EFICIÊNCIA DE NOVA FORMULAÇÃO DO HERBICIDA OXYFLUORFEN NO CONTROLE DE PLANTAS DANINHAS EM ÁREA DE *Pinus caribea* Morelet var. *hondurensis* Barr. et Golf.¹

Eduardo Antonio Drolhe da Costa², Marcus Barifouse Matallo³, José Claudionir Carvalho⁴e Albino Rozanski⁵

RESUMO - Foi realizado um experimento para avaliar a seletividade e a eficiência do herbicida oxyfluorfen formulado a 480 e 240 g/l, em área com mudas de *Pinus caribea* Morelet var. *hondurensis* Barr. et Golf. recémtransplantadas (aplicação em pré-emergência das plantas daninhas) e com 12 dias após o transplante (aplicação em pós-emergência inicial das plantas daninhas). O ensaio foi instalado no município de Paulínia, Estado de São Paulo, em um Latossolo Vermelho-Escuro, eutrófico, no ano agrícola 1999/2000. Foi adotado o delineamento em parcelas subsubdivididas no tempo, tendo como tratamento principal, disposto em blocos ao acaso com quatro repetições, o herbicida oxyfluorfen formulado a 480 g/l de ingrediente ativo (i.a.), nas doses de 1,0, 1,5 e 2,0 l/ha, e a 240 g/l (i.a.), nas doses de 2,0, 3,0 e 4,0 l/ha. Como tratamento secundário (subparcelas) considerou-se o modo de aplicação do produto (pré ou pós-emergência das plantas daninhas) e como sub-subparcelas, as diferentes épocas de avaliação da eficácia de controle. As mudas foram plantadas no espaçamento de 0,5 x 0,5 m e os tratamentos foram aplicados por meio de um pulverizador costal pressurizado a CO₂, a uma pressão de 2,45 kg/cm², utilizando-se um volume de calda igual a 200 l/ha. Os resultados mostraram que o herbicida oxyfluorfen formulado a 480 g/l e 240 g/l mostrou-se eficiente no controle de *Brachiaria decumbens, Panicum maximum, Ipomoea grandifolia* e *Sida rhombifolia* em diferentes épocas de avaliação, tanto quando foi aplicado em pré como em pós-emergência, sem ocasionar danos às plantas de *Pinus caribea* var. *hondurensis*.

Palavras-chave: Controle químico, oxyfluorfen, fitointoxicação e herbicidas.

EFFICIENCY OF NEW OXYFLUORFEN FORMULATION TO CONTROL WEEDS IN AREA OF Pinus caribea Morelet var. hondurensis Barr. et Golf.

ABSTRACT - A trial was carried out to evaluate **Pinus caribea** Morelet var. **hondurensis** Barr. et Golf: selectivity and weed control with oxyfluorfen formulated at 480 (SC) and 240 g/l (EC) of active ingredient (a.i.). Treatments were sprayed on seedlings at the moment of transplanting and 12 days after. Results showed that oxyfluorfen 480 (SC) g/l was very similar to oxyfluorfen at 240 g/l (EC) and both formulations were efficient to control **Brachiaria decumbens**, **Panicum maximum**, **Ipomoea grandifolia** and **Sida rhombifolia** when applied in preemergence or early post at different evaluation times, with no damage to **Pinus caribea** var. **hondurensis**.

Key words: Chemical control, oxyfluorfen, phytointoxication and herbicides

² Eng.-Agr. Doutor em Proteção Vegetal, Pesquisador Científico do Laboratório da Ciência das Plantas Daninhas do Instituto Biológico – LCPD/IBC, Caixa Postal 70, 13001-970 Campinas-SP, <costaead@biologico.br>; ³ Eng.-Agr. Doutor em Agronomia, Pesquisador Científico do LCPD/IBC, <e-mail: herbicid@correionet.com.br>. ⁴ Eng.-Agr. Doutor em Proteção Vegetal, Rohm and Haas Química Ltda., Fazenda Experimental de Campinas, Caixa Postal 66, 13140-000 Paulínia-SP. ⁵ Eng.-Agr., Pesquisador Científico do LCPD/IBC.

Recebido para publicação em 16.10.2000. Aceito para publicação em 13.12.2002.

COSTAE.A.D. ebl.

1. INTRODUÇÃO

A crescente demanda por produtos florestais, em nível nacional e mundial, registrada nos últimos 50 anos, assim como a intensa pressão exploratória sobre as matas nativas brasileiras, tem levado a iniciativa pública e privada a estimular e implantar extensas áreas florestais com espécies de rápido crescimento. Atualmente, o Brasil possui mais de 8 milhões de hectares reflorestados com plantações homogêneas, predominando as espécies de *Eucalyptus* (52%) e *Pinus* (30%) (SOCIEDADE BRASILEIRA DE SILVICULTURA, 1992).

Para atender a demanda por produtos florestais, com o máximo de eficiência, existe a necessidade de controle de certos fatores limitantes, dentre os quais se destacam aqueles decorrentes da presença de plantas infestantes na área reflorestada, pois estas competem por luz, nutrientes, água e espaço. Além de atuarem como hospedeiras intermediárias de pragas e doenças, exercem pressão de natureza alelopática e aumentam os riscos de incêndios em maciços florestais, podendo interferir nas práticas culturais, o que inclui o corte e a retirada da madeira, abrigando vetores de doenças e animais peçonhentos, além do fato de algumas práticas de controle das plantas infestantes poderem injuriar as plantas florestais (Pitelli & Karam, 1988).

A expansão das áreas florestais tem englobado áreas anteriormente ocupadas por pastagens, com predominância das espécies *Brachiaria decumbens* Stapf (capimbraquiária) e *Panicum maximum* Jacq. (capim-colonião). Portanto, essas espécies se transformaram em plantas daninhas problemáticas em áreas de reflorestamento, principalmente devido às suas características como elevada agressividade, intensa capacidade de produção e longevidade de sementes.

De modo geral, os sistemas de controle de plantas daninhas em reflorestamentos dependem de vários fatores, como histórico da área, gênero/espécie cultivada, idade do plantio, topografia do terreno, características morfofisiológicas, taxa de colonização da vegetação invasora, dentre outros. A combinação desses fatores determina a escolha do sistema mais adequado de manejo, podendo variar de acordo com a utilização de sistemas manuais, como capina/roçada em área total ou coroamento, capina/roçada mecanizada, controle químico com herbicidas, uso de fogo sob forma controlada, combinação desses sistemas etc. (Brito, 1995).

O método químico de controle vem sendo cada dia mais utilizado e difundido, em razão de seus resultados serem mais rápidos, eficientes e com efeito residual acentuado, o que permite, ainda, o controle da comunidade infestante antes ou depois de sua emergência, diminuindo assim a possibilidade de reinfestação da área e, conseqüentemente, o número de tratos culturais, possibilitando melhor distribuição da mão-de-obra na propriedade. Dentre os herbicidas recomendados, o oxyfluorfen tem sido usado extensivamente no controle de plantas daninhas gramíneas e dicotiledôneas em coníferas, desde a fase de viveiro, assim como em mudas recém-transplantadas e plantas estabelecidas (Yih, 1986).

O objetivo do trabalho foi avaliar o desempenho do herbicida oxyfluorfen formulado tanto como suspensão concentrada a 480 g/l, como concentrado emulsionável a 240 g/l, quando aplicado em pré-emergência, imediatamente após o transplantio das mudas de *Pinus caribea* var. *hondurensis*, e 12 dias após seu transplantio, em pósemergência inicial das plantas daninhas.

2. MATERIAL E MÉTODOS

O experimento foi instalado na Fazenda Experimental da Rohm and Haas Química Ltda., situada no município de Paulínia-SP, em Latossolo Vermelho-Escuro de textura argilosa, eutrófico; as características físicas e químicas do solo da área experimental estão no Quadro 1.

As mudas de *Pinus caribea* var. *hondurensis* foram transplantadas em área arada e gradeada, no espaçamento de 0,5 m entre as linhas por 0,5 m entre as plantas, sendo realizada uma adubação de cobertura com aplicação de 1.400 kg/ha da fórmula 20-20-20 de NPK em 31/3/99 (67 dias após o transplante).

Os tratamentos foram aplicados nas subparcelas, em pré-emergência das plantas daninhas, utilizando equipamento de precisão, pressurizado gás carbônico (CO₂), provido de barra compensada com quatro bicos DG 110-02, espaçados de 0,50 m. O equipamento foi operado

Quadro 1 – Características físicas e químicas do solo da área experimental

Table 1 – Physical and chemical soil caractheristics of the experimental area

Areia	Limo	Argila	pH (água)	CTC (mmol _c /dm ³)	V (%)
10%	23%	67%	4,9	76,2	55

a 2,45 kg/cm², a uma velocidade de 4,2 m/s, empregando-se água como diluente em um volume de calda de 200 l/ha. As condições de clima no momento das aplicações dos tratamentos estão apresentadas no Quadro 2.

Foi adotado o delineamento em parcelas subsubdivididas no tempo, tendo como tratamento principal (parcelas), dispostas em blocos ao acaso com quatro repetições, as doses de oxyfluorfen tanto a 480 g/l como a 240 g/l; como tratamento secundário (subparcelas) adotou-se o modo de aplicação, caracterizando o estádio das plantas daninhas no momento da aplicação (préemergência ou pós-emergência inicial), e como subsubparcelas, as diferentes épocas de avaliação da eficiência do oxyfluorfen. As parcelas mediram 6,0 m de comprimento por 6,0 m de largura, com uma área útil de 20 m² para parcelas e de 10 m² para as subparcelas; as épocas de avaliação (sub-subparcelas) foram 19, 37, 62 e 95 dias após aplicação dos tratamentos (DAT) para as avaliações em pré-emergência e 9, 31, 55 e 81 DAT para aquelas em pós-emergência. Foram também incluídas duas testemunhas, uma capinada durante todo o ciclo do experimento para avaliar possíveis sintomas de toxicidade às plantas de *Pinus caribea* var. *hondurensis* e outra mantida sem capina para fins de comparação da sua eficácia no controle das plantas daninhas, ambas não incluídas na análise de variância. No Quadro 3 encontram-se discriminados os tratamentos utilizados. Foi realizada uma aplicação dos tratamentos em 23/1/99, em pré-emergência em área total, imediatamente após o transplante das mudas, e outra em 4/2/99 em pós-emergência inicial das plantas daninhas, 12 dias após o transplantio das mudas, quando as plantas daninhas dicotiledôneas encontravam-se com duas folhas verdadeiras, e as gramíneas com três folhas abertas. Para fins de avaliação, foram consideradas somentes as espécies com dispersão homogênea e a freqüência de ocorrência positiva nas parcelas experimentais.

O efeito dos herbicidas foi avaliado, atribuindo-se notas de 0 a 100, em que 0 representa ausência de controle e de toxicidade e 100 controle total das espécies e morte total das plantas. Todos os dados foram submetidos à análise de variância pelo teste F e as médias foram comparadas pelo teste de Tukey, ambos a 5% de probabilidade.

Quadro 2 – Condições climáticas no momento da aplicação dos tratamentos **Table 2** – Climatic conditions during treatment applications

Modo de Aplicação	Temperatura do Ar (°C)	Umidade Relativa do Ar (%)	Velocidade do Vento (km/h)	Horário de Aplicação (início/fim)
Pré-emergência	24	78	2,0	09:00/09:30
Pós-emergência	36	56	1,5	09:00/09:30

Quadro 3 – Tratamentos com oxyfluorfen aplicados em pré-emergência e pós-emergência inicial das plantas daninhas **Table 3** – Oxyfluorfen treatments and rates used for application in pre and early poast weed stage

	Concentração/	Do	ose
Tratamento	Formulação	Ingrediente Ativo (g/ha)	Produto Comercial (l/ha)
1. Oxyfluorfen ^{1/}	480 SC ^{3∕}	480	1,0
2. Oxyfluorfen ^{1/}	480 SC ^{3/}	720	1,5
3. Oxyfluorfen ^{1/}	$480 \text{ SC}^{3/}$	960	2,0
4. Oxyfluorfen ²	240 CE ^{4/}	480	2,0
5. Oxyfluorfen ²	240 CE ^{4/}	720	3,0
6. Oxyfluorfen ^{2/}	240 CE ^{4/}	960	4,0
7. Testemunha capinada			
8. Testemunha sem capina			

¹/₂ Goal 480 SC; ²/₂ Goal NA; ³/₂ Suspensão concentrada; e ⁴/₂ Concentrado emulsionável.

COSTAE.A.D. etal.

3. RESULTADOS E DISCUSSÃO

A análise de variância dos dados relativos ao controle de P. maximum (Quadro 4) mostra haver somente efeito significativo dos fatores tratamentos e época de avaliação isoladamente, não ocorrendo interação significativa entre nenhum deles. Apesar da queda no nível de controle de oxyfluorfen na menor dose das formulações 480 e 240 g/l a partir dos 55 DAT, quando aplicado em pós-emergência inicial, todos os tratamentos foram semelhantes entre si e significativamente superiores à testemunha sem capina, independentemente da formulação de oxyfluorfen utilizada, de seu modo de aplicação e da época de avaliação, exceto para a formulação 240 CE a 2,0 l/ha, que não atingiu nível satisfatório de controle, quando aplicado em pós-emergência. Resultados que demonstram o efeito residual de oxyfluorfen no controle de espécies gramíneas também foram encontrados por Lorenzi (1994) e Yih (1986).

A ação pré-emergente de oxyfluorfen no controle de *B. decumbens* pode ser observada ao comparar os dados do Quadro 5, no qual se constata que para todas as épocas de avaliação os níveis de controle alcançados foram superiores àqueles observados para as aplicações em pós-emergência inicial, confirmando também seu poder residual, uma vez que aos 95 DAT todos os níveis de controle de *B. decumbens* por oxyfluorfen foram iguais e superiores a 92%, exceto com relação às menores doses desse herbicida nas formulações de 480 e 240 g/l. A análise de variância mostra haver efeitos significativos dos tratamentos, do modo de aplicação e das épocas de avaliação, assim como das interações entre eles.

O desdobramento da interação entre tratamentos e épocas de avaliação (Quadro 6) mostra que independentemente do modo de aplicação, até a segunda época de avaliação, todos os tratamentos foram semelhantes entre si, diferindo somente da testemunha sem capina. A partir da terceira época de avaliação, *B. decumbens* mostrou-se significativamente mais sensível às maiores doses das formulações de oxyfluorfen a 240 e 480 g/l, enquanto na última época de avaliação somente o tratamento com oxyfluorfen a 2,0 l/ha da formulação a 480 g/l apresentou desempenho significativamente superior aos demais e semelhante ao da testemunha capinada considerada como 100%.

Quadro 4 – Eficiência das formulações do herbicida oxyfluorfen aplicado em pré e pós-emergência inicial no controle de *Panicum maximum* (PANMA)

Table 4 - Efficiency of oxyfluorfen formulations on Guineagrass (Panicum maximum) in pre and early poast stage

Tratamento	conc/form	D	ose				Co	ntrole (D.	AT ^{3/})			
Tratamento	COIIC/TOTTI	i.a. <u>1</u> /	p.c. ^{2/}		9	19	31	37	55	62	81	95
1. Oxyfluorfen ^{4/}	480 SC	480	1,0	Pós	100		99		93		80	
1. Oxymuorien	400 BC	400	1,0	Pré		100		100		100		97
2. Oxyfluorfen ^{4/}	480 SC	720	1,5	Pós	100		100		100		100	
2. Oxymuomen	480 SC	720	1,3	Pré		100		100		100		100
3. Oxyfluorfen ^{4/} 480 SC	490 SC	960	2,0	Pós	100		100		100		100	
	460 SC		2,0	Pré		100		100		100		100
4. Oxyfluorfen ^{5/}	240 CE	480	2,0	Pós	99		94		82		67	
4. Oxymuomen	240 CE	400	2,0	Pré		100		100		100		100
5. Oxyfluorfen ^{5/}	240 CE	720	3,0	Pós	100		100		100		98	
3. Oxymuomen	240 CE	120	3,0	Pré		100		100		100		100
6. Oxyfluorfen ^{5/}	240 CE	960	4.0	Pós	100		100		100		100	
6. Oxyriuorten= 240	240 CE	900	4,0	Pré		100		100		100		100
7. Testemunha capin	ada				100	100	100	100	100	100	100	100
8. Testemunha sem o	capina				0	0	0	0	0	0	0	0

Análise de variância (resumo):	F (A*B)
F (tratamentos - A)	F (A*C)
F (modo de aplicação - B)3,1 ^{ns} CV(%): 12,1	F (B*C)
F (época de avaliação - C)	F (A*B*C)

¹ Ingrediente ativo (g/ha); ² Produto comercial (l/ha); ³ Dias após aplicação; ⁴ Goal 480 SC (suspensão concentrada); e ⁵ Goal NA (concentrado emulsionável).

Quadro 5 – Eficiência das diferentes formulações do herbicida oxyfluorfen quando aplicado em pré e pós-emergência inicial no controle de *Brachiaria decumbens* (BRADC)

Table 5 - Efficiency of oxyfluorfen formulations on Surinam grass (Brachiaria decumbens) in pre and early poast stage

Tratamento	conc/form	D	ose				Co	ntrole (D.	$AT^{3/}$)			
Tratamento	COIIC/TOTHI	i.a. ^{1/}	p.c. ^{2/}		9	19	31	37	55	62	81	95
1. Oxyfluorfen ^{4/}	480 SC	480	1,0	Pós	90		87		56		37	
				Pré		100		97		96		70
2. Oxyfluorfen ^{4/}	480 SC	720	1,5	Pós	96		93		82		50	
2. Oxymuorich	460 50	120	1,5	Pré		100		100		94		92
3. Oxyfluorfen ^{4/}	480 SC	960	2,0	Pós	100		100		99		86	
5. Oxymuorien	400 30	900	2,0	Pré		100		100		100		100
4. Oxyfluorfen ^{5/}	240 CE	480	2,0	Pós	82		73		37		7	
4. Oxymuorien	240 CE	400	2,0	Pré		99		98		90		75
5. Oxyfluorfen ^{5/}	240 CE	720	3,0	Pós	84		78		45		23	
J. Oxymuorien	240 CE	120	3,0	Pré		100		100		100		92
6. Oxyfluorfen ^{5/}	240 CE	960	4,0	Pós	94		93		80		45	
o. Oxymuomen	240 CE	900	4,0	Pré		100		100		99		94
7. Testemunha capina	7. Testemunha capinada					100	100	100	100	100	100	100
8. Testemunha sem ca	apina				0	0	0	0	0	0	0	0

Análise de variância (resumo):
F (tratamentos - A)220,8**......CV(%): 14,1

(concentrado emulsionável).

Quadro 6 – Comparação das médias dos tratamentos com oxyfluorfen (A) dentro de cada época de avaliação (C) no controle de *B. decumbens*

Table 6 - Comparation of means by oxyfluorfen treatments (A) in B. decumbens control on evaluations time (C)

Tratamento	Dose	Época de Avaliação							
Tratamento	(l/ha p.c.)	Época 1	Época 2	Época 3	Época 4				
1. Oxyfluorfen 480 SC	1,0	95,2 a	91,8 a	75,8 bcd	53,3 cd				
2. Oxyfluorfen 480 SC	1,5	98,2 a	96,7 a	87,8 abc	71,3 b				
3. Oxyfluorfen 480 SC	2,0	100,0 a	99,7 a	99,3 a	93,0 a				
4. Oxyfluorfen 240 CE	2,0	90,7 a	85,7 a	63,3 d	40,8 d				
5. Oxyfluorfen 240 CE	3,0	91,7 a	89,2 a	72,3 cd	57,5 bc				
6. Oxyfluorfen 240 CE	4,0	97,2 a	96,7 a	89,7 ab	69,7 b				
7. Testemunha capinada		100,0 a	100,0 a	100,0 a	100,0 a				
8. Testemunha sem capina		0 b	0 b	0 e	0 e				
dms (p < 0,05)		15,9							

Citado como latifolicida eventual (Almeida & Rodrigues, 1998), a eficácia de oxyfluorfen sobre Sida rhombifolia L. confirma essa característica com índices de controle superiores a 83% durante o transcorrer das avaliações, independentemente das formulações utilizadas (Quadro 7). Há efeitos significativos para tratamentos, modo de aplicação, épocas de avaliação e a interação entre estes dois fatores, com relação ao controle de S. rhombifolia. Nenhum tratamento com oxyfluorfen diferiu da testemunha capinada, independentemente da formulação e dose utilizada, demonstrando ser mais

eficiente quando aplicado em pré-emergência, com redução significativa na sua ação residual de controle.

Com relação ao controle de *Ipoema grandifolia* (Dammer) O'Donell (Quadro 8), a análise de variância mostra que o comportamento do oxyfluorfen variou de acordo com as formulações, seu modo de aplicação e com a época de avaliação, bem como com as interações entre esses fatores, destacando-se a formulação de oxyfluorfen a 480 g/l quando aplicada a 2,0 l/ha, única cujo controle foi semelhante ao da testemunha capinada dentro de todas as épocas de avaliação.

^{1/2} Ingrediente ativo (g/ha); ^{2/2} Produto comercial (l/ha); ^{3/2} Dias após aplicação; ^{4/2} Goal 480 SC (suspensão concentrada); e ^{5/2} Goal NA

688 COSTAE.A.D. et al.

Quadro 7 - Eficiência de diferentes formulações do herbicida oxyfluorfen quando aplicado em pré e pós-emergência inicial no controle de Sida rhombifolia (SIDRH)

Table 7 - Efficiency of oxyfluorfen formulations on Arrowleaf sida (Sida rhombifolia) in pre and early poast stage

Tratamento	conc/form	D	ose				Co	ntrole (D.	ΑΤ <u>^{3/}</u>)			
Tratamento	COIIC/TOTTI	i.a. ^{1/}	p.c. ^{2/}		9	19	31	37	55	62	81	95
1. Oxyfluorfen ^{4/}	480 SC	480	1,0	Pós Pré	99	 88	91	 80	79 	 53	48	 28
2. Oxyfluorfen ^{4/}	480 SC	720	1,5	Pós Pré	100	 97	95	92	87	 79	70	 43
3. Oxyfluorfen ^{4/}	480 SC	960	2,0	Pós Pré	100	 99	98	 94	90	 91	82	 60
4. Oxyfluorfen ^{5/}	240 CE	480	2,0	Pós Pré	99 	 95	90	 84	79 	60	50	 35
5. Oxyfluorfen ^{5/}	240 CE	720	3,0	Pós Pré	98 	 98	96 	 92	87	 75	73	 40
6. Oxyfluorfen ^{5/}	240 CE	960	4,0	Pós Pré	100	 99	93	 94	88	 84	54 	 48
7. Testemunha capina 8. Testemunha sem ca					100	100	100	100	100 0	100 0	100	100 0

Análise de variância (resumo): F (modo de aplicação - B)34,2**......CV(%): 12,2 F (época de avaliação - C)230,3**......CV(%): 9,3

Quadro 8 - Eficiência das diferentes formulações do herbicida oxyfluorfen quando aplicado em pré e pós-emergência inicial no controle de Ipomoea grandifolia (IAOGR) **Table 8** – Efficiency of oxyfluorfen formulations on morningglory (**Ipomoea grandifolia**) in pre and early poast stage

Tratamento	conc/form	D	ose			C	Controle (DA	$T^{3/}$)		
Tratamento	COIIC/TOTHI	i.a. ^{1/}	p.c. ^{2/}		9	19	31	37	55	62
1. Oxyfluorfen ^{4/}	480 SC	480	1,0	Pós	100	100	96		83	
2 0 2 0 4/	100.00	720		Pré Pós	100	100	99	98	93	99
2. Oxyfluorfen ^{4/}	480 SC	720	1,5	Pré		100		100		100
3. Oxyfluorfen ^{4/}	480 SC	960	2,0	Pós	100		100		95	
5. Oxymuonen	100 50	700	2,0	Pré		100		100		100
4. Oxyfluorfen ^{5/}	240 CE	480	2,0	Pós	100		95		87	
onjinaonen	2.0 02		_, _	Pré		100		99		98
5. Oxyfluorfen ^{5/}	240 CE	720	3.0	Pós	100		99		96	
or onlymanich	2.0 02		٥,٥	Pré		100		98		99
6. Oxyfluorfen ^{5/}	240 CE	960	4.0	Pós	100		96		92	
o. Oxymuonich	2-10 CL	700	7,0	Pré		100		99		97
7. Testemunha capina	ada			-	100	100	100	100	100	100
Testemunha sem c	apina				0	0	0	0	0	0

Análise de variância (resumo): F (tratamentos - A)1.348,0**.....CV(%): 4,7 F (modo de aplicação - B)16,3**.....CV(%): 4,2 F (época de avaliação - C)13,8**.....CV(%): 4,2

Pelo Quadro 9 observa-se que durante todo o ciclo do ensaio as plantas de Pinus caribea var. hondurensis tratadas com oxyfluorfen não apresentaram sintomas de injúrias decorrentes do uso do produto, mostrando um aspecto normal, semelhante ao das plantas das parcelastestemunha capinada, independentemente da formulação do produto utilizada e de sua aplicação em relação à época de transplante das mudas.

^{1/2} Ingrediente ativo (g/ha); 2/2 Produto comercial (l/ha); 3/2 Dias após aplicação; 4/2 Goal 480 SC (suspensão concentrada); e 5/2 Goal NA (concentrado emulsionável).

^{1/2} Ingrediente ativo (g/ha); 2/2 Produto comercial (l/ha); 3/2 Dias após aplicação; 4/2 Goal 480 SC (suspensão concentrada); e 5/2 Goal NA (concentrado emulsionável).

Quadro 9 – Toxicidade às plantas de *Pinus caribea* var. *hondurensis* submetida aos tratamentos com oxyfluorfen imediatamente após o transplantio e 12 dias após

Table 9 - Toxicity to Pinus caribea var. hondurensis seedlings caused by oxyfluorfen treatments at the moment of transplanting and 12 days after

Tratamento	conc/form	D	ose			Fitot	toxicidade (DAT <u>^{3/}</u>)		
Tratamento	conc/ioiiii	i.a. ^{1/}	p.c. ^{2/}		9	19	31	37	55	62
1. Oxyfluorfen ^{4/}	480 SC	480	1,0	Pós	0		0		0	
1. Oxymuorich	400 BC	700	1,0	Pré		0		0		0
2. Oxyfluorfen ^{4/}	480 SC	720	1,5	Pós	0		0		0	
2. Oxymuorich	460 50	120	1,5	Pré		0		0		0
3. Oxyfluorfen ^{4/} 480 SC	960	2,0	Pós	0		0		0		
	460 50	300	2,0	Pré		0		0		0
4. Oxyfluorfen ^{5/}	240 CE	480	2,0	Pós	0		0		0	
4. Oxymuomen	240 CE	400	2,0	Pré		0		0		0
5. Oxyfluorfen ^{5/}	240 CE	720	3,0	Pós	0		0		0	
3. Oxymuorien	240 CE	120	3,0	Pré		0		0		0
6. Oxyfluorfen ^{5/}	240 CE	960	4,0	Pós	0		0		0	
o. Oxymuorien	240 CE	200	4,0	Pré		0		0		0
8. Testemunha capina	ıda				0	0	0	0	0	0

^{1/2} Ingrediente ativo (g/ha); ^{2/2} Produto comercial (l/ha); ^{3/2} Dias após aplicação; ^{4/2} Goal 480 SC (suspensão concentrada); e ^{5/2} Goal NA (concentrado emulsionável).

4. CONCLUSÕES

O herbicida oxyfluorfen aplicado em pré-emergência nas formulações 480 e 240 g/l foi eficiente no controle das espécies *I. grandifolia* por um período 37 DAT, *B. decumbens* por 62 DAT e de *P. maximum* e *S. rhombifolia* por até 95 DAT. Quando aplicado em pósemergência, apresentou eficiência no controle de *B. decumbens* por um período de até 37 DAT e das espécies *I. grandifolia*, *P. maximum* e *S. rhombifolia* por até 55 DAT, independentemente da dose aplicada.

A formulação de oxyfluorfen a 480 g/l, quando comparada com 240 g/l, permite uma redução na dose do produto comercial, sem afetar a eficácia de controle das espécies citadas.

Não foram observados sintomas de injúrias às plantas de *Pinus caribea* var. *hondurensis* por ação fitotóxica do herbicida oxyfluorfen, nas diferentes formulações e doses testadas.

5. AGRADECIMENTO

Os autores agradecem ao engenheiro-agrônomo Walter Sérgio Pinto Pereira, pelas facilidades oferecidas para a realização do trabalho, e também aos revisores anônimos, pela contribuição no aprimoramento do mesmo.

6. REFERÊNCIAS BIBLIOGRÁFICAS

ALMEIDA, F. S.; RODRIGUES, B. N. **Guia de herbicidas**. Londrina: IAPAR, 1988. 603 p.

BRITO, M. A. R. Manejo de Plantas Daninhas em Áreas de Reflorestamento. In: CONGRESSO BRASILEIRO DA CIÊNCIA DAS PLANTAS DANINHAS, 20., 1995, Florianópolis. **Resumos de Palestras...** Florianópolis: 1995. p. 92-95.

LORENZI, H. **Manual de identificação e controle de plantas daninhas**. 4.ed. Nova Odessa: Plantarum, 1994. 276 p.

PITELLI, R. A.; KARAM, D. Ecologia de plantas daninhas e a sua interferência em culturas florestais. In: I SEMINÁRIO TÉCNICO SOBRE PLANTAS DANINHAS E O USO DE HERBICIDAS EM REFLORESTAMENTO, 1., 1988, Rio de Janeiro. **Anais...** Rio de Janeiro: 1988. p. 44-64.

SOCIEDADE BRASILEIRA DE SILVICULTURA - SBS. A quantas anda o setor florestal brasileiro? **Silvicultura**, v. 12, n. 42, p. 6-9, 1992.

YIH, R. Y. Goal a herbicide with a myriade of uses. Spring House: Rohm and Haas Company, 1986. p. 30-32.

