RW) model. An RW model assumes that the most adequate value for 
the prediction at time t + 1 is the value obtained at time plus a noise 
term.19 If the Theil’s U statistic value is less than 1, then the model 
is better than RW; otherwise, the model has performance equal to 
or worse than RW (Theil’s U statistic value equal to or greater than 
1, respectively).

	 .	 (6)

The third relevant evaluation measure, the average relative va-
riance (ARV), is given by

	 ,	 (7)

which compares the model performance with the time-series ave-
rage, which is represented by the term —target. If ARV equals 1, the 
model has a performance similar to the time-series average. If ARV 
is greater than 1, then the model has a performance worse than the 
time-series average, and if ARV is less than 1, then the model has a 
better performance than the time-series average.

Another performance measure is the mean absolute percentage 
error (MAPE), given by

	 .	 (8)

Another important measure is the index of agreement (IA), which 
can express the difference between the observed and forecasted data. 
This index can range from 0 to 1. Higher values indicate a better 
adequacy to the prediction problem. The IA is given as 

	 .	 (9)

The last performance measure is the prediction of change in direc-
tion (POCID), which maps the time-series tendency; in other words, 
the model’s capability of predicting if future values will increase or 
decrease. The measure is formulated as follows:

	 ,	 (10)

where

	

The fitness function considers the MSE. Nevertheless, the 
algorithm is also evaluated with the other five metrics discussed 
above. In a perfect system, all performance measures must appro-
ach zero, except the POCID, which must approach 100; the IA, 

which must approach 1; and the fitness function, which also must  
approach 1. 

SIMULATION AND RESULTS

In this study, the following four real-world time series, corre-
sponding to natural phenomena, were considered: gaseous concentra-
tions of CO, SO2, NO2, and PM10. The data were taken from the city 
of São Caetano, located in the state of São Paulo, Brazil, and were 
obtained by CETESB-SP (Environmental Company of the State of 
São Paulo).23 The series were normalized to the interval [0,1] and 
divided into three groups, following the Proben 1 technical report:24 
training set with 50% of the time-series data, validation set with 
another 25% of the time-series data, and test set with the remaining 
25% of the time-series data. The PSO parameters were the same for 
all experiments. The number of iterations was 1000, and parameters 
c1 and c2 were established as 1.8 and 1.5, respectively. Terms r1 and 
r2 were random numbers between [0, 1]. 

Ten particles were used, in which each PSO individual was an 
ANN with maximum architecture of 10 – 10 – 1, which makes refe-
rence to an MLP network, which denotes 10 units in the input layer, 
10 units in the hidden layer, and 1 unit in the output layer (prediction 
horizon of one step forward). For each time series, 10 experiments 
were performed with the combined algorithms, where each algorithm 
with the greatest fitness function was chosen as the representative of 
the respective model for a particular time series.

In the next subsections, the experimental results achieved for the 
four time series are shown. For each time series, the data considered 
in the present paper correspond to the measured daily averages. 

Carbon monoxide series

The measurements available for the CO pollutant were collected 
between the years 2000 and 2001. The dataset consists of 713 daily 
observations. 

The best MLP structure was chosen after conducting 10 experi-
ments for all four models. According to Table 1, the most adequate 
model was PSO-MLP-NCL. Among all metrics, PSO-MLP-NCL 
exhibited a superior performance based on the calculated MSE, 
POCID, MAPE, and IA. The selected architecture consists of a win-
dow of two nonconsecutive time lags, 1 and 6. Thus, it has 2 units in 
the input layer and 10 units in the hidden layer. Therefore, the MLP 
architecture that best fits the problem was defined as 2 – 10 – 1. 

Figure 3 represents the model’s prediction (dashed line) and ob-
served data (solid line) for the CO series for the last 100 consecutive 
points in the test set.

Sulfur dioxide series

The values of the SO2 pollutant time series consisted of daily 
averages between the years 2000 and 2001. The series consisted of 
699 observations.

Each model was submitted to 10 experiments. According to Table 
2, PSO-MLP-LM obtained a superior performance when compared to 
the other proposed models in terms of MSE and IA. When compared 
to PSO-MLP-LM-NCL, PSO-MLP-LM was better in terms of MSE, 
POCID, MAPE, and IA.

The best model had a temporal window of three inputs, that is, 
time lags 1, 2, and 3, and the hidden layer had 9 processing units. 
Therefore, the selected architecture was 3 – 9 – 1. 

Table 2 indicates that PSO-MLP-LM is the best model according 
to the fitness value. The ARV value for this model is smaller than 
1, meaning that it has a better performance than the time-series 
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average. In IA terms, all proposed models obtain similar perfor-
mance. Figure 4 shows the PSO-MLP-LM prediction (dashed line) 
and observed data (solid line) for the SO2 series for the last 100 
consecutive points.

Particulate matter series

The PM10 series is represented by 716 daily observations in the 
period between the years 2002 and 2003.

The most adequate model for the PM10 time-series forecasting was 
chosen after 10 experiments. Table 3 indicates that the PSO-MLP-
LM-NCL model outperforms the other models in terms of MSE, 
POCID, ARV, MAPE, and IA. The selected model has two inputs 
(time lags 1 and 4) and a hidden layer with 7 processing units. Thus, 
the selected architecture was 2 – 7 – 1.

The ARV value for the PSO-MLP-LM-NCL model is smaller than 
1. Therefore, the proposed model has a better performance than the 
time-series forecasting using the average of the series. In terms of 
IA, all models had similar results. Figure 5 shows the forecast made 

by the PSO-MLP-LM-NCL model (dashed line) and the last 100 
observed values (solid line).

Nitrogen dioxide series

The measurements conducted in the year 2002 for the NO2 series 
were used to assess the model validity. The NO2 series consists of 
355 daily averages.

According to Table 4, the best suited model for the representation 
of the time series, chosen after 10 experiments, was PSO-MLP-NCL, 
which obtained the best results in terms of MSE and IA. Comparing 
to PSO-MLP-LM, the PSO-MLP-NCL model obtained a superior 
performance in terms of MSE, POCID, MAPE, and IA. The best 
model has three inputs (lags 1, 2, and 5) and 10 processing units in 
its hidden layer. Thus, the selected architecture was 3 – 10 – 1.

The selected model was capable of reaching a better performance 
than the time-series average (ARV less than 1). Figure 6 presents the 
observed data (solid line) and predicted data (dashed line) for the last 
88 points of the series.

Table 1. Results for the CO series

MEASURES PSO-MLP PSO-MLP-NCL PSO-MLP-LM PSO-MLP-LM-NCL

MSE 0.00791 0.00686 0.00728 0.00884

Theil 1.51043 2.08514 0.92525 1.31084

POCID 55.61 58.19 54.23 52.24

ARV 0.00983 0.00929 0.00755 0.01038

MAPE 0.41014 0.39432 0.41446 0.43161

IA 0.76003 0.78052 0.77216 0.74616

FITNESS 0.99216 0.99319 0.99278 0.99124

Hidden Layer size 7 10 5 8

Imput Layer (Time Lags) [1 2] [1 6] [1 2 3 4] [3 7]

Figure 3. Result of the last 100 values of the prediction made by the PSO-
-MLP-NCL model for the CO series (test set). Normalized observed and 
predicted values are presented

Table 2. Results for the SO2 series

MEASURES PSO-MLP PSO-MLP-NCL PSO-MLP-LM PSO-MLP-LM-NCL

MSE 0.00927 0.00913 0.00883 0.01046

Theil 2.62792 2.76644 2.57693 2.28375

POCID 48.54 47.95 47.91 46.97

ARV 0.01572 0.01498 0.01533 0.01241

MAPE 0.77784 0.75895 0.77051 0.8205

IA 0.7711 0.77286 0.77797 0.75025

FITNESS 0.990815 0.99095 0.991244 0.98965

Hidden Layer size 5 1 9 8

Imput Layer (Time Lags) [1 2] [1 5] [1 2 3] [1 4 6 8]

Figure 4. Result of the last 100 values of the prediction made by the PSO-
-MLP-LM model for the SO2 series (test set). Normalized observed and 
predicted values are presented
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Table 3. Results for the PM10 series

MEASURES PSO-MLP PSO-MLP-NCL PSO-MLP-LM PSO-MLP-LM-NCL

MSE 0.01794 0.01795 0.01913 0.01791

Theil 2.52676 2.79771 2.12474 2.85436

POCID 42.25 45.25 44.94 45.81

ARV 0.00751 0.00708 0.00847 0.00689

MAPE 1.64014 1.59574 1.61379 1.56692

IA 0.81868 0.81767 0.81364 0.81879

FITNESS 0.982378 0.982365 0.981228 0.982408

Hidden Layer size 6 8 2 7

Imput Layer (Time Lags) [1 2] [1 4] [1 2 3 4 5 6] [1 4]

Table 4. Results for the NO2 series

MEASURES PSO-MLP PSO-MLP-NCL PSO-MLP-LM PSO-MLP-LM-NCL

MSE 0.2676 0.2551 0.02718 0.02605

Theil 1.74967 1.78871 0.77516 1.0454

POCID 45.55 44.44 41.57 44.44

ARV 0.02498 0.02587 0.01196 0.01605

MAPE 0.72517 0.70461 0.75287 0.62954

IA 0.76262 0.76856 0.75205 0.76189

FITNESS 0.97394 0.97512 0.97354 0.97462

Hidden Layer size 9 10 9 4

Imput Layer (Time Lags) [1 2] [1 2 5] [1 2] [3]

Figure 5. Result of the last 100 values of the prediction made by PSO-MLP-
-LM-NCL model for the PM10 series (test set). Normalized observed and 
predicted values are presented

Figure 6. Result of the last 88 values of the prediction made by PSO-MLP-
-NCL model for the NO2 series (test set). Normalized observed and predicted 
values are presented

CONCLUSIONS

In this study, a hybrid system for time-series forecasting of con-
centration levels of air pollutants was evaluated. The system consists 
of an intelligent hybrid model composed of a PSO algorithm and an 
MLP ANN. PSO searches for a minimum number of time delays for 
proper time-series characterization and an optimized structure of a 
neural network in terms of input units, hidden processing units, initial 
weights, and biases of the ANN.

Four combined methods – PSO-MLP, PSO-MLP-NCL, PSO-
MLP-LM, and PSO-MLP-LM-NCL – were applied to four series of 
natural phenomena (CO, SO2, PM10, and NO2).

The results were presented in terms of six measures: MSE, Theil, 
ARV, MAPE, POCID, and IA. 

Among the proposed combinations, PSO-MLP-NCL found the 
best MLP configuration in two (CO and NO2) of the four time series 
addressed. For the time series of SO2 concentration, PSO-MLP-LM 
found the best model. Finally, PSO-MLP-LM-NCL found the best 
model for the time series of PM10. 

The PSO-MLP-LM and PSO-MLP-LM-NCL models conjugate 
PSO with a gradient descent algorithm (LM) for MLP training. This 
hybridization combines exploitation and exploration characteristics. 
PSO provides exploratory behavior. However, one of the main diffi-
culties with PSO is that once it finds a possible global minimum, its 
performance does not improve quickly enough (it stagnates), taking 
a long time to reach the best result in a particular search space area.25 
Thus, when PSO is unable to substantially enhance network perfor-
mance, the gradient descendent algorithm can exploit the search space 
locally, performing the search and achieving a local minimum within 
that specific area in less time. 

Furthermore, the results obtained in this study are similar to those 
obtained from other approaches found in the literature. Brunelli ob-
tained the best MSE of 0.02 for CO concentration in Boccadifalco,6 
while the best result in the present study, in terms of MSE, was 0.007, 
obtained by the PSO-MLP-NCL model. 

Kurt et al. reported an error percentage of 43% for one step ahead 
prediction of SO2 in Istanbul.15 Grivas and Chaloulakou reached, in 
terms of IA, results of approximately 0.8 in prediction of PM10 in 
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Athens, which are similar to the accuracy of the results obtained with 
the proposed method.17 Kukkonen et al. reported IA values between 
0.42 and 0.77 in the prediction of PM10 in the Helsinki region.26 In 
the same study, Kukkonen et al. obtained IA values between 0.6 and 
0.8 in NO2 prediction. The proposed methods in that study resulted 
in a mean IA value of 0.7 for NO2 prediction.26 Thus, the results 
obtained by the proposed method are in the same range with respect 
to other pollutant forecasting techniques that have been applied 
around the world. 

The results show that the combination of PSO and MLP is a 
valid option for time-series forecasting of concentration levels of 
air pollutants, because it obtains a fair and accurate forecast at an 
acceptable computational cost. In particular, the results show that 
this approach may be an interesting tool to predict the concentration 
levels of pollutants in São Paulo, Brazil.
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