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ABSTRACT – Urban afforestation has important functions, but problems related to its management are equally
relevant, analysis of which is needed in order to prevent accidents. However, due to the subjectivity in the
assessment, there may be uncertainty as to the seriousness of the risk. In order to address this, the present
work evaluates a neuro-fuzzy-based methodology for the integrated analysis of risk indicators. From the knowledge
of experts and a database with 107 cases, systems were constructed for the multi-criteria analysis of 18 parameters
integrated using 3 indexes and 5 indicators. As a result, the model presented accuracies of 95.5% in generalization
tests, and almost perfect agreement (kappa > 0.8) with the assessment by the expert. In conclusion, the
findings show that this neuro-fuzzy modeling approach represents a promising alternative for supporting risk
analysis in urban afforestation.

Keywords: Risk indicators; Integrated analysis; Uncertainties.

MODELAGEM NEURO-FUZZY: UMA ALTERNATIVA PROMISSORA PARA
ANÁLISE DE RISCOS NO MANEJO DA ARBORIZAÇÃO URBANA

RESUMO – A arborização urbana tem funções importantes, mas os problemas relacionados à sua gestão
são igualmente relevantes, cuja análise é necessária para prevenir acidentes. No entanto, devido à subjetividade
inerente a avaliação, pode haver incertezas quanto à gravidade do risco. Como alternativa, o presente trabalho
avalia uma proposta metodológica baseada em modelagem neuro-fuzzy para análise integrada de indicadores
de risco. A partir da consulta a especialistas e de um banco de dados com 107 casos, foram construídos
sistemas para análise multicritério de 18 parâmetros, integrados por meio de 3 índices e 5 indicadores. Como
resultado, o modelo apresentou acurácia de 95,5% nos testes de generalização, e concordância quase perfeita
(kappa > 0,8) com a avaliação pelo especialista. Em conclusão, os resultados mostram que a modelagem
neuro-fuzzy representa uma alternativa promissora para apoiar a análise de risco na arborização urbana.

Palavras-Chave: Indicadores de risco; Análise integrada; Incertezas.
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1. INTRODUCTION

Urban afforestation contributes to better air quality,
soil conservation, retention of water pollutants, and
creation of ecological corridors, as well as positive
visual, acoustic, and climatic effects (Galenieks, 2017;
Morelli et al., 2012). Wooded areas provide scenic beauty
and a sense of well-being, with spaces for leisure and
socializing (Bryant, 2006; Baumgarten, 2006; Godbey
et al., 2005).

Despite the importance of afforestation for quality
of life, inadequate planning and management can create
risks to the population and result in material losses
or even fatalities. Due to the lack of planning, species
of inappropriate size are often planted, which can lead
to damage to buildings, road systems, and public lighting
(Santos and Teixeira, 2001). Some of the consequences
of lack of appropriate management include the
development of diseases associated with chancre, fungi,
and parasitic plants, with occurrence of lesions, fractures,
and necrosis. As a consequence of the compromised
vitality, tree falls can occur and cause material damage,
affecting humans, other trees, and animals (Martins
et al., 2010; Volpe-Filik et al., 2007). Several studies
can be found that highlight the severity and frequency
of this problem, with observation of large proportions
of compromised trees (Sampaio et al., 2010; Gonçalves
et al., 2007; Volpe-Filik et al., 2007).

For the above reasons, risk analysis of afforestation
is essential to support measures for the preventive
management of accidents. However, since many of the
criteria employed are based on the perception of risk
by experts, the assessment involves uncertainties due
to the associated subjectivity (Gonçalves et al., 2007).
Therefore, the use of a model based on fuzzy logic
for integrated analysis of the indicators may be a useful
approach that has already shown promising results
in studies involving uncertainties (Bressane et. al.,
2017; Janssen et al., 2010). To this end, the present
study presents a methodology based on neuro-fuzzy
modeling to support the integrated analysis of risk
indicators in the management of urban afforestation,
with evaluation of the technique using a case study.

2. MATERIALS AND METHODS

2.1 Data collection for modeling and the case study

The neuro-fuzzy based modeling was evaluated
by applying it in a case study. The data collection was

performed in the grounds of a social club located in
the city of Lajeado (Rio Grande do Sul State), partially
occupied by urban afforestation, resulting in the database
for the present work. At the site, evaluation was made
of trees that could pose a risk due to their proximity
to built-up areas and movement of people, totaling
107 individual trees belonging to 38 species. Many
of these trees were from native vegetation that had
occupied the area before installation of the buildings,
the road system, and the leisure infrastructure of the
club. Of the trees evaluated, 80 belonged to species
native to the region.

The collection was carried out considering risk
indicators associated with phytosanitary and
environmental conditions. The evaluation of
phytosanitary status included the occurrence of diseases
associated with the presence of chancre, fungus, gall,
and parasitic plant, as well as structural damage related
to senility, lesions, fractures, cavities, necrosis, epicormic
branches, and included bark. The environmental
conditions were evaluated based on factors associated
with the site, such as impermeable compacted soil,
reduced soil volume resulting in exposed roots, and
parameters related to climate, topography, interference
with the environment, and potential targets such as
people and material assets. The procedures and materials
were based on the visual tree assessment (VTA) method
developed by Mattheck and Breloer (1994, 1997). A
rubber hammer was used for percussion in order to
identify sound differences between healthy and injured
regions. A sufficiently long rod (screwdriver) was used
to measure injuries such as fractures and cavities, and
a penetrating object (pocketknife) was used to assess
the mechanical resistance of the tissues. The occurrence
of the risk indicators was then recorded using a form
containing a checklist, with spaces for observations
made based on the VTA. From these procedures, each
tree individual was classified by the expert according
to the following scale: risk absent (1), minimum risk
(2), moderate risk (3), worrying risk (4), and very worrying
risk (5). Thus, the attribution of the risk class by the
expert resulted from an analysis based on the individual’s
perception, knowledge, and experience. Therefore, given
the subjectivities inherent in this qualitative evaluation,
it was proposed that the use of fuzzy modeling could
contribute to achieving an integrated analysis of the
indicators.
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2.2 Modeling based on fuzzy systems and hierarchical
analysis

The proposed model consisted of fuzzy and neuro-
fuzzy systems constructed from priorities defined by the
analytic hierarchy process (AHP) method. The first step
consisted of selecting variables following an expert
consultation. Thus, disease indicators (I

1
) and structural

integrity indicators (I
2
) were selected for modeling a risk

index associated with phytosanitary status (R
P
). In turn,

indicators concerning the soil (I
3
) and external factors

related to climate, topography, and surroundings (I
4
) were

selected for modeling a risk index associated with
environmental condition (R

E
). In addition, indicators of

potential targets were selected (I
5
). The integrated analysis

of I
5
, R

P
, and R

E
 resulted in a global risk index (R

G
).

Weighting was performed using an importance
scale of the variables, as proposed by Thomas L. Saaty,
the developer of the hierarchical analysis method, with
values ranging from 1 (equivalent importance) to 9
(extreme importance) (Saaty, 2008). By using this scale,
a comparison matrix is generated (A). From that, the
importance of the variables is expressed as a vector
(w), associated with the maximum eigenvalue (

max
),

obtained using:

det (A – 
max

I) = 0 . (1)

After determining 
max

, w is calculated as the
eigenvector that solves the equation:


max 

w = Aw . (2)

The prioritization process is then validated when
the consistency ratio (R

C
) is less than or equal to 0.1:

R
c
 = C

I
 / R

i
, (3)

where R
i
 is a tabulated value according to the

dimension of the matrix, and C
I
 is the consistency index,

given by:

C
I
 = (

max 
– n) / (n – 1) . (4)

From the prioritization of the variables, three fuzzy
systems were constructed. The first two systems (S

1

and S
2
) were modeled by the Mamdani method (Mamdani

and Assilian, 1975), and the third one (S
3
) was constructed

as a neuro-fuzzy system (Jang, 1993).

In the modeling process, the variables were fuzzified
using trapezoidal and triangular functions (Eq. 5) in

systems S
1
 and S

2
, as well as by gaussian functions

in S
3
 (Eq. 6):

where 
F
(x) is the membership of the input x in

the fuzzy set F, and a, b, b´, and c  are the parameters
that delimit the regions of certainty and uncertainty.
For triangular functions, the parameters b and b´are
equal. The average and standard deviation are indicated
by x and , respectively.

In the next step, a rule base relating the input and
output variables was constructed using conditional
statements of the type:

IF x is A THEN Z is B.

In the systems based on the Mamdani method
(S

1
 and S

2
), the aggregation was carried out with use

of the minimum operator (t-norm     ) in the antecedents,
and the maximum operator (s-norm V) in the consequents.
Thus, the systems with a total of  r  rules were
constructed as a max-min composition (R), given by:

R (x, y) = max
1<i<r

 (
Ai

(x)   
Bi

 (y)).

The defuzzification was performed by the centroid
method (Eq. 9), and the output values were
standardized to reach the boundaries of the original
domain (Eq. 10):

Y = 
i
k
= 1

 
i
Y

i
 / 

i
k
= 1


i
, (9)

Y = Y
est

 (Y – Y
min

) / (Y
max

 – Y
min

), (10)

where Y  is the defuzzified value, Y
est

 is the highest
value in the variable domain, and Y

min
 and Y

max
 are the

minimum and maximum values achievable in the inference
process, respectively.

In S
3
, the rule base and the parameterization of

the functions were modeled by means of an adaptive
neuro-fuzzy inference system (ANFIS). An ANFIS consists
of a supervised learning process that uses data for
training and checking (learning dataset), as well as

V

V
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for evaluation of the generalization capacity of the
model (testing dataset). For this study, from a database
composed of 107 cases, 60% (63 cases) was used for
training and approximately 20% (22 cases) for checking.
The remaining 20% was used for generalization tests.

The consequents (Z
i
) in S

2
 were computed as a

linear function (f
i
) of the input variables (R

p, 
R

E,
I

5
),

according to:

IF R
p
 is A

i 
AND R

E
 is B

i 
AND I

5
 is C

i

THEN z
i
 = f

i 
(R

p
, R

E
, I

5
) = p

i
R

p
 + q

i
R

E
 + r

i
I

5
 + S

i
,

where p
i
, q

i
,r

i
 and s

i 
are the consequent parameters

of the rules in S
3 
.

The adjustment of the antecedent parameters is
performed in layer 1(O

i
1) of a total of 5 layers that compose

the architecture of the ANFIS:

O
i
1 = 

Ai
(x)

in which O
i
1 measures the membership of the input

x  in the linguistic value A
i
.

The activation weight (w
i
) of each rule is calculated

in layer 2 (O
i
2), given by:

w
i
 = 

Ai
(R

p
).

Bi
(R

E
).

Ci
(I

5
).

The activation weight is standardized (w
i
 ) in layer

3 (O
i
3), by means of the equation:

w
i
 = w

i
/(w

1
,

 
w

2
,

 
w

3
).

In layer 4 (O
i
4), the consequent of each rule is

computed by:

O
i
4 = w

i
 .f

i
 (R

p
, R

E
, I

5
) = w

i 
(p

i
R

p 
+ q

i
R

E 
+ r

i
I

5 
+

 
S

i
)

Finally, in layer 5 (O
i
5), the output of the system

is obtained by the sum of the signals generated in
the previous layer:

O
i
5 = 

i
 w

i
 . f

i
 (R

p
, R

E
, I

5
) = 

i 
w

i
 . f

i
 /

i 
w

i
 .

Thus, from the learning dataset, operations are
performed using the backpropagation algorithm and
the least squares method, which provide adjustment
of the parameters in the model. During the learning
(training and checking), different topologies of the
neuro-fuzzy network were evaluated by the subtractive

clustering method, with determination of the root-mean-
square error (RMSE) and the global accuracy (

1
):

where n is the number of cases and R
i
 and R

i
 are,

respectively, the risk class assessed by the expert and the
one computed by the neuro-fuzzy model for the case i,
and

where n
c
 is the risk class number and TP

i
 is the

true positive rate (the number of cases belonging to
risk class i correctly classified as such).

To achieve the best model configuration, the RMSE
was used as a stopping criterion during the training
process. This criterion was selected because it allowed
the training process to be stopped at the moment when
the error in the checking dataset started to grow suddenly.
In this way, it was possible to prevent the undesirable
effect of overfitting of the model to the learning dataset,
which would lead to loss of generalization capacity
during the tests. In turn, the accuracy  (

1
) was used

to select the neuro-fuzzy topology with the best
performance during the checking. The generalization
capacity of the selected topology was then evaluated
using the test samples, based on the accuracy and
the kappa index (k):

k = (
1
 – 

2
)/(1 – 

2
), (19)

where

V
i
 is the number of cases belonging to risk class

i according to the expert, and 
i
 is the number of cases

classified by the model as belonging to the same class.

The agreement between the risk class attributed
by the expert and that calculated by the model during
the tests was considered as a slight agreement for k
[0 0.2[, fair agreement for k  [0.2 0.4[, moderate
agreement for k  [0.4 0.6[, substantial agreement for
k  [0.6 0.8[, and almost perfect agreement for k  [0.8
1], according to the classification of Landis and Koch
(1977).
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3. RESULTS

3.1 Decision support system for the integrated
analysis of risk

Firstly, for each indicator (I
i
), a set of analysis

criteria was selected (c
ij
) and then weighted by the

AHP method. The indicators and analysis criteria resulting
from this process are presented in Table 1.

Considering the prioritized variables and their
respective scales of risk assessment, the first and second
fuzzy systems S

1 
and

 
S

2
 were constructed to model

the indices R
p
 and R

E
, resulting in the architecture shown

in Figure 1.

As can be seen in Figure 1, the risk level of each
indicator was categorized as minimum (M), slightly
worrying (SW), worrying (W), very worrying (VW), and
extreme (E). From that, the rule base was then constructed
using conditional statements, such as:

IF I
1
 is ‘minimum (M)’ AND I

2
 is ‘worrying (W)’

THEN R
p
  is ‘slightly worrying (SW)’.

The global index of risk (R
G
) was modeled by the

third fuzzy system (S
3
), which linked the outputs of

S
1
 and S

2
 to the indicator of potential targets (I

5
). The

results of the evaluation of different neuro-fuzzy
topologies in S

3
 are presented in Table 2.

In the checking step, the topology with cluster
radius 0.6 was the one with the greatest accuracy and
was therefore selected for the generalization tests
performed during the case study (Figure 2), presented
below.

3.2 Case study to evaluate the generalization capacity
of the model

As a result of the visual tree assessment, several
cases of risk due to inappropriate management practices

were observed. Among the most frequent cases were
the stumps left after pruning and the unsatisfactory
occupation of the surrounding area. The stumps led
to a chain of consequences detrimental to the
phytosanitary state of the tree, with hindered occlusion
of cuts, induction of shoots and epicormic branches,
necrosis, deterioration, and loss of vitality. Frequent
factors associated with environmental conditions were
mainly related to soil sealing and surrounding buildings,
which hampered the development of roots, stem, and
crown, hence compromising the stability of the tree.

Influence range in the subtractive clustering

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Training
RMSE           


1
 (%) 100 100 100 100 100 100 100 100 100 100 100

Checking
RMSE 0.34 0.16 0.93 0.36 0.38 0.71 0.74 0.76 0.24 0.43 0.50


1
 (%) 81.8 81.8 90.9 90.9 81.8 81.8 86.4 81.8 95.5 77.3 68.2

Table 1 – Weighting of risk analysis criteria in urban afforestation.
Tabela 1 –  Ponderação dos critérios de análise de risco na gestão da arborização urbana.

Figure 1 – Fuzzy modeling of R
P
 (a) and R

E
 (b) in the risk

classes: minimum (M), slightly worrying (SW), worrying
(W), very worrying (VW), and extreme (E).

Figura 1 –  Modelagem fuzzy de RP (a) e RE (b) nas classes
de risco: mínimo (M), pouco preocupante (SW),
preocupante (W), muito preocupante (VW) e
extremamente preocupante (E).
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Index Indicator Analysis criterion (C
ij
) Value (C

ij
) Weight (W

ij
) Cumulative weight

by indicator (I
i
)

chancre (c
11

) 0 – 10 0.396 3.96

I
1

fungus (c
12

) 0 – 10 0.272 6.68
gall (c

13
) 0 – 10 0.208 8.76

parasitic plant (c
14

) 0 – 10 0.124 10
R

P
senility / instability (c

21
) 0 – 10 0.361 3.61

injuries / fractures / cavities (c
22

) 0 – 10 0.159 5.2
I

2
structural necrosis (c

23
) 0 – 10 0.237 7.57

epicormic branch (c
24

) 0 – 10 0.129 8.86
included bark (c

25
) 0 – 10 0.114 10

soil depth / volume (c
31

) 0 – 10 0.454 4.54
I

3
exposed root / grounded stem base (c

32
) 0 – 10 0.199 6.53

waterproofing / compaction (c
33

) 0 – 10 0.347 10
location / surroundings (c

41
) 0 – 10 0.539 5.39

R
P

I
4

wind / rain (c
42

) 0 – 10 0.297 8.36
slope of the terrain (c

43
) 0 – 10 0.164 10

people / animals (c
51

) 0 – 10 0.723 7.23
I

5
vehicles (movable property) (c

52
) 0 – 10 0.103 8.26

buildings (real estate) (c
53

) 0 – 10 0.174 10

Table 2 – Performance of the neuro-fuzzy topologies during the machine learning in S
3
.

Tabela 2 –  Desempenho de topologias da rede neuro-fuzzy durante o aprendizado de máquina em  S
3
.

Figure 2 – Neuro-fuzzy modeling of R
G
 in the risk classes: absent (A), minimum (M), moderate (MO), worrying (W), and

very worrying (VW).
Figura 2 –Modelagem neuro-fuzzy de RG nas classes de risco: ausente (A), mínimo (M), moderado (MO), preocupante

(W) e muito preocupante (VW).
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In order to demonstrate how the index value is
obtained by fuzzy modeling, an example is provided
for a tree individual belonging to the species Nectandra
megapotamica. The evaluation of this arboreal individual
revealed the occurrence of drastic pruning, necrosis
in the stem, epicormic branches, mechanical injuries,
inclined trunk, and presence of fungi. The overall values
obtained for the indicators of disease (I

1
) and structural

integrity (I
2
) were 2.72 and 8.86, respectively. From

the integrated analysis of I
1
 and I

2
, the first fuzzy system

(S
1
) provided a risk index associated with phytosanitary

status (R
P
) equal to 8.73 (Figure 3a).

In the same evaluation, no influence was observed
for factors related to the root or stem base, or for soil
waterproofing or compaction. However, being located
in an open field, the tree under analysis was subject
to high exposure to intense wind and rain, which could
cause the breaking or fall of devitalized branches. The
overall values for the indicators associated with soil
conditions (I

3
) and the influence of external factors (I

4
)

were 0 and 2.97, respectively, from which the second
system (S

2
) provided an index of risk associated with

environmental conditions (R
E
) equal to 1.71 (Figure 3b).

For the same case, the indicator associated with
the presence of potential targets (I

5
) totaled 8.26. The

integrated analysis of R
P
, R

E
, and I

5
 by means of S

3

then resulted in a global risk index (R
G
) of 4.99, which

was equivalent to the same risk class (very worrying)
attributed by the expert (Figure 3c).

For the other arboreal individuals evaluated in
the present study, the integrated analysis of the risk
indicators followed the same fuzzy inference process
described for the featured case.

From the total of 107 cases, only in 2 cases (1.6%)
was the tree classified as presenting no risk (class 1),
while 10 cases (7.9%) showed minimum risk (class 2),
12 (9.4%) showed moderate risk (class 3), 41 (32.3%)
showed worrying risk (class 4), and 42 (33.1%) showed
very worrying risk (class 5). It should be noted that
in evaluation of the neuro-fuzzy model, the learning
(training and checking) and testing datasets were
randomly constructed, but with the same proportions
of cases in these different risk classes.

4. DISCUSSION

In order to obtain a global risk index (R
G
), the

proposed model performs a multicriteria analysis of

all the parameters evaluated. In this process, a score
from 0 to 10 is initially assigned for each criterion,
according to the visual evaluation. The value of each
indicator (I

i
) is then obtained by means of a weighted

linear combination (WLC), given by:

I
i
 = c

i1
 w

i1
 + c

i2
 w

i2
 + ... + c

in
 w

in
, j = (1, 2, ..., n),

where c
ij
 is the value given in the visual tree

assessment (VTA) by the specialist, and w
ij
 is the priority

weight of the criterion defined by means of the AHP
method (see Table 1).

Following the evaluation process, the index values
are calculated by the fuzzy and neuro-fuzzy inference
systems. The indexes R

P
 and R

E
 are computed using S

1

and S
2
, respectively (see Figure 3). The S

3
 system then

integrates the values previously calculated for the indicator
I

5
 and the indexes R

P
 and R

E
, resulting in the final index

(R
G
) with risk class values ranging from 1 to 5. It should

be noted that the proposed values for assessing each
parameter (c

ij
) are not fixed, allowing a variation from

0 to 10, as necessary for case-by-case analysis.

Four classes of linguistic values were proposed
to express the severity of the risk associated with each
indicator (see Figure 1). The first class corresponds
to the minimum (M) risk, with maximum membership
close to zero (the value generated by the WLC), reflecting
cases in which no risk factor is observed. The second
and third classes reflect worrying (W) and very worrying
(VW) risk, respectively, with maximum membership around
the first and second accumulated values in the risk
severity scale (see the last column of Table 1), respectively.
Finally, the fourth class reflects extreme (E) risk, with
maximum membership for the third accumulated value
in the scale. Consequently, the proposed model considers
the occurrence of a single criterion with serious risk
factor to classify the situation as ‘worrying’, the
occurrence of two factors to reflect ‘very worrying’
risk, and from 3 risk factors to classify the case as
‘extreme risk’. Intermediate values express transition
between the risk classes.

The results presented in Table 2 demonstrate that
the neuro-fuzzy model provided high performance during
the training. Even for a limited database with only 107
cases, the model achieved fits capable of calculating
the same class of risk given by the expert in the visual
tree assessment.
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Figure 3 – Fuzzy and neuro-fuzzy inference of R
P
 (a), R

E
 ( b ), and R

G
 (c) indexes.

Figura 3 – Inferências fuzzy e neuro-fuzzy dos índices RP (a), RE (b) e RG (c).
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It can be seen from Figure 2 that ANFIS operates
based on the formation of clusters (C

j
), computing

the global risk index (R
G
) as a linear combination of

input variables (R
P
, R

E
, and I

5
). As a result, the topology

with best performance provided an accuracy of 95.5%
during the check. Considering the cases correctly
classified during training, the model achieved 98.8%
accuracy in the learning stage.

As shown in parts (a) and (b) of Figure 3, the fuzzy
relational composition acts so that the minimal operator
(^) assigns the least membership in the input variables
to the consequent class. In turn, the consequents of
each activated rule are aggregated by the maximum
operator (v). Finally, the index values (R

P
 and R

E
) are

computed by standardizing the defuzzified value, given
by the center of gravity of the area formed in the union
of the consequents.

Despite the smaller numbers of cases in the lowest
risk classes (1, 2, and 3), during the tests the model
maintained the hit rate obtained at the checking stage,
attributing the same risk class given by the expert in
21 of the 22 cases evaluated, including the correct
classification of the only case of no risk (class 1).

During the learning process, there was only one
omission error in the checking subset, where a case of
risk class 3 was mistakenly assigned to class 4, resulting
in a commission error in the latter. During the test, there
was also a single omission, in class 5, of a case that was
erroneously classified as class 4, hence accruing two
commission errors. Taking into account the number of
cases in each class, the omission error rates were 33.3%
in class 3 during the check, and 11.1% for class 5 in the
tests. The commission errors were 10% and 11.1%, both
in class 4, during the checking and testing, respectively.
Despite a more significant error rate during the check,
error rates were low during the tests. The kappa index
value was 0.95, indicating an almost perfect agreement
between the neuro-fuzzy model and the expert’s evaluation.

An important consideration is that it is possible
to add or remove parameters, refine the weighting values,
and use new databases, making the model adaptable
to the conditions and criteria of the user, as required
by a particular application. In addition, the progressive
increase of the number of cases in the database allows
the recognition of new patterns, providing a continuous
improvement in model performance. Therefore, these
aspects constitute possibilities for further advances
in future studies.

5. CONCLUSION

Using a database, consultation with experts, and
information from the literature, a neuro-fuzzy-based model
was developed for multi-criteria analysis of 18 parameters
integrated using 3 indexes and 5 indicators of risk, applied
to the management of urban afforestation. Satisfactory
performance was achieved for application of the model
in a case study. The neuro-fuzzy model presented
accuracies of 98.8% in learning and 95.5% in generalization
tests, and was in almost perfect agreement (k > 0.8) with
visual tree assessment by an expert. Therefore, the findings
show that neuro-fuzzy modeling is a promising alternative
for risk analysis in urban afforestation management,
using computational intelligence.
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