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RESUMO

A disseminação mundial de geminivírus e seu vetor tem sido atribuída 
à alta taxa de recombinação, mutação, presença de hospedeiros alternativos, 
transporte de material vegetal, atividade humana e o comércio globalizado, 
novas práticas agrícolas e mudanças climáticas. Portanto, as doenças virais 
mais graves cresceram em quase todas as culturas  e regiões do mundo, por 
exemplo as doenças virais da mandioca na África, doença do enrolamento 
da folha do algodão no Paquistão e várias doenças em tomateiros, legumes 
e cucurbitáceas na Índia e em outras partes do mundo. O begomovírus é o 
principal gênero de Geminiviridae que tem apresentado aumento mundial em 
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suas variações e distribuição afetando plantas anteriormente não afetadas. 
A população mundial crescente aumentou a demanda por uma agricultura 
sustentável, mas os begomovírus tornaram-se uma constante ameaça à 
agricultura mundial. Numerosas estratégias de controle têm sido usadas 
para este vírus em várias partes do mundo, mas os begomovírus superam 
continuamente os métodos de controle. A presente revisão resume todas 
as estratégias utilisadas contra begomovírus e fornece uma comparação 
abrangente entre os métodos de controle, suas desvantagens e futuras 
percepções.
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Geminiviridae is the leading family of insect-transmitted single-
stranded circular DNA plant viruses comprising more than 450 species 
(57). Over the last several years, geminiviruses have gained the attention 
of researchers due to their ability to cause infection in cultivated, non-
cultivated monocotyledonous and dicotyledonous vegetation worldwide 
(2). Extensive geographic distribution of insect vectors and alternate 
host planting material due to inadequate quarantine measures around 
borders made geminiviruses a major limiting factor in the production 
of important agronomic crops of economic value, such as cotton, 
pepper, tomato, beans and cassava (81, 87). Economic losses caused 
by geminiviruses to these crops have been estimated at around USD 5 

billion for cotton in Pakistan, USD 140 million for tomato in Florida, 
USD 1300–2300 million for cassava in Africa, and USD 300 million 
for grain legumes in India (62). Geminiviridae family is divided into 
14 genera of plant viruses (Becurtovirus, Begomovirus, Capulavirus, 
Curtovirus, Eragrovirus, Grablovirus, Mastrevirus, Topocuvirus, and 
Turncurtovirus, Citlodavirus, Maldovirus, Mulcrilevirus, Opunvirus, 
and Topilevirus) based on insect vectors, genome organization, and 
host range and phylogeny. The whitefly (Bemisia tabaci G.) transmits 
wide-reach geminiviruses belonging to the largest genus Begomovirus; 
approximately 409 species make it a diversified genus of Geminiviridae 
family. Begomoviruses with one-molecule genomes are known as 

The worldwide spread of Geminiviruses and its vector has been attributed 
to the high rate of recombination, mutation, presence of alternate hosts, 
transport of plant material, global human activity along with global trade, 
new agricultural practices and climate change; therefore, the most severe viral 
diseases among crops have grown in almost all regions of the world, including 
cassava viral diseases in Africa, cotton leaf curl disease in Pakistan, and multiple 
diseases related to tomatoes, legumes and cucurbits in India and all over the 
world. Begomovirus is the major and largest genus of Geminiviridae which 
has shown a worldwide increase in its variations and distribution by affecting 
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ABSTRACT

previously unaffected plants. The increasing population has augmented the 
demand for a sustainable agriculture boost, but begomoviruses have become 
a continual threat to the world’s agriculture. Numerous control strategies have 
been used for the viral invasion of the world as pathogens but begomoviruses 
continually overcome the control methods, and this has generated a need to 
end this competition between researchers and begomoviruses. The present 
review summarizes all strategies used against begomoviruses and provides a 
comprehensive comparison among all control methods, their drawbacks, and 
future insights.
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monopartite, and those with two-molecule genomes are known as 
bipartite. Irrespective of whether the genome is mono or bi-partite, 
the size of each genomic DNA molecule is 2.8 to 3kb (75, 94). In the 
establishment of infection in plants, the satellite molecules associated 
with begomoviruses also play an important role; these known subviral 
molecules are betasatellites, alphasatellites, deltasatellites or non-
coding satellites (31). The introduction and blowout of begomoviruses 
and their vectors around the world provide threatening circumstances 
for the cultivation of vegetables and other economically significant 
crops, since tomato yellow leaf curl virus (TYLCV) is widely known 
to have emerged as a serious concern for tomato production worldwide, 
and these viral diseases of vegetable crops have ultimately posed serious 
threat to food security (39, 32, 33). Recombination and mutation have 
resulted in new variants, which are favored by climate changes, global 
agricultural trade, poor quarantine measures and cropping systems, and 
have increased their host range and geographic distribution around the 
globe, making their control more complex. Since the identification of 
begomoviruses as deadly plant pathogens, different methods have been 
adopted to control the disease or minimize the infection (3, 8, 19).

CONTROL STRATEGIES USED AGAINST 
BEGOMOVIRUS INFECTION

Managing begomoviruses is difficult on a global platform due to 
the high incidence of economically significant diseases caused by these 
viruses. Integrated pest management (IPM), which includes actions 
before, during and after the growing season, is the most efficient 
technique for management, regardless of the type of agricultural 
practices (77).

Cultural and phytosanitary practices
Every country is following some quarantine measures and has 

created special quarantine departments to stop the introduction of exotic 
pests (79). The purpose of plant quarantine measures is to safeguard 
a country’s or a region’s agriculture against the potential effects of 
dangerous pathogens and pests (79). These measures are especially 
crucial and pertinent for states whose economies are heavily focused 
on agriculture. In addition to reducing the threat posed by exotic pests, 
quarantine also aims to eradicate and stop the spread of pests and 
pathogens (both native and imported) with restricted dispersal within 
the territory or the country; this is known as domestic quarantine (59). 
However, poor quarantine measures have resulted in the introduction of 
numerous devastating pests into new countries (90). The Irish Famine in 
the 1840s, which was brought on by Phytophthora infestants imported 
from Central America, is one example of introduced pest causing 
epidemic and pandemic with severe effects on food production, way of 
life, and environmental biodiversity. Banana bunchy top virus outbreak 
in the sub-region of West Africa due to the virus spread through planting 
material from sub-regions of Central Africa, as well as cassava mosaic 
disease invasion in East Asia caused by Sri Lankan cassava mosaic 
virus (SLCMV) which was introduced from South Asia, are two recent 
examples of devastating outbreaks caused by trans-boundary pest 
introductions (50, 43). Strong and strict quarantine measures can stop 
the introduction of pests, which can cause epidemics. This is the first 
step towards control strategies (42). Over the years, weeds have become 
the reservoir of plant viruses (51). Cultural practices, including roguing, 
removal of alternative host plants, disposal of residues, rotation with 
unrelated and non-host crops, balanced fertilizer usage, deep burial of 

infected plants, and time of cropping (24), can not only reduce the insect 
vector population, but also lower the disease pressure (45). Physical 
barriers like UV-absorbing plastic sheets and fine mesh screens have 
been demonstrated to be helpful against whiteflies, but this method also 
causes issues with shadowing, overheating and inadequate ventilation, 
and is not such a common practice in underdeveloped countries (91). 
In rural areas of Pakistan, the farmers are not much educated about 
integrated pest management and are following the conventional mono-
cropping methods. Mono-cropping and poor field sanitation have 
increased the insect pest population, and there is a dire need to stop 
these practices in underdeveloped countries (1, 54, 6).

 
Vector management through Insecticides
Begomoviruses are spread by whiteflies, and this small monster has 

wreaked havoc on agricultural crops all over the world where farming 
is practiced or possible (25). A traditional and hypothetically easier 
approach to control viral infection usually involves the interruption of 
transmission through vector control, which is led by the application 
of chemical insecticides/pesticides (63). Pesticides are used to boost 
agricultural output; however, they accumulate over time in components 
of plant, soil, water, biota and remains suspended in the air. Pesticides 
contaminate the environment, reside in the crops and eventually invade 
the food chain, risking the human and animal health (88, 41). Around 
2 million tons of agricultural-related chemicals are used worldwide, 
of which 17.5% are fungicides, 29.5% are insecticides, 47.5% are 
herbicides, and 5.5% are other pesticides. China, the United States, 
Argentina, Thailand, Brazil, Italy, France, Canada, Japan and India 
are the top ten pesticide-using countries on the planet (83). Judicious 
application of insecticides is essential (76), since a non-judicious and 
unnecessary use of pesticide has developed resistance in insect pests. 
Bemisia tabaci is the fifth most insecticide-resistant species in the 
world out of the top 12; therefore, the control of whitefly has become 
a global concern due to readily developing resistance against each 
new introduced insecticide (46). Indiscriminate use of insecticides 
against whitefly can only be stopped by the proper and timely pest 
scouting. Pesticide usage causes serious consequences and this control 
significantly adds to the production costs, but chemical pesticide 
application is still chosen over all other options for preventing crop 
yield loss by farmers. (37)

Development of resistant varieties
Development of plant resistant cultivars through breeding 

techniques is the inviting and cost-effective approach to prevent plant 
virus diseases (77). Conventional breeding has extensively used natural 
sources of resistance to generate virus-resistant plants (74). Because this 
method does not require additional resources to control viral vectors, 
virus-resistant crops boost breeders’ profitability. The introduction 
of new geminivirus strains as a result of continuous recombination 
and changes in farming techniques is the only flaw and failure of 
this method (40, 49). Another problem is when two or more viruses 
co-infect a crop plant (29). When the vector is present in the field and 
the environmental conditions favor the disease development, there 
are chances that new resistance breaking viral strains emerge, since 
viruses change their genome through recombination and mutation 
under pressure and a new more destructive strain evolves (53, 52, 20). 
In 1967, a village close to Multan, Pakistan, reported the first case of 
cotton leaf curl disease (CLCD) brought on by begomoviruses, but it 
kept unnoticed until early 1990s (73), when it became pandemic and 
caused financial losses of up to 5 billion USD to the Pakistan’ economy 
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between 1992 and 1997 (12). At that time, researchers in Pakistan 
focused on the development of resistant varieties of cotton, by breeding 
locally cultivated susceptible varieties with resistant sources; resistant 
cotton variants were developed, and the resistance in the recently 
released cotton cultivars held firm until the appearance of a Burewala 
viral strain in 2001 in Punjab District of Vehari. The newly developed 
resistance-breaking strain infected all resistant cotton cultivars. Cotton 
leaf curl Burewala virus (CLCuBuV) is the name of this strain, which 
has sequences of other two strains: Multan and Khokhran. So far, there 
is no resistant cotton variety available in Pakistan against Burewala 
strain (35, 65).

Cross Protection
Cross-protection is another disease management method that was 

defined more than 70 years ago for plant viruses. McKinney originally 
identified this method in 1926; numerous examples of cross-protection 
have been identified thereafter (27). According to this method, by 
injecting a mild isolate of a virus into a plant, the symptoms of the 
severe strain are inhibited or delayed in expression when the plant is 
subsequently inoculated with a severe isolate of the same virus (95). 
Previously, it was believed that cross-protection could only be used to 
identify whether a plant virus belonged to the same strain or a different 
species. Another term used for cross-protection is “plant immunization” 
(66). Cross-protection entirely depends on a viral strain that causes 
either no symptoms or mild symptoms with low viral capacity, and 
this strain is called primary virus (52). The primary virus is classified 
as attenuated and therefore acts as a vaccine (67, 96). Citrus tristeza 
virus, zucchini yellow mosaic virus, papaya ring-spot virus and tomato 
mosaic virus have all been successfully controlled by this method (89). 
Early research revealed that severe strains of cassava mosaic disease 
(CMD) viruses might infect plants that were previously infected by 
moderate strains. Due to their poor disease-causing ability, primary 
viruses or strains cause no impacts on plants due to no or mild disease 
symptoms and therefore generate bearable yield losses (54, 26, 34). As 
demonstrated by the managing of two important plant viruses, Citrus 
tristeza virus (CTV) or pepino mosaic virus (PepMV), cross-protection 
against plant viruses can be a very effective strategy. However, in 
order to use cross-protection against plant viruses, it is compulsory 
to assess mild strains that are similar to the severe strains. It may be 
sufficient to use cultural practices and keep insect vector populations at 
a minimum level to lessen the spread of pathogenic viruses; however, 
cultural practices are not sufficient to lower the disease incidence (72). 
There are several drawbacks to using the cross-protection technique. 
Transmission to a new and different host, mixed infections with other 
viruses, mutation or recombination between different strains or viruses, 
and even a more serious disease can result from infection by the mild 
strain (28). As a result, cross-protection should be employed only after 
other protective measures have failed, and the procedure should be 
constantly monitored (15).

Resistance through RNAi
Gene silencing is described as the epigenetic process used to 

regulate the genes; it can be transcriptional or post-transcriptional (23). 
The mechanism of RNA silencing was first observed in tobacco plants in 
1928 by Wingyard when he observed the discovery of new leaves from 
tobacco ring spot viral infection (36, 9) but, at that time, the mechanism 
was unknown. In 1989, it was again found in Nicotiana benthamiana 
(22). In 1990, Napoli and Jorgensen reported gene silencing in petunia 
(80).  Post-transcriptional gene silencing (PTGS) or RNA interference 

(RNAi) involves cutting of double-stranded ribonucleic acid (dsRNA) 
strands, when recognized by the plant defense mechanism, into small 
strands of approximately 21-26 nucleotides. The dsRNA is cut by dicer 
protein into short interfering RNA. Then, the dsRNA is unwound to 
make single-stranded ribonucleic acid (ssRNA) molecules and are 
known as small interference RNA (siRNA). The siRNA interrelates 
with RNA-induced silencing complex (RISC). Whenever RISC finds 
a complementary strand to its associated siRNA, it binds to it and the 
dicer cleaves the dsRNA, thus preventing gene expression (7, 93). RNA 
interference is actually a naturally occurring mechanism to regulate 
transposons and other endogenous genes, as well as to counteract the 
invading genes (21, 60). Nowadays, it has been used by scientists 
to study functional genomics and to develop improved crop plants 
and disease resistant plants (61). Against geminiviruses, RNAi has 
been adopted to develop resistance to cotton leaf curl Multan virus 
(CLCuMV) in cotton (64), African cassava mosaic virus (ACMV) 
in cassava (70), cucumber mosaic virus (CMV) in tomato (68), rice 
dwarf virus (85) and cotton leaf curl Multan virus-Rajasthan strain 
(CLCuMV-Raj) in elite Indian cotton (Gossypium hirsutum) (48), 
bean golden mosaic virus in common bean (Phaseolus vulgaris) (11), 
chili leaf curl virus Pakistan isolate Varanasi, and tomato leaf curl 
New Delhi virus-isolate chili and chili leaf curl Vellanad virus tested 
in Nicotiana benthamiana (84). 

 Host plant resistance
A more effective option to manage diseases, particularly those that 

are primarily introduced by geminiviruses largely over a specific length 
of time, is the host plant resistance phenomenon (4). Resistance (R) 
genes are often involved in triggering downstream signaling response 
during plant disease resistance. Based on structural motifs, leucine-rich 
repeat domains, coiled-coil domains, interleukin-1 receptor domains, 
transmembrane regions and nucleotide-binding site resistant proteins 
can be divided into various super-families. Generally, nucleotide-
binding site leucine-rich repeat (NBS-LRR) genes are the two most 
dominant R-genes found in plants; these two R-genes are further sub-
grouped based on N-terminal coiled coil or toll/interleukin-1 receptor 
(TIR) domain (17). Plants use a variety of defense mechanisms against 
pathogenic attacks. A defense response known as systemic acquired 
resistance (SAR) stimulates a hypersensitive system to an avirulent 
pathogen, which exhibits a normal part of plant resistance to virulent 
pathogens. The SAR is considered to be responsible for the activation 
of various related genes such as non-expressor of pathogenesis-related 
genes 1 (NPR1) and its paralogues NPR3 and NPR4. Exogenous 
application of certain chemicals to the plant, such as salicylic 
acid (SA), -2,6dichloroisonicotinic acid and benzo 1,2,3 thiadiazole-
7-carbothioic acid S-methyl ester, stimulates the SAR; in the signal 
transduction pathway(s), coupling the hypersensitive response (HR) 
with the onset of SAR endogenously produces SA after some hyper 
response (13). The SA-signaling pathway is considered an important 
system that requires the plant for immunity against the pathogen (38, 
30). The NPR1 and its paralogues (NPR3 and NPR4) are bona fide SA 
receptors that play a vital role in local and systemic immunity for SA-
mediated regulation (10). Plants are very complex in nature and have 
effective innate immune systems to combat bacteria, fungi, viruses, 
etc. Characterization of the SAR mechanism especially depends on 
the induction of pathogenesis-related gene bundle, SA accumulation, 
and long-term resistance properties against plant diseases. Due to 
the long-term resistant property of SAR, AtNPR1 has been used as a 
resistance engineering tool in most agronomic crops against bacterial, 
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fungal and viral attacks. Overexpression of BjNPR1 in Brassica 
juncea increased immunity against fungal pathogens like Alternaria 
brassicae and Erysiphe cruciferarum (5), while overexpression of 
MuNPR1 (of Mulberry) in Arabidopsis displayed increased resistance 
against Pseudomonas syringae PV. tomato DC3000 (PstDC3000) 
(92). In a similar pattern, knockdown of tomato NPR1-like gene (18), 
tobacco NtNPR1 (56), and barley HvNPR1 (78, 58) showed a hike in 
susceptibility to Ralstonia solanacearum, tobacco mosaic virus (TMV) 
and powdery mildew fungus, respectively. Two interrelated branches 
constitute the plant innate immunity: PTI, or pathogen-associated 
molecular pattern (PAMP)-triggered immunity, is initiated when 
the pattern recognition receptor (PRR), present on the plant surface, 
recognizes the molecular signs of pathogens and a signal is mediated 
and further triggered downstream to mitogen-activated protein (MAP) 
kinase cascades and defense genes; and ETI, or effector-triggered 
immunity, is initiated when the plant disease resistance proteins 
(major R gene products) directly or indirectly recognize specific 
pathogen-derived effectors. Both PTI and ETI activate the SAR and 
are controlled by phytohormones, especially jasmonic acid (JA) and 
SA (71). The pathogen-inducible transcription factor CaWRKY2 is 
known to have a role in early defense responses to biotic and abiotic 
stresses in chili pepper (69). 

CRISPER/Cas9
A holistic genome-editing approach, well known as clustered 

regularly interspaced short palindromic repeats and CRISPR associated 
protein 9 (CRISPR/Cas9), is the most adaptable and defined method 
currently used to produce virus-resistant cultivars. CRISPR/Cas9 was 
initially found to be an adaptive immune defense mechanism in bacterial 
cells to protect against invading DNA (86). Due to its fascinating 
features, the Cas9 genome editing system has developed into a versatile 
method to achieve specific gene targeting, gene replacements, gene 
insertions/deletions, and single base-pair alterations. As a result, this 
tool has become a crucial component of contemporary plant breeding 
(82). Cas9 technique has advanced the plant breeding programs and 
has made resistant cultivars possible even with transmissible resistance 
against plant viruses. This system includes the complex of Cas9 
endonuclease and single-guide RNAs (sgRNAs), which target specific 
parts of the virus or plant genome sequence by either interposing the 
cleavage of viral sequence or altering the plant genome, meanwhile 
they reduce the replication ability of the virus. This technique can act 
in two ways: it can detect and degrade pathogenic genes of viruses, 
making them less virulent or non-virulent, or it can be used to develop 
crops with resistance genes against viruses. Therefore, this approach 
has created a buzz in reforming the research against viruses due to its 
sequence-specific nuclease proficiency (82, 55, 47). CRISPR-Cas9 
system has been engineered to confer resistance to various human 
viruses and plant geminiviruses (91). The bean yellow dwarf virus 
(BeYDV) and the beet severe curled top virus (BSCTV) were targeted 
in the first experiment using CRISPR to develop viral resistance in N. 
benthamiana and A. thaliana (4). The highest level of resistance to 
leaf curl disease and decreased viral infections are demonstrated by 
transgenic tobacco plants that produce dual gRNAs targeting the C1 
(Replication-associated protein) and IR sections of cotton leaf curl 
Multan virus (CLCuMuV) (93). Targeting numerous regions of the 
viral genome at the same time would prevent the virus from using the 
non-homologous end joining (NHEJ) repair pathway; then, cleaved 
molecules would eventually be tainted. A catalytically inactive Cas9 
would be predicted to stop viral replication and eventually result in 

viral interference if it were to target an intergenic region that is essential 
for binding and replication start. However, while developing CRISPR/
Cas9-based approaches for long-term viral interference and resistance, 
leading to higher agricultural production, there are several crucial 
considerations to take into account (93, 44, 40, 14).

CONCLUSION

Controlling and managing begomovirus infections has become 
difficult due to the dynamic and rapid evolution of new viral strains. 
Several researches have contributed significantly to the development of 
resistant plants through the expression of viral and non-viral proteins, 
host-resistant (R) genes, and gene silencing by RNA interference 
against begomoviruses, but different researchers keep finding ways 
and discovering pathways to better understand and manage plant-virus 
interactions. In the previous years, RNAi technique was considered the 
best method for resistance against begomoviruses of the cotton crop; 
however, cotton leaf curl in Pakistan still prevails and causes losses 
every year. All control strategies discovered so far, when applied against 
begomoviruses, create pressure on the viral genome, and this survival 
pressure changes the viral genome to appear as strong as before to break 
this pressure. Burewala strain of cotton leaf curl virus is a clear example 
of this mechanism. Due to recombination and mutation, begomoviruses 
have been changing their genome and spreading as new strains and 
becoming more devastating by infecting new plants and breaking 
host resistance. The present review suggests adopting a method that 
does not create conditions for the virus to undergo recombination and 
mutation or emerge as a more devastating strain; however, the host 
should have enough strength to tolerate the disease. Natural defense 
is a more economical and environment-friendly method, since it does 
not create any pressure on the virus. There are numerous insights in the 
plant genomes that are still hidden from the eye of the researcher and 
need to be explored before begomoviruses take over the agriculture 
of the world. The current study aimed to provide a comprehensive 
comparison among all control methods used all over the world to 
control begomovirus infection; despite all control methods, the viruses 
continue spreading, still uncontrolled, and agriculture is still threatened, 
which has arisen a question for researchers: is the best strategy against 
begomoviruses yet to come?
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