FLAVONOIDES DE Piper glandulosissimum Yuncker (Piperaceae)

Fabiano Pereira Santos^a, Harley da Silva Alves^{b,*}, Edeltrudes de Oliveira Lima^c e Maria Célia de Oliveira Chaves^c ^aDepartment of Health Sciences, University of Quebec, QC J9X 5E4, Rouyn-Noranda, Canada ^bDepartamento de Farmácia, Universidade Estadual da Paraíba, 58429-500 Campina Grande – PB, Brasil ^cCentro de Biotecnologia, Universidade Federal da Paraíba, CP 5009, 58051-970 João Pessoa – PB, Brasil

Recebido em 26/03/2014; aceito em 23/10/2014; publicado na web em 12/12/2014

FLAVONOIDS FROM *Piper glandulosissimum* Yuncker (Piperaceae). Three flavanones, two chalcones and one dihydrochalcone were isolated from the branches of *Piper glandulosissimum*. All isolated compounds were characterized based on IR, UV, ¹H and ¹³C NMR, including 2D NMR analyses (HMQC, HMBC, COSY and NOESY) and comparison with the literature. The compound 7-hydroxy-5,8-dimethoxyflavanone displayed antimicrobial activity against *Staphylococcus aureus*, *S. epidermidis, Trichophyton mentagrophytes* and *Microsporum canis*.

Keywords: Piper glandulosissimum; Piperaceae; 7-hydroxy-5,8-dimethoxyflavanone.

INTRODUÇÃO

O gênero *Piper* pertence à família Piperaceae e é composto por 1000 espécies. Compreende ervas, arbustos e pequenas árvores distribuídas nas regiões tropicais e subtropicais do globo.¹ Várias espécies de *Piper* são utilizadas na medicina popular como analgésicas, antiinflamatórias e para o tratamento de picadas de cobra.² Uma variedade de compostos tem sido isolada de espécies de *Piper*, incluindo amidas, lignanas, neolignanas, hidroquinonas, alcaloides, terpenos, derivados do ácido benzóico e aristolactamas. Frequentemente observa-se o isolamento de flavonoides, representados por flavonas, di-hidrochalconas, chalconas e flavanonas.³⁻⁵

Piper glandulosissimum Yuncker (Piperaceae) é um arbusto nativo do Norte do Brasil,⁶ utilizado na medicina tradicional como anti-inflamatório. Testes realizados com o seu extrato hidroalcóolico revelaram uma elevada atividade antioxidante devido à presença de polifenóis.⁷ Foram realizados também testes de atividade antimicrobiana do seu extrato aquoso, contudo, não foi evidenciada nenhuma atividade.⁸ Existem poucos estudos fitoquímicos relacionados à espécie, podendo ser enfatizados a obtenção de óleos essenciais⁹ e a identificação de flavonóis, flavanóis e ácido hidroxicinâmico por CLAE.⁸

Durante os nossos estudos de espécies de Piperaceae do Norte e Nordeste brasileiro foram isolados alguns compostos químicos, tais como: flavonoides,¹⁰ amidas¹¹ e aristolactamas.¹² Neste trabalho descrevemos o isolamento e a identificação estrutural de 2',4'-di-hidroxi-3',6'-dimetoxichalcona (1), 2',4'-di-hidroxi-6'-metoxichalcona (2), 2',4'-di-hidroxi-6'-metoxidi-hidrochalcona (3), 7-hidroxi-5,8--dimetoxiflavanona (4), 5,8-di-hidroxi-7-metoxiflavanona (5) e 5,7,8-trimetoxiflavanona (6). As estruturas dos compostos foram determinadas pelas análises dos espectros de UV, IV e RMN de ¹H e ¹³C, incluindo técnicas de RMN bidimensionais, além de comparações com dados descritos da literatura.

PARTE EXPERIMENTAL

Métodos gerais

Nas colunas cromatográficas foi utilizada como fase fixa Sephadex LH-20 (Merck) e gel de sílica 60 (MERCK-0,063-0,200 mm e 0,2-0,5 mm), que também foi usada para a confecção de placas cromatográficas em camada delgada analítica e preparativa. Os compostos foram visualizados usando luz UV (λ_{max} 254 e 366 nm). Espectros no IV foram obtidos em aparelho Perkin-Elmer (FT-IR-1750) utilizando pastilha de KBr. A análise espectroscópica na região do ultravioleta (UV) foi realizada em aparelho Vankel, modelo Vankel-50 UV-Vis, utilizando-se CH₃OH e os seguintes reagentes de deslocamento: acetato de sódio (NaOAc) anidro P.A., solução de cloreto de alumínio (AlCl₃) anidro P.A. em metanol e solução de ácido clorídrico (HCl) P.A. em água destilada (50% V:V).13 Os espectros uni e bidimensionais de RMN foram registrados em espectrômetros da Varian mod. MERCURY operando a 200 e 500 MHz (1H) e 50 MHz e 125 MHz (13C) e Bruker mod. AC operando a 300 (1H) e 75 MHz (¹³C). Os deslocamentos químicos foram relatados em ppm tendo como referência interna o TMS. Foram empregados os seguintes solventes: acetona- d_6 , CDCl₃, CD₃OD e DMSO- d_6 .

As reações de acetilação foram realizadas com o uso de anidrido acético e piridina, obedecendo a proporção de 0,5 mL de anidrido acético e 1 mL de piridina para cada 100 mg de composto a reagir. O progresso das reações foi monitorado por CCDA. Após o término da reação, a mistura foi tratada com água destilada gelada até a formação de um precipitado, que foi filtrado e lavado com água destilada, dissolvido em CHCl₃ e seco com Na₂SO₄. O solvente remanescente foi evaporado em evaporador rotativo.¹⁴

Material vegetal

As partes aéreas de *Piper glandulosissimum* Yuncker foram coletadas em maio de 2002 juntamente com a exsicata (número MG 165.227, Herbário João Murça Pires do Museu Paraense Emílio Goeldi - MPEG, Belém, PA) e identificada pela Dra. Elsie Guimarães.

Obtenção do extrato e isolamento dos compostos químicos

O material vegetal foi triturado em moinho com lâminas cortantes e o pó resultante (1.880 kg) foi exaustivamente extraído com etanol (6 x 2,5 L). Após a remoção do solvente em evaporador rotativo obtevese o extrato etanólico bruto (180 g). Uma parte deste extrato (90 g) foi dissolvida em uma solução de CH₃OH:H₂O (7:3) na proporção de 1:5 e particionado em solventes de polaridade crescente fornecendo as fases hexânica (4,5 g), clorofórmica (26 g), acetato de etila (30 g) e CH₃OH:H₂O (6 g). Alíquota de 1,4 g da fase hexânica foi submetida à cromatografia em coluna com gel de sílica utilizando-se como fase móvel hexano e clorofórmio em misturas binárias e gradiente crescente de polaridade, fornecendo 26 frações. As frações 18-21 (0,145 g) foram reunidas e submetidas a coluna com Sephadex LH-20 utilizando como fase móvel CHCl₃: CH₃OH (1:1), obtendo-se, após recristalização em acetona, o composto 3 (0,015 g). Alíquota de 15 g da fase clorofórmica foi submetida à cromatografia em coluna usando gel de sílica e os solventes hexano, AcOEt e CH₂OH em gradiente crescente de polaridade, fornecendo 130 frações. As frações 10-11 (0,085 g), após recristalização em tetracloreto de carbono, forneceram 1 (0,020 g), que foi acetilado para a obtenção de 1a. A CCDP da fração 14 (0,067g), usando-se como eluente CHCl₃, resultou no isolamento de 2 (0,015 g). Da fração 76 (1,5 g), após recristalização com benzeno, obteve-se 70 mg de 4, acetilado para a obtenção de 4a. As frações 80-82 (0,195 g), após eluídas em coluna utilizando como fase móvel clorofórmio e acetato de etila em grau crescente de polaridade, forneceram 3 frações (80-82A, 80-82B, 80-82C). Cromatoplacas preparativas das frações 80-82B (0,035 g) e 80-82C (0,017 g) resultaram no isolamento de **5** (0,006 g) e de **6** (0,004 g), respectivamente.

2',4'-di-hidroxi-3',6'-dimetoxichalcona (1) cristais avermelhados, P.F.=144-146 °C (lit. 124-125 °C), RMN de ¹H e ¹³C (300 e 75 MHz, acetona- d_6), (Tabela 1).

2',4'-diacetoxi-3',6'-dimetoxichalcona (**1a**), RMN de ¹H e ¹³C (200 e 50 MHz, CDCl₃), (Tabela 1).

2',4'-di-hidroxi-6'-metoxichalcona (2) cristais vermelhos, P.F.=163-165 °C (lit. 193-196 °C), RMN de ¹H e ¹³C (200 e 50 MHz, CDCl₃), (Tabela 2).

2',4'-di-hidroxi-6'-metoxidi-hidrochalcona (**3**) cristais amarelos, P.F.=174-176 °C (lit. 185-187 °C), RMN de ¹H e ¹³C (500 e 125 MHz, CD₃OD), (Tabela 2).

7-hidroxi-5,8-dimetoxiflavanona (**4**) cristais amarelos, P.F. = 158,5-160,5 °C (lit.190-192 °C), RMN de ¹H e ¹³C (300 e 75 MHz, acetona- d_6), (Tabela 3).

7-acetoxi-5,8-dimetoxiflavanova (4a), RMN de 1 H e 13 C (200 e 50 MHz, CDCl₃).

5,8-*di*-hidroxi-7-metoxiflavanona (**5**) cristais amarelos, P.F. = 216-218 °C (lit. 220-225 °C), RMN de ¹H e ¹³C (300 e 75 MHz, DMSO- d_{k}), (Tabela 3).

5,7,8-*trimetoxiflavanona* (**6**) cristais amarelos, P.F. = 160-162 °C (154-156 °C), RMN de ¹H e ¹³C (300 e 75 MHz, CDCl₃), (Tabela 3).

Avaliação da atividade antimicrobiana

O método usado foi a técnica de difusão em meio sólido.15 Em placas estéreis foi depositado 1 mL de cada cepa de microrganismo em suspensão em soro fisiológico, padronizada pelo tubo 0,5 da escala de McFarland e ajustada para 90% T (530 nm), correspondendo aproximadamente a 106 UFC. Em seguida, adicionou-se 21 mL do meio sólido fundido a 50 °C. Quando solidificado, foram feitas no meio de cultura cavidades de 6 X 8 mm de diâmetro. Após essa etapa, foram depositados 50 µL do composto 4 solubilizado em DMSO em diferentes concentrações. Os controles foram realizados com cloranfenicol para bactérias e cetoconazol para fungos. Os ensaios foram incubados a 24-48 h para bactérias e leveduras a temperatura ambiente (28-30 °C) e durante 10-14 dias para fungos filamentosos.¹⁶ A atividade biológica do produto foi considerada positiva quando o halo de inibição de crescimento foi igual ou superior a 8 mm de diâmentro.17 Para os ensaios de avaliação da atividade antimicrobiana foram utilizados os seguintes microrganismos: Staphylococcus aureus - ATCC 6528, Staphylococcus epidermidis - ATCC 12.228,

Pseudomonas aeruginosa – LM B6, Escherichia coli – B 04, Candida albicans – LM 32, Candida tropicalis - LM 25, Candida knisei – LM 07, Candida guilliermondii – LM 16, Trichophyton rubrum – LM 75, Trichophyton mentagrophytes – LM 06, Microsporum caniis – LM 828, Aspergillus flavus – LM 27, Penicillium – LM 131 e Fusarium – LM 135.

RESULTADOS E DISCUSSÃO

O espectro no IV de **1** (v_{max} , KBr, cm⁻¹) mostrou banda de absorção forte em 3.511 cm⁻¹ com ombro em 3.458 cm⁻¹, sugerindo a presença de hidroxilas livre e quelada, bandas fracas entre 3.081-3.028 cm⁻¹ e 2.992-2.832 cm⁻¹, características de deformação axial de C-H olefínicos e de estiramento C-H de grupos metílicos e metínicos, além de bandas intensas entre 1.601 cm⁻¹ – 1.434 cm⁻¹ e em 1632 cm⁻¹, sugestivas de deformação axial C=C de anel aromático e de grupamento carbonílico na molécula.¹⁸

O espectro de RMN de ¹H (acetona- d_6 , 300 MHz) de 1 mostrou sinais característicos de hidroxila quelada (δ_{H} 14,40), de grupamento carbonílico α , β insaturado { δ_{H} : 8,03 (*d*, *J*=15,6 Hz) e 7,78 (*d*, *J*=15,6 Hz)], este corroborado pela presença de um sinal em δ_c 193,79 no espectro de RMN 13C (técnica BB), de anel aromático monossubstítuido $[\delta_{\rm H}, 7, 74-7, 70 (m, 2{\rm H}); \delta_{\rm H}, 7, 49-7, 42 (m, 3{\rm H})]$ e pentassubstítuido $[\delta_{\rm H} 9,17 (sl, 1{\rm H}); \delta_{\rm H} 6,13 (s, 1{\rm H}); \delta_{\rm H} 3,98 (s, 3{\rm H}); \delta_{\rm H} 3,76 (s, 3{\rm H}) e$ $\delta_{\rm H}$ 14,40 (s, 1H)] e permitiu atribuir $\delta_{\rm H}$: 14,40; 8,03; 7,78; 7,74-7,70; 7,49-7,42 e 3,76, respectivamente, para as posições 2', β, α, 2/6, 3/4/5 e OCH₃-3', a última definida pelas correlações $\delta_{\rm H}$ 14,40/ $\delta_{\rm C}$ 130,07; $\delta_{\rm C}$ 106,69; $\delta_{\rm C}$ 160,89 e $\delta_{\rm H}$ 3,76/130,07, encontradas no experimento HMBC, que também definiu os sinais em δ_c : 160,89 e 106,69 para C-2' e C-1', respectivamente. O deslocamento químico de OCH₃-3' $(\delta_{C} 60,69)$ permitiu propor a presença de substituinte na posição 4'; tal dado, ao lado das correlações cruzadas entre o sinal em $\delta_{\rm H}$ 6,13 $\cos \delta_{\rm C}$: 130,07; 106,69; 159,84 e 158,14, definiu $\delta_{\rm H}$ 6,13 para H-5', originando as possibilidades estruturais A (OH-4' e OCH₃-6') e B (OH-6' e OCH₂-4')

Preparação do derivado acetilado de **1** (**1a**) mostrou, no espectro ¹H x ¹H NOESY (CDCl₃, 200 MHz), correlação entre $\delta_{\rm H}$ 2,34 (*s*, 3H, CH₃) e $\delta_{\rm H}$ 6,62 (*s*, 1H, H-5') e permitiu sugerir $\delta_{\rm H}$ 2,34 para a metila da acetoxila na posição 4' ou 6'. Tal dado aliado ao sinal da correlação entre $\delta_{\rm H}$ 2,34 e $\delta_{\rm H}$ 3,75 (OCH₃-3') sugeriu substituinte OH [$\delta_{\rm H}$ 9,17(*sl*, 1H)] em C-4' (A), proposta corroborada pelo espectro no UV de **1** ($\lambda_{\rm max}$, CH₃OH), o qual mostrou um deslocamento batocrômico da banda I de 361 nm para 389 nm (após a adição de acetato de sódio) indicando a presença de uma chalcona¹⁰ com grupo OH livre na posição 4' do anel A¹⁹ e, consequentemente, o substituinte metoxílico em $\delta_{\rm H}$ 3,98 para C-6' em **1**.

Os demais sinais vistos no espectro de RMN de 13 C de 1 (acetona-- d_6 , 75 MHz) foram atribuídos com o auxílio dos espectros bidimensionais HMQC (300/75 MHz, acetona- d_6) e HMBC (300/75 MHz, acetona- d_6) (Tabela 1).

Análise conjunta dos dados extraídos dos espectros citados permitiu sugerir que **1** trata-se de: 2',4'-di-hidroxi-3',6'-dimetoxichalcona (Figura 1), já isolada de uma espécie da família Poligonaceae,²⁰ mas pela primeira vez em Piperaceae. O derivado **1a** é descrito pela primeira vez na família Piperaceae.

O espectro de **2** no IV (ν_{max} , KBr, cm⁻¹) mostrou bandas de absorção em 3.433 cm⁻¹, indicativa de grupamento hidroxila na molécula, entre 3.065 cm⁻¹ e 2.851 cm⁻¹, sugestivas de deformação axial de C-H de olefinas e de grupos metílicos e metínicos, e em 1.682 cm⁻¹ e 1.125 cm⁻¹ que apontaram para a presença de grupamento carbonílico e para deformação axial de C-O-C de alquilaril éter,²¹ respectivamente.

O espectro de UV (λ_{max} , CH₃OH) apresentou a banda I em 348 nm e um ombro em 310 nm. O uso de AlCl₃/HCl provocou um

Tabela 1. Dados de RMN de ¹H e ¹³C de 1 (δ , 300 e 75 MHz, acetona- d_6) e 1a (CDCl₃)

H/C		1	1a			
	$\delta_{\rm H}$	δ_{c}	^{2}J	^{3}J	δ _H	δ_{c}
1'	-	106,69	-	-	-	121,67
2'	-	160,89	-	-	-	142,52
3'	-	130,07	-	-	-	138,37
4'	-	158,14	-	-	-	145,39
5'	6,13 (s, 1H)	91,79	C-4', C-6'	C-3', C-1'	6,62 (s, 1H)	104,50
6'	-	159,84	-	-	-	152,73
1	-	136,49	-	-	-	134,42
2	7,74-7,70 (m, 2H)	129,32	-	-	7,75-7,70 (m, 2H)	128,59
3	7,49-7,42 (m, 3H)	129,92	-	C-5, C-1	7,38-7,35 (m, 3H)	128,91
4	7,49-7,42 (m, 3H)	131,11	-	-	7,38-7,35 (m, 3H)	130,71
5	7,49-7,42 (m, 3H)	129,92	-	C-3, C-1	7,38-7,35 (m, 3H)	128,91
6	7,74-7,70 (m, 2H)	129,32	-	-	7,75-7,70 (m, 2H)	128,59
β	8,03 (<i>d</i> , <i>J</i> =15,6 Hz, 1H)	128,51	C-1, C- α	-	7,43 (<i>d</i> , <i>J</i> =16,0 Hz, 1H)	127,31
α	7,78 (<i>d</i> , <i>J</i> =15,6 Hz, 1H)	142,96	-	-	6,92 (<i>d</i> , <i>J</i> =16,0 Hz, 1H)	146,16
β'	-	193,79	-	-	-	191,49
OH-2'	14,40 (s, 1H)	-	C-2'	C-3', C-1'	-	-
OH-4'	9,17 (sl, 1H)	-	-		-	-
OCH ₃ -3'	3,76 (s, 3H)	60,69	-	C-3'	3,75 (s, 3H)	61,20
OCH ₃ -6'	3,98 (s, 3H)	56,58	-	C-6'	3,74 (s, 3H)	56,29
<u>C</u> H ₃ COO-2'	-	-	-		2,17 (s, 3H)	20,39
<u>C</u> H ₃ COO-4'	-	-	-		2,34 (s, 3H)	20,77
CH ₃ <u>C</u> OO-2'	-	-	-		-	168,18
CH ₃ <u>C</u> OO-4'	-	-	-		-	168,45

deslocamento batocrômico da banda I para 375 nm, com magnitude de 27 nm em relação ao espectro em CH_3OH e ainda fez emergir uma banda II em 310 nm, esta menos intensa que a primeira, o que é característico de chalconas.¹⁰

O espectro de RMN de ¹H (CDCl₂, 200 MHz) de 2, semelhante ao de 1, sugeriu que 2 difere de 1 apenas quanto a substituição do anel A. O sinal simples em $\delta_{\rm H}$ 14,35, característico de hidroxila quelada em C-2', mostrou, no experimento bidimensional HMBC, correlações com os sinais em δ_c 167,10, 105,59 e 96,15 e foram atribuídas as posições 2', 1' e 3', respectivamente. O espectro HMQC (CDCl₃ 200/50 MHz) mostrou correlação de δ_c 96,15 e $\delta_{\rm H}$ 5,92 (*d*, *J*=2,0 Hz, 1H), o que permitiu atribuir este sinal a H-3' e, consequentemente, $\delta_{\rm H}$ 5,88 (*d*, *J*=2,0 Hz, 1H) para a posição 5'. O singleto em $\delta_{\rm H}$ 3,83 (3H), juntamente com a correlação mostrada no HMBC, de $\delta_{\rm H}$ 5,88 com os sinais: $\delta_{\rm C}$ 164,82 e $\delta_{\rm C}$ 163,21, sugeriram a existência de mais dois carbonos oxigenados no anel A e permitiram definir C-6'e C-4' como as posições que sustentam metoxila (δ_{H} 3,83, s, 3H) e hidroxila, respectivamente, uma vez que a inversão dessas posições levaria a um único valor de deslocamento químico para os dois hidrogênios (H-3' e H-5') do anel A. Os demais carbonos da molécula foram atribuídos com o auxílio dos espectros ¹H x ¹³C- HMQC e HMBC (Tabela 2).

Análise dos espectros de RMN ¹H e ¹³C uni e bidimensionais, IV e UV, e comparações com modelos da literatura, permitiram sugerir que **2** seja 2',4'-di-hidroxi-6'-metoxichalcona (Figura 1), conhecida como cardamonina e já isolada de espécies de *Piper*,²² e de espécies de Fabaceae,²³ Lauraceae²⁴ e Pteridaceae.²⁵

O espectro no IV de **3** (v_{max} ., KBr, cm⁻¹) apresentou bandas de absorção em: 3.292, 1.373, 1.653, sendo as duas primeiras típicas de deformação axial de O-H em ligação de hidrogênio intramolecular e deformação angular no plano de OH, respectivamente e a terceira da presença de carbonila em ligação de hidrogênio.¹⁴ Anel aromático foi inferido a partir de bandas observadas em 1.618 e 1.568 cm⁻¹, referentes à deformação axial de C=C de anel aromático. Bandas

intensas em 1.298 e 1.195 cm $^{-1}$ foram atribuídas a estiramento e deformação de grupo C-O.

O espectro de UV de **3** (λ_{max} , CH₃OH e CH₃OH + AlCl₃) apresentou uma banda de absorção em 289 nm, além de um ombro em 332 nm, sugerindo núcleo flavonoídico tipo di-hidrochalcona.¹³ O uso de AlCl₃ provocou deslocamento batocrômico das bandas II e I para 310 e 365 nm, respectivamente.

O espectro de RMN de ¹H de 3 (CD₃OD, 500 MHz), semelhante a 2, diferiu apenas quanto a ausência de sinais correspondentes a hidrogênios olefínicos α , β -carbonílicos, sugerindo a estrutura de uma di-hidrochalcona, que foi confirmada pela presença de dois tripletos em $\delta_{\rm H}$ 3,28 (J=7,5 Hz, 2H) e $\delta_{\rm H}$ 2,95 (J=7,5 Hz, 2H), vistos correlacionados no espectro bidimensional ¹H x ¹H - COSY. O experimento gHMBC mostrou as correlações: $\delta_{\rm H}$ 3,28/ $\delta_{\rm C}$ 32,25; $δ_{\rm C}$ 143,22 e $δ_{\rm C}$ 205,83 e $\delta_{\rm H}$ 2,95/ $\delta_{\rm C}$ 47,11; $\delta_{\rm C}$ 143,22 e $\delta_{\rm C}$ 205,83 que permitiram propor $\delta_{\rm H}$ 3,28 e $\delta_{\rm H}$ 2,95 para as posições α e β e atribuir δ_{c} 32,35; δ_{c} 47,11; δ_{c} 143,22 e δ_{c} 205,83 para os carbonos β , α , 1 e β' , respectivamente. O espectro HMBC ainda apresentou as correlações: $\delta_{\rm H}$ 5,98 (*d*, *J*=2,2 Hz, 1H)/ $\delta_{\rm C}$: 166,60; 106,00; 165,08 e 97,13 e de $\delta_{\rm H}$ 5,92 (*d*, *J*=2,2 Hz, 1H)/ $\delta_{\rm C}$: 106,00 e 92,25, o que permitiu sugerir $\delta_{\rm H}$ 5,98 e $\delta_{\rm H}$ 5,92 para H-5' e H-3' e os sinais de carbono em $\delta_{\rm C}$: 166,60; 106,00; 165,08; 97,13 e 92,25 para as posições 4', 1', 6', 3' e 5', respectivamente. As correlações cruzadas $\delta_{\rm H}$ 3,86 (s, 3H)/ $\delta_{\rm C}$ 165,08 e $\delta_{\rm H}$ 3,86 (s, 3H)/ $\delta_{\rm H}$ 5,98 vistas, respectivamente, nos experimentos *g*HMBC e NOESY, corroboraram $\delta_{\rm H}$ 3,86/ $\delta_{\rm C}$ 165,08 e $\delta_{\rm C}$ 166,60 para as posições 6' e 4' e permitiram inferir δ_{C} 168,37 para C-2'. Os dados relatados e sumarizados na Tabela 2 permitem identificar 3 (Figura 1) como 2'-4'-di-hidroxi,6'-metoxidi-hidrochalcona, conhecida como uvangoletina²⁶ e anteriormente descrita em algumas famílias, como Myrtaceae,27 Annonaceae,28 Piperaceae.29

O espectro no IV de **4** mostrou bandas em 3.552 cm⁻¹, 3.473 cm⁻¹ e 3.242 cm⁻¹, atribuídas a grupos hidroxila e deformação axial de C-H de carbonos aromáticos. Absorções na região entre 2.983 cm⁻¹ e 2.851

Tabela 2. Dados de RMN de ¹H e ¹³C de **2** (δ, CDCl₃, 200 e 50 MHz) e de **3** (δ, CD₃OD, 500 e 125 MHz)

H/C		2			3						
	δ _н	δ _c	^{2}J	^{3}J	δ _н	δ _c	^{2}J	^{3}J			
1'	-	105,59	-	-	-	106,00					
2'	-	167,10	-	-	-	168,37					
3'	5,92 (<i>d</i> , <i>J</i> =2,0 Hz, 1H)	96,15		C-1'	5,92 (<i>d</i> , <i>J</i> =2,2 Hz, 1H)	97,13	C-2'	C-1', C-5'			
4'		163,21*				166,60					
5'	5,88 (<i>d</i> , <i>J</i> =2,0 Hz, 1H)	91,62	C-4', C-6'	C-1'	5,98 (<i>d</i> , <i>J</i> =2,2 Hz, 1H)	92,25	C-6'	C-1', C-3'			
6'		164,82*				165,08					
1		135,49				143,22					
2	7,54-7,49 (m, 2H)	128,21		C-4, C-6	7,28-7,23 (m, 4H)	127,07	C-1	C-4, C-6			
3	7,34-7,29 (m, 3H)	128,76		C-1	7,28-7,23 (m, 4H)	129,56	C-2, C-4				
4	7,34-7,29 (m, 3H)	129,91			7,19-7,17 (m, 1H)	127,07		C-2, C-6			
5	7,34-7,29 (m, 3H)	128,76		C-1	7,28-7,23 (m, 4H)	129,56	C-4				
6	7,54-7,49 (m, 2H)	128,21	C-1	C-4	7,28-7,23 (m, 4H)	127,07	C-1, C-5	C-2, C-4			
β	7,81 (<i>d</i> , <i>J</i> =15,6 Hz, 1H)	127,52	C-1	C- β'	2,95 (t, J=7,5 Hz, 2H)	32,25	C-α, C-1	C-β'			
α	7,63 (<i>d</i> , <i>J</i> =15,6 Hz, 1H)	141,92	C- β'	C-1	3,28 (t, J=7,5 Hz, 2H)	47,11	C- β, C- β'	C-1			
β'		192,53				205,83					
OH-2'	14,35 (s, 1H)		C-2'	C-1', C-3							
OH-4'											
OCH ₃ -6'	3,83 (s, 3H)	55,71			3,86 (s, 3H)	56,27		C-6'			
*Valores no	dem estar trocados										

Valores podem estar trocados.

cm-1 são oriundas de estiramento C-H de grupos metílicos, metilênicos e metínicos. Bandas devidas à deformação axial de C=C aromáticos são visíveis na região entre 1.605 cm⁻¹ e 1.429 cm⁻¹ e em 1.647 cm⁻¹ absorção de deformação axial de C=O. Bandas de deformação axial de C-O-C assimétrica e simétrica de alquilaril éteres foram observadas em 1.285 cm⁻¹, 1.200 cm⁻¹ e 1.114 cm⁻¹, sugerindo a presença de função éter no composto.

O espectro no UV, em CH₃OH, mostrou banda I em 324 nm e banda II em 288 nm, esta última de maior intensidade, o que sugere esqueleto de flavanona.¹³ A adição de acetato de sódio ao metanol provocou deslocamento batocrômico da banda II para 328 nm, numa magnitude de 40 nm, que sugeriu a presença de grupo 7-OH livre na molécula.

O espectro de RMN de ¹H de 4 (acetona- d_6 , 300 MHz) mostrou sinais em $\delta_{\rm H}$ 9,03 (*sl*, 1H), $\delta_{\rm H}$ 3,79 (*s*, 3H) e $\delta_{\rm H}$ 3,76 (*s*, 3H), característicos de hidroxila aromática não quelada e de duas metoxilas aromáticas, respectivamente, além de um sinal simples em $\delta_{\rm H}$ 6,21 (1H), dois multipletos em $\delta_{\rm H}$ 7,62-7,61 (*m*, 2H) e $\delta_{\rm H}$ 7,59-7,36 (*m*, 3H) e três duplo dubletos em $\delta_{\rm H}$ 5,55 (*J*=12,7 e 3,0 Hz, 1H); $\delta_{\rm H}$ 2,97 $(J=12,7 \text{ e } 16,38 \text{ Hz}, 1\text{H}) \text{ e } \delta_{\text{H}} 2,71 (J=16,38 \text{ e } 3,0 \text{ Hz}, 1\text{H})$. A análise dos duplos dubletos, aliada às correlações observadas no experimento COSY entre $\delta_{\rm H}$ 5,55/ $\delta_{\rm H}$ 2,71 e $\delta_{\rm H}$ 2,97, sugeriram estes sinais para hidrogênios oxi-metínico (H-2) e metilênicos (H-3) de esqueleto flavanônico. Correlações vistas no HMQC entre δ_{H} 5,55/ δ_{C} 80,16 e $\delta_{\rm H}$ 2,97 e $\delta_{\rm H}$ 2,71/ $\delta_{\rm C}$ 46,44 permitiram atribuir $\delta_{\rm C}$ 80,16 e $\delta_{\rm C}$ 46,44 a C-2 e C-3. Esses dados aliados à presença dos dois sinais múltiplos em $\delta_{\rm H}$ 7,62-7,61 (2H) e $\delta_{\rm H}$ 7,59-7,36 (3H) permitiram sugerir que o composto 4 trata-se de uma flavanona com anel B monossubstítuido e anel A pentassubstítuido com duas metoxilas e uma hidroxila.

As correlações vistas no espectro HMBC entre: $\delta_{\rm H}$ 7,62-7,61/ $\delta_{\rm C}$ 80,16 permitiram a atribuição de $\delta_{\rm H}$ 7,62-7,61/ $\delta_{\rm C}$ 127,14 para as posições 2'/6'; $\delta_{\rm H}$ 2,71/ $\delta_{\rm C}$ 188,12 e $\delta_{\rm H}$ 2,97/ $\delta_{\rm C}$ 188,12 e 140,69 sugeriram δ_c 188,12 e 140,69 para C-4 e C-1', respectivamente. O sinal em $\delta_{\rm H}\,6.21\,$ mostrou correlação direta, no espectro HMQC, com δ_{c} 94,02 e foi sugerido para H-6. No HMBC foram observadas as correlações: $\delta_{\rm H}$ 6,21/ $\delta_{\rm C}$ 158,85; 106,55; 130,29 e 157,35; $\delta_{\rm H}$ 3,76/ $\delta_{\rm C}$ 130,29; $\delta_{\rm H}$ 3,79/ $\delta_{\rm C}$ 158,85, além das correlações $\delta_{\rm H}$ 3,79/ $\delta_{\rm C}$ 56,22 e $\delta_{\rm H}$ 3,76/ $\delta_{\rm C}$ 61,32, vistas no experimento HMQC, que permitiram sugerir δ_H 3,79/ δ_C 56,22 e δ_H 3,76/ δ_C 61,32, para as posições 5 e 8 e, consequentemente, δ_c: 130,29; 158,85 e 106,55 para C-8, C-5 e C-10 do anel A de 4. A posição da hidroxila em C-7 e, consequentemente, de δ 6,21 (s, 1H) para H-6 foi estabelecida a partir da análise do espectro HMBC que mostrou a correlação de $\delta_{\rm H}$ 6,21/ $\delta_{\rm C}$ 106,55 (C-10) e $\delta_{\rm C}$ 157,35 (C-7). Os espectros de ¹H e ¹³C (200 e 50 MHz, CDCl₃) do derivado acetilado 4a mostraram os sinais dos átomos de carbonos das metoxilas em δ_c 56,30 e δ_c 60,95, além do sinal da acetoxila em δ_c 149,29, confirmando as posições das metoxilas em 5 e 8 e a presença de grupo OH em C-7 de 4. O sumário dos dados extraídos dos espectros analisados encontra-se na Tabela 3 e permite propor que 4 trata-se de 7-hidroxi-5,8-dimetoxiflavanona³⁰ (Figura 1), isolado pela primeira vez na família Piperaceae.

Os espectros de RMN ¹H de 5 (DMSO, 300 MHz) e 6 (Acetona-d₆, 300 MHz) mostraram sinais característicos de esqueleto flavanônico com anel B não substítuido, como em 4, diferindo apenas quanto ao padrão de substituição do anel A. O espectro de 5 apresentou quatro sinais simples em δ_{H} : 11,80 (1H); 8,18 (1H); 6,22 (1H) e 3,84 (3H), os dois primeiros sugestivos de substituintes hidroxílicos e o último de grupo metoxílico no anel A do esqueleto flavanônico. O sinal em δ_{u} 11,80 permitiu definir a presença de grupo OH-5; além disso, as correlações deste sinal com δ_{C} 92,58; δ_{C} 102,34 e δ_{C} 155,75; vistas no espectro HMBC (DMSO, 300 e 75 MHz), permitiram atribuí-los para C-6, C-10 e C-5 e, portanto, o sinal em $\delta_{\rm H}$ 6,22 (s, 1H), que no experimento HMQC (DMSO, 300 e 75MHz) mostrou correlação com $\delta_{\rm C}$ 92,58, para H-6. As posições de OCH₃ ($\delta_{\rm H}$ 3,84, s, 3H) e OH $(\delta_{\rm H} 8, 18, s, 1H)$ foram definidas para C-7 e C-8 por meio das correlações: $\delta_{\rm H}$ 6,22/ $\delta_{\rm C}$ 126,65 e 157,23; $\delta_{\rm H}$ 3,84/ $\delta_{\rm C}$ 157,23 e de $\delta_{\rm H}$ 8,18/ $\delta_{\rm C}$ 126,65, 157,23 e 148,02, vistas no experimento HMBC e, como consequência, $\delta_{\rm C}$ 157,23; $\delta_{\rm C}$ 126,65 e $\delta_{\rm C}$ 148,02 foram definidos para os carbonos 7, 8 e 9, respectivamente. O espectro de RMN ¹H de 6 apresentou quatro sinais em $\delta_{\rm H}$: 3,71 (s, 3H), 3,86 (s, 3H), 3,94 (s, 3H) e 6,40 (s, 1H), os três primeiros característicos de metoxílas em anel aromático, o que permitiu deduzir a presença de anel A pentasubstítuido; por outro lado, o espectro bidimensional HMBC (Acetona-d₆, 300 e 75 MHz) mostrou correlações de $\delta_{\rm H}$ 3,71/ $\delta_{\rm C}$ 131,98, $\delta_{\rm H}$ 3,86/

 $\delta_{\rm C}$ 158,74, $\delta_{\rm H}$ 3,94/ $\delta_{\rm C}$ 159,72 e de $\delta_{\rm H}$ 6,40/ $\delta_{\rm C}$ 159,72; 158,74; 131,98 e 107,16, que ao lado das correlações vistas no HMQC (Acetona- d_6 , 300 e 75 MHz): $\delta_{\rm H}$ 3,71/ $\delta_{\rm C}$ 60,99, $\delta_{\rm H}$ 3,86/ $\delta_{\rm C}$ 56,45, $\delta_{\rm H}$ 3,94/ $\delta_{\rm C}$ 56,59 e $\delta_{\rm H}$ 6,40/ $\delta_{\rm C}$ 91,25 permitiram sugerir os sinais $\delta_{\rm H}$ 3,71/ $\delta_{\rm C}$ 60,99 para a posições 7 e 5, respectivamente. A flavanona **5** já foi isolada das folhas de *Uvaria scheffleri*,³¹ mas não de Piperaceae, e a flavanona **6** (Figura 1) é descrita pela segunda vez no gênero *Piper*.³²

Atividade antimicrobiana de 7-hidroxi-5,8dimetoxiflavanona (4)

Os resultados para a atividade antimicrobiana são mostrados na Tabela 4. O composto 7-hidroxi-5,8-dimetoxiflavanona (4) mostrou atividade antibacteriana fraca contra *Staphylococcus aureus* e *Staphylococcus epidermidis*. De uma forma geral, o efeito antibacteriano dos flavonoides deve-se a presença de grupos fenólicos que apresentam afinidade para as proteínas e, por essa razão, atuam como inibidores de enzimas bacterianas, assim como interferem nas suas vias de síntese.³³ Já a atividade antifúngica contra *Trichophyton mentagrophytes* e *Microsporum canis* mostrou-se bem mais promissora, com a formação de halos de inibição de 20 e 22 mm, respectivamente, valores de diâmetro próximos aos halos de inibição dos antifúngicos controle. Os flavonoides exibem uma ampla capacidade de inibir a germinação de esporos patogênicos em plantas.³⁴ Estes compostos também têm a capacidade de formar complexos com proteínas solúveis presentes nas paredes das células fúngicas e, por isso, têm sido frequentemente propostos para combater infecções causadas por fungos no homem.³⁵

Não houve inibição do crescimento para os demais microrganismos testados.

CONCLUSÃO

O estudo químico de Piper glandulosissimum Yuncker e o

11/0	4				5		6	
H/C	$\delta_{\rm H}$	$\delta_{\rm C}$	^{2}J	^{3}J	$\delta_{_{\rm H}}$	$\delta_{\rm C}$	$\delta_{_{\rm H}}$	$\delta_{\rm C}$
2	5,55 (<i>dd</i> , J=12,7 e 3,0 Hz, 1H)	80,16			5,58 (<i>dd</i> , <i>J</i> =12,0 e 3,0 Hz, 1H)	78,31	5,54 (<i>dd</i> , <i>J</i> =12,4 e 3,0 Hz, 1H)	79,91
3	2,97 (<i>dd</i> , <i>J</i> =12,7 e 16,38 Hz); 2,71 (<i>dd</i> , <i>J</i> =16,38 e 3,0 Hz, 1H)	46,44	C-4, C-2	C-1'	3,26 (<i>dd</i> , <i>J</i> =17,1 e 12,0 Hz); 2,86 (<i>dd</i> , <i>J</i> =17,1 e 3,0 Hz, 1H)	42,46	2,98 (<i>dd</i> , <i>J</i> =12,4 e 16,4 Hz); 2,74 (<i>dd</i> , <i>J</i> =16,4 e 3,0 Hz, 1H)	46,46
4		188,12				196,66		188,33
5		158,85				155,75		159,72
6	6,21 (s, 1H)	94,02	C-7, C-5	C-8, C-10	6,22 (s, 1H)	92,58	6,40 (s, 1H)	91,25
7		157,35			-	157,23		158,74
8		130,29			-	126,65		131,98
9		157,47			-	148,02		157,14
10		106,55			-	102,34		107,16
1'		140,69			-	138,87		140,73
2'	7,62-7,61 (m, 2H)	127,14		C-4', C-2, C-6'	$7,57-7,55 \ (m, 2H)$	126,58	7,61-7,58 (m, 2H)	127,14
3'	7,59-7,36 (m, 3H)	129,56	C-2'	C-5', C-1'	7,46-7,37 (m, 3H)	128,43	7,48-7,36 (m, 3H)	129,54
4'	7,59-7,36 (m, 3H)	129,28		C-6', C-2'	7,46-7,37 (m, 3H)	128,36	7,48-7,36 (m, 3H)	129,23
5'	7,59-7,36 (m, 3H)	129,56	C-6'	C-3', C-1'	7,46-7,37 (m, 3H)	128,43	7,48-7,36 (m, 3H)	129,54
6'	7,62-7,61 (m, 2H)	127,14		C-4', C-2, C-2'	$7,57-7,55 \ (m, 2H)$	126,58	7,61-7,58 (m, 2H)	127,14
OCH ₃ -5	3,79 (s, 3H)	56,22		C-5	-	-	3,94 (s, 3H)	56,59
OCH ₃ -7		-			3,84 (s, 3H)	56,12	3,86 (s, 3H)	56,45
OCH ₃ -8	3,76 (s, 3H)	61,32		C-8	-	-	3,71 (s, 3H)	60,99
OH-5		-			11,80 (s, 1H)	155,75		
OH-7	9,03 (sl, 1H)	-			-	-		
OH-8		-			8,18 (s, 1H)	126,65		

OCH

0

ß

1 - R₁=R₃=OH, R₂=R₄=OCH₃ 1a - R₁=R₃=OCOCH₃, R₂=R₃=OCH₃ 2 - R₁=R₃=OH, R₂=H, R₄=OCH₃

Figura 1. Compostos isolados e derivados obtidos das partes aéreas de P. glandulosissimum

 $\begin{array}{l} \textbf{4} & - R_1 = R_3 = OCH_3, R_2 = OH \\ \textbf{4a} & - R_1 = R_3 = OCH_3, R_2 = OCOCH_3 \\ \textbf{5} & - R_1 = R_3 = OH, R_2 = OCH_3 \\ \textbf{6} & - R_1 = R_2 = R_3 = OCH_3 \end{array}$

Tabela 4.	Valores médios	dos halos	de inibição ((mm)) da avaliaçã	ío da C	CIM de 7	7-hidroxi-	5,8-dime	toxiflavanona	(4) sobre	bactérias	e fungos.	em r	meio s	sólido
-----------	----------------	-----------	---------------	------	---------------	---------	----------	------------	----------	---------------	----	---------	-----------	-----------	------	--------	--------

Microrganismo e cepa testada	400 µg/mL	200 µg/mL	100 µg/mL	50 µg/mL	Controle: Cloranfenicol (30 µg/mL)	Controle: Cetoconazol (100 µg/mL)	
Staphylococcus aureus – ATCC 6528	12	10	7	0	20	_	
Staphylococcus epidermidis – ATCC 12.228	10	0	0	0	21	_	
Trichophyton mentagrophytes - LM 06	20	16	12	8	_	22	
Microsporum caniis – LM 828	22	18	13	10	_	23	

consequente isolamento desses compostos contribuem para uma maior compreensão da quimiossistemática do gênero *Piper*³ e da família Piperaceae. Este é um dos primeiros relatos de estudo químico desta espécie e os compostos isolados pertencem a um grupo de metabólitos secundários (flavonoides) que responde por cerca de 4% do montante de compostos isolados no gênero *Piper*. Em pesquisas anteriores com *Piper montealegreanum*¹⁰ e *Piper carniconnectivum*,¹⁰ duas espécies de *Piper* oriundas também da região Norte do Brasil, foram obtidos vários flavonoides, alguns deles com um ótimo potencial biológico. A continuação dos estudos químico-farmacológicos com espécies desse gênero tem se mostrado bastante promissora, pois além de novos compostos isolados na família, tem sido registradas atividades biológicas interessantes, como é o caso da atividade antifúngica obtida com o composto 7-hidroxi-5,8-dimetoxiflavanona (**4**).

AGRADECIMENTOS

Ao CNPq pelo suporte financeiro, à Dra. Maria das Graças B. Zoghbi (Museu Paraense Emílio Goeldi) pela coleta do material vegetal, à Dra. Elsie Guimarães pela identificação do material botânico, a Vicente Carlos Oliveira Costa e ao Prof. Edilberto Rocha Silveira pelos espectros de RMN.

REFERÊNCIAS

- Marques, J. V.; Oliveira, A.; Raggi, L.; Young, M. C. M.; Kato, M. J.; J. Braz. Chem. Soc. 2010, 21, 1807.
- Di Stasi, L. C.; Oliveira, G. P.; Carvalhaes, M. A.; Queiroz Jr, M.; Tien, O. S.; Kakinami, S. H.; Reis, M. S.; *Fitoterapia* **2002**, *73*, 69; Giorgetti, M.; Negri, G.; Rodrigues, E.; J. Ethnopharmacol. **2007**, *109*, 338.
- Parmar, V.; Jain, S. C.; Bisht, K. S.; Jain, R.; Tanela, P.; Jha, A.; Tyagi,
 O. D.; Prasad, A. D.; Wengel, J.; Olsen, C. E.; Boll, P. M.; *Phytochemistry* 1997, 49, 597; Wu, Q-L.; Wang, S-P.; Tu, G. Z.; Feng, Y.; Yang,
 J. S.; *Phytochemistry* 1997, 44, 727; Yamaguchi, L. F.; Lago, J. H. G.;
 Tanikazi, T. M.; Mascio, P. D.; Kato, M. J.; *Phytochemistry* 2006, 67, 1838.
- http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB24230, acessada em Junho 2014.
- Lizcano, L. J.; Bakkali, F.; Ruiz-Larrea, M. B.; Ruiz-Sanz, J. I.; Food Chem. 2009, 119, 1566.
- Lizcano, J. L.; Bernal, M. V.; Vicente, F.; Berrueta, L. A.; Gallo, B.; Martínez-Cañamero, M.; Ruiz-Larrea, M. B.; Ruiz-Sanz, J. I.; *Int. J. Mol. Sci.* 2012, *13*, 5454.
- Erade, E. H. A.; Zoghbi, M. das G. B.; J. Essent. Oil Res. 2007, 19, 401.
- Alves, H. S.; Souza, M. F. V.; Chaves, M. C. O.; *J. Braz. Chem. Soc.* 2011, 22, 1610; Alves, H. S.; Oliveira, G. E.; Zoghbi, M. G.; Chaves, M. C. O.; *Braz. J. Pharmacogn.* 2010, 20, 160.
- Chaves, M. C. O.; da Cunha, E. V. L.; Gray, A. I.; *Phytochemistry* 1997, 44, 559; Chaves, M. C. O.; Santos, B. V. O.; *Biochem. Syst. Ecol.* 1999, 27, 113; Chaves, M. C. O.; Santos, B. V. O.; Oliveira, A. H.; *Biochem. Syst. Ecol.* 2003, *31*, 1213.

- Chaves, M. C. O.; Araújo Júnior, J. X.; da Cunha, E. V. L.; Gray, A. I.; Biochem. Syst. Ecol. 1999, 27, 325; Chaves, M. C. O.; Cardozo Júnior, E. L.; Pharm. Biol. 2003, 41, 216.
- Mabry, T. J.; Markham, K. R.; Thomas, M. B.; *The Systematic Identification of Flavonoids*. Springer-Verlag: New York, 1970, 354 p.
- 14. Silva, T. M. S; Carvalho, M. G.; Braz-Filho, R.; *Quim. Nova* **2009**, *32*, 1119.
- Bauer, A. W.; Kirby, W. M.; Sherris, J. C.; Tueck, M.; Am. J. Clin. Pathol. 1966, 45, 493.
- Cleland, R.; Squires, E.; Antibiotics in Laboratory Medicine, 3th ed., Willians & Wilkins: Baltimore, 1991; Hadacek, F.; Greger, H.; Phytochem. Anal. 2000, 11, 137.
- Catão, R. M. R.; Barbosa-Filho, J. M.; Gutierrez, S. J. C.; Lima, E. O.; Pereira, M. S. V.; Arruda, T. A.; Antunes, R. P. M. A.; *Rev Bras. Anal. Clin.* 2005, *37*, 247.
- Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Introdução à espectroscopia, 4ª ed, Cengage Learning: São Paulo, 2010, 700 p.
- 19. Bohm, B. A.; Biochem. Syst. Ecol. 1999, 27, 755.
- 20. Maradufu, A.; Ouma, J. H.; Phytochemistry 1978, 14, 823.
- Silverstein, R. M.; Bassler, G. C.; Morril, T. C.; *Identificação espectrométrica de compostos orgânicos*, 6^a ed., LTC Editora: Rio de Janeiro 2000, 460 p.
- Terreaux, C.; Gupta, M. P.; Hostettmann, K.; *Phytochemistry* 1998, 49, 461.
- 23. Bohlmann, F.; Planta Med. 1984, 50, 271.
- Jakupovic, J.; Kuhnke, J.; Schuster, A.; Metwaaly, M. A.; Bohlmann, F.; *Phytochemistry* 1986, 25, 1133.
- 25. Jaipetch, T.; Aust. J. Chem. 1982, 35, 351.
- Cheenpracha, S.; Karalai, C.; Ponglimanont, C.; Subhadhirasakul, S.; Tewtrakul, S.; *Bioorg. Med. Chem.* 2006, 14, 1710.
- 27. Kuo, Y. C.; Yang, L. M.; Lin, L. C.; Planta Med. 2004, 70, 1237.
- Ichimaru, M.; Nakatani, N.; Takanashi, T.; Nishiyama, Y.; Moriyasu, M.; Kato, A.; Mathenge, S. G.; Juma, F. D.; Nganga, J. N.; *Chem. Pharm. Bull.* 2004, *52*, 138.
- 29. Isobe, T.; Ohsaki, A.; Nagata, K.; J. Pharm. Soc. Jpn. 2002, 122, 291 (CA 137:291662)
- Lopez, S. N.; Sierra, M. G.; Gattuso, S. J.; Furlan, R. L.; Zacchino, S. A.; *Phytochemistry*, **2006**, *67*, 2152 ; Bratoeff, E. A.; Perez-Amador, M. C.; *Phyton* **1994**, *55*, 71.
- 31. Moshi, M.; Joseph, C.; Innocent, E.; Pharm. Biol. 2004, 42, 269.
- Vieira, P.; De Alvarenga, M. A.; Gottlieb, O. R.; Gottlieb, H. E.; *Planta Med.* 1980, *39*, 153.
- Alcaráz, L. E.; Blanco, S. E.; Puig, O. N.; Tomás, F.; Ferreti, F. H.; J. *Theor. Biol.* 2000, 205, 231; Ávila, P. H.; Smânia, E. F. A.; Monache, F. D.; Júnior, A. S.; *Bioorg. Med. Chem.* 2008, 16, 9790; Li, Y.; Luo, Y.; Hu, Y.; Zhu, D. D.; Zhang, S.; Liu, Z. J.; Gong, H. B.; Zhu, H. L; *Bioorg. Med. Chem.* 2012, 20, 4316.
- Tiwari, V. K.; Opportunity, challenge and scope of Natural Products in Medicinal Chemistry. 1st ed., Research Signpost: Trivandrum, 2011, chap. 9.
- 35. Salas, P. M.; Céliz, G.; Geronazzo, H.; Daz, M.; Resnik, S. L.; Food Chem. 2011, 124, 1411.