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ABSTRACT – The generally limited resources for forest management and the growing need of forest production 
regulation requires the optimization of planning approaches for the spatialization of annual production units 
(APU). An APU planning methodology for forest species of high wood value (Amburana acreana (Ducke) 
ACSm., Apuleia leiocarpa (Vogel) JF Macbr. and Castilla ulei Warb.) in management area was proposed, using 
prediction of potential distribution of these species with data from the occurrence of a census forest inventory. 
It was used sample inventory data simulated in three sampling systems (random, conglomerate systematic, 
and systematic) and sample intensities (0.5% and 0.8%). As predictive variables, it was used the altitude, 
vertical distance to the nearest drain, individual bands of the TM sensor on board the Landsat 5, and vegetation 
index by normalized diff erence. Eighteen models were obtained, six per species. The test area under the curve 
(AUC) of the models ranged from 0.517 to 0.804. For all species, the best predictive model was considered the 
conglomerate system with a sample intensity of 0.8%. Altitude was the predictor variable that most contributed 
to the models. The AUC values for the Amburana acreana models were signifi cantly diff erent from Apuleia 
leiocarpa and Castilla ulei (p = 0.0138). For species of lower density, it is recommended greater sampling 
intensity and sampling systems that provide better spatialization of occurrence records. The use of data from 
sampling forest inventories in diff erent sampling systems is capable of predicting environmental suitability 
for forest species and helps to defi ne APUs. Thus, it is possible to strenghten the exploration strategies and 
management planning of management areas and to contribute to the perpetuation of the activity in the unequal 
forests of the Amazon region.
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MODELAGEM DE DISTRIBUIÇÃO DE ESPÉCIES NO PLANEJAMENTO 
FLORESTAL DAS UNIDADES DE PRODUÇÃO ANUAL NO SUDOESTE DA 

AMAZÔNIA

RESUMO – Considerando os recursos geralmente limitados para a gestão de fl orestas e a crescente necessidade 
de regulação da produção fl orestal, faz-se necessário otimizar abordagens de planejamento da espacialização 
das unidades de produção anual (UPA). Foi proposta uma metodologia de planejamento de UPA para espécies 
fl orestais de alto valor madeireiro (Amburana acreana (Ducke) A.C.Sm., Apuleia leiocarpa (Vogel) J.F Macbr. 
e Castilla ulei Warb.) em área de manejo, utilizando predição de distribuição potencial destas espécies com 
dados de ocorrência de inventário fl orestal censitário. Foram utilizados dados de inventário amostral simulados 
em três sistemas de amostragem (aleatório, conglomerado sistemático e sistemático) e intensidades amostrais 
(0,5% e 0,8%). Como variáveis preditoras, utilizamos a altitude, distância vertical à drenagem mais próxima, 
bandas individuais do sensor TM a bordo do Landsat 5 e índice de vegetação por diferença normalizada. Foram 
obtidos 18 modelos, seis por espécie. A área sob a curva (AUC) de teste dos modelos variou de 0,517 a 0,804. 
Para todas as espécies, o melhor modelo preditivo foi considerado o sistema conglomerado com intensidade 
amostral de 0,8%. A altitude foi a variável preditora que mais contribuiu nos modelos. Os valores de AUC 
para os modelos de Amburana acreana foram signifi cativamente diferentes de Apuleia leiocarpa e Castilla ulei 
(p=0,0138). Para espécies de menor densidade, é recomendado utilizar maior intensidade amostral e sistemas 
de amostragem que proporcionem melhor espacialização dos registros de ocorrência. A utilização de dados 
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provenientes de inventários fl orestais amostrais em diferentes sistemas de amostragem é capaz de predizer a 
adequabilidade ambiental para espécies fl orestais e auxilia a defi nição de UPAs. Assim, pode-se fortalecer as 
estratégias de planejamento da exploração e gestão das áreas de manejo e contribuir para a perpetuação da 
atividade nas fl orestas inequiâneas da região amazônica.

Palavras-Chave: Geotecnologia; Maxent; Planejamento fl orestal.

1. INTRODUCTION

New challenges have been triggered in planning 
the harvesting of native forests, in addition to 
environmental, social, and economic aspects, the 
regulation of forest production is one of the greatest 
challenges (Carvalho et al., 2015). The sustainable 
management of tropical forests must guarantee a 
constant fl ow of resources for their viability, however, 
this is not always possible, due to the lack of harvesting 
planning (Fernandes et al., 2013).

Bearing in mind that the planning of logging 
in unequal forests is determined by dividing Forest 
Management Areas (FMA) into Production Units 
(PUs), of similar sizes and shapes, and that this 
procedure does not necessarily correspond to a 
volume of regular harvest and income in each PU 
(Silva et al., 2018a), the spatial distribution of annual 
production units (APUs) is a problem that needs 
optimized solution.

In addition, due to environmental, economic 
factors, and production targets, there is an increasing 
need for detailed spatial planning. Managers have 
been gradually using computer systems in order 
to regulate forest production in an optimized way. 
Whether in equine forests (Binoti et al., 2014), which 
has presented a benefi cial eff ect on management, or 
in areas of unequal forest management in the Amazon 
(Silva et al., 2018a), promoting the formation of PUs 
effi  ciently, grouping the trees in an optimized way.

The integration of computational systems also 
provided robust results in a study to verify the optimal 
selective cutting regime in models for allocation 
wooden storage yards, using models of entire linear 
programming, the tested scenarios were effi  cient 
and concise, ratifying the potential to increase the 
effi  ciency of logging and forest management plans in 
the Amazon (Silva et al., 2018b).

In general, the use of these geotechnologies and 
methods of optimization of exploitation constitute 
potential tools to solve the spatialization of forest 

resources. Its use proved to be more effi  cient than the 
intuitive or empirical methods normally used in the 
management of unequal forests (Martinhago, 2012).

Other potential tools for forest planning are the 
species distribution models, both in the planning of 
natural forests (Mateo et al., 2018), and to assist in 
the development of new approaches in the planning of 
PUs in forest management.

The species distribution models are based on 
the distribution of the species' occurrence points 
(geographic location) in the sub-space of conditions 
of its ecological niche and produce functions to 
predict where in the geographic space it is likely to 
occur (De Marco and Siqueira, 2009). In addition, the 
use of environmental predictors with higher spatial 
resolution (of the order of a few meters) can be applied 
to carry out the geographic distribution modeling of 
species of interest (Figueiredo et al., 2015).

In addition to the potential of species distribution 
models to solve problems related to conservation 
and to map the potential distribution of species of 
timber interest in the Amazon (Guisan et al., 2013; 
Pérez Chaves et al., 2018), they are a potential tool 
in the spatialization of forest resources, to formulate 
development strategies and plans, important for forest 
planning and regulation (Silva et al., 2018a).

Considering the challenges of planning the 
forest exploitation aiming at the regulation of wood 
production, the objective of this study was to propose 
a new approach to planning annual production units 
in the management area, through the modeling of 
the distribution of forest species, using data from 
sampling inventory and predictive environmental 
variables with spatial resolution of 30 meters.

2. MATERIAL AND METHODS

2.1 Study area

The study was carried out in the Antimary State 
Forest (ASF), located in the municipality of Bujari, 
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whose upper left and lower right vertices have the 
respective coordinates (SIRGAS 2000 datum): S 
09° 29' 78.36''and W 68 ° 26 '70.02''and S 09° 34' 
49.89”and W 68° 16' 86.34''. It is a Conservation 
Unit for Sustainable Use, held by the State Secretariat 
for the Environment - SSE. The Sustainable Forest 
Management Plan area corresponds to 37,687.66 ha, 
accounting for 82.2% of the total area of the ASF, 
which is 45,686.5 ha (Figure 1A). 

In ASF there is a predominance of Dense Forest 
vegetation associated with Open Forest with Bamboo 
and Dense Forest associated with Open Forest with 
Palm trees. It has rainfall above 2,000 mm, with a 
dry period with monthly precipitation below 60 mm 
of rain. The average annual temperature ranges from 
24.6 °C to 25.0 °C, the soil comprises the Argisol Red 
Dystrophic Latossolic class associated with Oxisol 

Yellow Dystrophic Argisolic (SEMA, 2019).

2.2 Forest species data

We used the forest census of fi ve APUs (APU-02, 
APU-03, APU-04, APU-07 and APU-08), the censuses 
took place among the years 2005 to 2015, data in 
digital format were provided by the Environment 
Institute of Acre (IMAC) and authorized by SSE.

In the inventory, all individuals from 40 cm 
DBH (diameter at breast height) were inventoried, 
a diametric class immediately below the harvesting 
limit (50 cm). About the mapped trees, the following 
information is available: geographic location, species, 
DBH, commercial height and basal area, among others. 
The individual volume of the trees was estimated by 
the volume equation based on the Schumacher-Hall 
model, which considers double entry (diameter and 

Figure 1 – Location map of the Antimary State Forest, with the current division of annual production units. Bujari, Acre, 2020 (A), map 
with the wood value zones for the species: Amburana acreana, Apuleia leiocarpa and Castilla ulei (B) and map with the division 
of annual production units for the area with the highest probability of occurrence in the Antimary State Forest (C). 

Figura 1 –  Mapa de localização da Floresta Estadual do Antimary, com a atual divisão de unidades de produção anual. Bujari, Acre, 
2020 (A), mapa com as zonas de valor madeireiro para as espécies: Amburana acreana, Apuleia leiocarpa e Castilla ulei (B) 
e mapa com a divisão das unidades de produção anual para a área de maior probabilidade de ocorrência na Floresta Estadual 
Antimary (C). 

Source: author
Fonte: autor.
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height). The model uses the commercial height of the 
trees, estimated by botanical identifi er (SEMA, 2019). 

The area of the APUs is equivalent to 13,703.7ha, 
however, for the calculation of the number of plots 
of the simulated sampling inventory in a Geographic 
Information System (GIS) it was considered 
environment the entire value (13,000 ha). We rounded 
off  the value of the area, as the ASF is cut by roads, 
access routes and other open areas, including facilities 
such as the headquarters, Integrated Environmental 
Management Unit (IEMU), located in an APU, we 
discount these areas, as they could not be used to 
distribute plots. 

Three forest species of wood interest with high 
market demand in the state of Acre were selected. 
They are: Amburana acreana (Ducke) A.C.Sm., 
Apuleia leiocarpa (Vogel) J.F.Macbr. and Castilla ulei 
Warb. (Table 1). 

We used the geographic position of the tree 
to defi ne the presence. For each species, only 
one occurrence data per pixel was selected. The 
geographical coordinates of the trees, by the UTM 
cylindrical cartographic projection, were obtained 
through GPS, which replaced the false coordinates 
(X, Y) and the right and left position of the line used 
in traditional inventories. We consider the abundance 
suffi  cient for robust modeling, exceeding the minimum 
number of 30 observations in the study area (Giannini 
et al., 2012), and the reliable taxonomic identifi cation 
at the species level.

The records of occurrence of forest species, 
derived from the census forest inventories provided 
by the Environment Institute of Acre (EIA), in digital 
format, were audited by the institution's technical staff  
at diff erent stages of the harvesting activity, in addition 
to being an experimental area of Embrapa Acre, with 
a high frequency of “fi eld truths” (fi eld verifi cation) 
made by experienced parabotanists, which guarantees 
the reliability of the worked information. The 

exsiccates of the species of interest are deposited in 
the herbarium of the Zoobotanic Park of the Federal 
University of Acre (UFAC-ZP) (Figueiredo et al., 
2015).

2.3 Predictor variables

We used the following predictor variables: 
altitude, vertical distance to the nearest drain 
(HAND), spectral bands of the TM sensor (Landsat 
5 satellite) and the vegetation index of the normalized 
diff erence of the acronym in English (NDVI), all with 
spatial resolution 30 meters. The individual bands of 
the Landsat 5 sensor referent to the year 2008 were 
used in order to  provide images with better quality.

The altitude data were generated from data from 
the SRTM (Shuttle Radar Topographic Mission). The 
HAND (Height Above the Nearest Drainage) refers 
to the vertical distance of each point in relation to the 
nearest drainage, the values of the vertical distances 
were extracted from the HAND and processed 
according to the methodology of Rennó et al. (2008).

We used the mosaic of spectral bands derived 
from the Landsat TM satellite (Thematic Mapper), 
bands corresponding to the orbit/point 002/66 and 
002/67, all of August 18, 2008. The bands were 
obtained from the image bank of the National Institute 
for Space Research (NISR), without clouds, covering 
the study area one year before the forest census was 
carried out, due to the better quality of the images. 
They were georeferenced based on the Landsat8 
image, Sensor-Operational Land Imager (OLI) for 
the year 2013 available on Libra, the Landsat image 
browser.

Of the seven bands that the TM sensor has, 
four were used as predictor variables in the species 
distribution models. The red band 3 (0.63 - 069 µm) 
of the visible light spectrum and bands 4 (0.76 - 0.90 
µm), 5 (1.55 - 1.75 µm) and 7 (2.08 - 2.35 µm) of 
the near and medium infrared spectrum. These bands 

Table 1 – List of forest species selected for modeling and total number of occurrence records in the census forest inventory in the Antimary 
State Forest, considering the selected APUs. 

Tabela 1 – Relação das espécies fl orestais selecionadas para a modelagem e número total dos registros de ocorrência no inventário 
fl orestal censitário na Floresta Estadual do Antimary, considerando as UPAs selecionadas.

Scientifi c name Family Common name Total number of  
    occurrence data

Amburana acreana (Ducke) A.C.Sm. Fabaceae Cerejeira, cumaru-de-cheiro. 1883
Apuleia leiocarpa (Vogel) J.F.Macbr. Fabaceae Cumaru-cetim, garapeira 4869
Castilla ulei Warb. Moraceae Caucho 7433



Species distribution modeling in fl orest planning...

Revista Árvore 2021;45:e4531

5

were selected, as there is high refl ectance in the near 
infrared region. Meanwhile, the medium infrared 
medium presents sensitivity to the moisture content of 
the plants, serving to observe stress in the vegetation.

The index of vegetation by normalized 
diff erence is an index of signifi cant importance in 
the characterization of vegetation (Neta et al., 2018). 
NDVI values indicate the amount of green vegetation 
present in the pixel (Prates Clark et al., 2008). For the 
calculation of the NDVI, we used the mosaic of the 
spectral bands (band 3 and band 4) corresponding to 
the orbit/point 002/66 and 002/67.

2.4 Models construction

The occurrence data was partitioned into two data 
sets: a. data for model calibration and b. data for model 
validation. The selection of data for the calibration of 
the models was obtained according to the sampling 
intensity and the simulated sampling system, thus, the 
occurrences for the calibration were those contained 
in the sampling units and the validation occurrences 
there were all other occurrences remaining, according 
to the sampling system and intensity.

For each selected species, six predictive models 
of species distribution were generated in function of 
the sampling systems and sampling intensity. Three 
sampling systems were simulated: random, systematic 
conglomerate and systematic in two sampling 
intensities: 0.5 and 0.8%, the intensities were used 
considering that sampling inventories in the Amazon 
are generally carried out with low sampling intensity, 
less than 1%, in function of depending on costs 
(Cavalcanti et al., 2011).

In the random and systematic sampling system, 
the sample units had the dimensions (50 x 200 m) 
in width and length, respectively. Corresponding 
to sampling units of 1 ha (10,000 m2). With the 
diff erence that in the systematic sampling after the 
selection of the fi rst sample unit, the plots followed 
a predetermined pattern at constant intervals of (1 x 1 
km), considering the area available for the distribution 
of plots.

The sampling units per systematic conglomerate 
were made up of four rectangular subunits of fi xed 
area, perpendicular to their central point, oriented in 
the direction of the cardinal points and numbered from 

1 to 4. The subunits with a size of 20 m in width by 
200 m of length (4,000 m2) and 50 m among them, in 
total one sample unit corresponded to 1.6 ha (16,000 
m2).

In all, there were 65 plots with an intensity of 0.5% 
and 104 plots with an intensity of 0.8% in the random 
and systematic system. In the systematic conglomerate 
system, there were 41 plots at 0.5% intensity and 65 
plots at 0.8% intensity. The distribution of plots in the 
area, according to the simulated sampling system, and 
the selection of occurrence data for the three species 
were carried out in a GIS environment.

In modeling, we used the maximum entropy 
algorithm (Maxent), a method to perform prediction 
or inferences based only on presence data (Phillips 
et al., 2006), executed with the Maximum Entropy 
Species Distribution Modeling v. 3.3.3k (<www.
cs.princeton.edu/_schapire/maxent/>).

Maxent estimates the probability of suitability 
of the habitat where the occurrence of the species is 
possible, fi nding the maximum entropy probability 
distribution (closest to the uniform) subject to a 
set of restrictions, in which the expected values in 
each environmental variable must correspond to the 
averages observed in the samples (Phillips et al., 
2006; Elith et al., 2011).

At Maxent, according to Elith et al. (2011), the 
landscape of interest is denoted by L, y = 1 (presence), 
y = 0 (absence), z = vector of covariates representing 
environmental conditions, f (z) = probability density 
of covariates in L ( a random sample of L) and f1 (z) 
= probability density of covariates in locations in L 
where the species is present.

The probability you want to fi nd is the 
probability that the species is present given that the 
z environment is observed. Using presence data and 
random landscape data, it is possible to model f1 (z) 
and f (z) and the f1 (z) / f (z) ratio estimate, known as 
Maxent's "raw" output, giving an insight into which 
characteristics are important and estimates the relative 
suitability of one place in relation to another. 

According to Elith et al. (2011), in order to estimate 
f1 (z), several of these distributions are possible, but 
is selected one that is closer to f (z), minimizing the 
distance from f (z) which is a null model for f1 (z), 
because without data on the occurrence, we would 
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have no reason to expect the species prefers all specifi c 
environmental conditions over any other. Restrictions 
are imposed so that the solution is one that refl ects 
the information from the presence records, that is, the 
estimate of f1 (z) must be close to the average of the 
observed presence locations.

As the necessary information on prevalence is 
not available for calculating conditional probability 
of occurrence, an alternative solution, called Maxent's 
logistic output, was implemented, where prevalence 
is represented by the parameter τ, defi ned from 
“typical conditions” of a group of species, whose 
default value of τ = 0.5. This logistical transformation 
is monotonically related to Maxent's “raw” output. 
Maxent's logistics output transforms the model 
from an exponential model belonging to the Gibbs 
distribution to a logistic model (Elith et al., 2011):

                                                                      Eq.1

r: the relative entropy of ƒ1(z) that is obtained 
from the presence data in relation to ƒ(z) that is 
estimated from random points in the landscape.

n (z): it is the result of maximizing entropy 
subject to certain restrictions.

For each species, sampling system and sampling 
intensity, modeling was performed with one repetition 
(number of model runs. The data was resampled 
using the bootstrap technique, this technique involves 
randomly splitting the data, with replacement, into 
various training and test sets (Fielding and Bell, 1997).

We used the Jackknife test to estimate which 
are the most important variables in the models, 
consequently the contribution of the variables to the 
models (Yang et al., 2013). We analyzed the Pearson 
coeffi  cient of variation in order to exclude from the 
variable models with a correlation greater than 0.7.

The samples of random points in the landscape 
(background) were extracted from a region that 
covers the entire study area containing the sampling 
distribution of the occurrence data of the forest 
inventory. This region was defi ned considering all 
occurrences, regardless of the species.

2.5 Evaluation of models

The performance of the models was evaluated 
through the area under the curve (AUC) of the ROC 

(Receiver Operating Characteristic) curve, graph 
of the receiver - operator, in which the AUC is the 
measure of performance, and where is possible to 
compare the estimated area of the models with those 
observed at the same point by the validation samples. 
AUC is a widely used method because it is a global 
measure of performance independent of cut limits 
(Fielding and Bell, 1997).

In the selection of the models, the omission rate 
was also verifi ed, as an auxiliary measure to the AUC, 
considered important for the selection (Figueiredo et 
al., 2015). We used the Student’s t test to assess the 
signifi cance (α = 0.05) of the variation in the mean 
AUC values between the diff erent species distribution 
models generated as a function of the system and 
sampling intensity.

In this study, we used the Maximum test 
sensitivity plus specifi city as the cut-off  limit, provided 
by Maxent himself, above which is predicted the 
variable of interest, and it is important that the choice 
of the threshold ponders the intended use of the map 
(Freeman and Moisen, 2008).

2.6 Planning of annual production units

For the planning of the APU, the best model 
by species was selected according to the analysis of 
the AUC, the omission rate and we also considered 
the sampling eff ort. The probability of occurrence of 
species on the maps was categorized into four classes 
(1. High; 2. Medium; 3. Low and 4. Absence). The 
categorization was done using the Natural Breaks 
method, where the division of the probability values 
by class was done by the program itself. The areas 
with the highest probability values were categorized as 
high probability of species occurrence, and the areas 
with the lowest probability values were categorized as 
absence predicted by the models.

The maps of probability classes were vectorized 
by species. After that, we proceeded with the sum of 
the vectorized maps, thus creating zones to subsidize 
and defi ne as APUs by group of species. Three zones 
were defi ned: Zone 1: High wood value, Zone 2: 
Medium wood value and Zone 3: Low wood value in 
the area of the fi ve APUs where the occurrences were 
used for modeling.

Greater weight was given to the probability maps 
of Amburana acreana and Apuleia leiocarpa, in the 
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sum of the maps of these species was multiplied by 
two (2), the importance given to the distribution of 
these species is due to the demand by the timber 
consumer market (De Araujo, 2014).

As a result of the sum of the probability maps, 
a new probability map was obtained for the three 
species. The new map was divided into 15 classes 
of probability of occurrence, grouped every fi ve 
according to the variation of probability, thus defi ning 
three zones of wood value for the species. In which, 
the probabilities of occurrence of the maps were 
distributed as follows: Zone 1 (2.31 - 3.5) with higher 
probability values, Zone 2 (1.15 - 2.30) with average 
values of probability and Zone 3 (0 - 1.14) with the 
lowest probability values.

We verifi ed through descriptive statistics, 
coeffi  cient of variation (CV), if the models provided 
more equiproductive APUs at the species level, for 
this, we compared the distribution of the volume of 
wood by species and APU considering the division 
of the units before and after the models of species 
distribution.

3. RESULTS

Eighteen models were obtained using the 
maximum entropy algorithm, six per species, one 
model for each combination of species, system and 
sample intensity. The test AUC value of the models 
ranged from 0.517 to 0.804 among species.

There was greater variation in the AUC values 
for the species Amburana acreana, than for Apuleia 
leiocarpa and Castilla ulei. The models generated 
following the three sampling systems (random, 
systematic conglomerate and systematic), as well as 
the two sample intensities (0.5% and 0.8%) performed 
well with an average AUC of 0.7925 (Castilla ulei), 
0.658 (Amburana acreana) and 0.749 (Apuleia 
leiocarpa), above a randomly generated model (AUC 
= 0.5).

For Amburana acreana, there was a greater 
variation in the AUC values between the models. The 
data for the species show that for the same sampling 
system there can be a large diff erence of omission, as 
in the systematic sampling system. The AUC values 
for Apuleia leiocarpa had little variation (0.737 to 

0.765), and omission values (14.3 to 22.4%), in most 
models the omission was greater using a smaller 
number of occurrence records.

As for Castilla ulei, all models showed good 
AUC values ranging from (0.783 to 0.804) and default 
values (16.1 to 20.5%). This species had the highest 
number of occurrences to generate the models (40 
to 80 occurrences). The increase in the number of 
occurrence points increased the AUC and decreased 
the omission, for most models.

There was a signifi cant diff erence when 
comparing the AUC values among species. The 
models of Amburana acreana were signifi cantly 
diff erent from Apuleia leiocarpa and Castilla ulei (p = 
0.0138). There was no signifi cant diff erence between 
the models of the latter.

Considering all the models evaluated, the 
omission was ≤ 30%. For all species, there was no 
signifi cant diff erence in relation to the omission of the 
models, although the values of AUC and omission for 
the models of Apuleia leiocarpa and Castilla ulei were 
contained in less variation in relation to the values for 
Amburana acreana.

All selected variables were used in the models, 
except Landsat Band 7, which, after analyzing 
Pearson’s coeffi  cient of variation, showed a correlation 
greater than 0.7 with three variables (Band 3, Band 5 
and NDVI). Although there is a correlation between 
band 3 and band 5, the models performed better with 
the maintenance of these bands (Table 2). 

Considering the contributions of the predictor 
variables to the selected models, altitude was the most 
Table 2 – Predictor variables for the best models and their 

percentage contribution in the Maxent model, by forest 
species. 

Tabela 2 – Variáveis preditoras para os melhores modelos e sua 
contribuição percentual no modelo Maxent, por espécie 
fl orestal.

Where: HAND, vertical distance to the nearest drainage; NDVI, vegetation 
index by normalized diff erence.
Em que: HAND, distância vertical à drenagem mais próxima; NDVI, índice de 
vegetação por diferença normalizada.

Variable  Species

  Amburana Apuleia  Castilla
  acreana Caastilla   ulei

Altitude 62.4 54.0 62.3
Band 5   7.0 35.6 13.2
Band 3 18.2   0.0 12.7
Band 4   1.5   2.5   4.4
HAND   7.4   6.8   0.4
NDVI  3.5   1.1   7.0
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important predictor variable for the three species, 
Amburana acreana, Apuleia leiocarpa and Castilla 
ulei, a result commonly found in research that use 
this variable as a predictor for the models (Higgins 
et al., 2012; Figueiredo et al., 2015; Pérez Chaves et 
al., 2018).

Band 5 (short wave infrared) was the second 
most important variable for the Castilla ulei and 
Apuleia leiocarpa model, for Amburana acreana it 
was Band 3. due to the fact that NDVI incorporates 
information from bands 3 and 4 it is often used as a 
general vegetation vigor index. However, NDVI and 
Band 4 were not the most important variables for any 
of the models. For the three species, the contributions 
of bands 3 and 4, if added to the models, contributed 
more than the NDVI, a result similar to that found in 
the study by Pérez Chaves et al. (2018).

From the models generated with the variables, 
altitude, HAND, spectral bands of the TM sensor 
(Bands 3, 4, 5) and the NDVI, we considered the 
values of AUC, omission rate and sampling eff ort in 
order to select the models of each species. We adopted 
this method, as there was no statistically signifi cant 
diff erence using the Student’s t test to compare the 
AUC scores.

For all species, the best model was the one that 
considered the sampling by systematic conglomerate 
and sampling intensity of 0.8%, the Amburana 
acreana model had AUC (0.814) and omission rate 
(18.1%). The Apuleia leiocarpa model had AUC 
(0.747) and an omission rate (12.7%). And Castilla 
ulei at AUC (0.803) and default (16.1%) (Table 3). 

The omission of the models selected for the three 
species ranged from 12.7% to 18.1%, values above 
that found in Figueiredo and Figueiredo (2019), with 
an omission rate of 8.8%, evaluating the modeling 
of tree species by diametric class. In our study there 

were areas of eff ective presence of the species, but that 
the model was unable to predict. These unforeseen 
occurrence points were located close to water courses 
and most of the occurrence records used to generate 
the models were at higher points in the terrain.

From the maps of probability of occurrence of 
the selected models, we obtain the wood value zones 
by species for the ASF (Figure 1B). 

In the map of areas of wood value by species, the 
areas of lesser environmental suitability formed the 
area of low wood value, which corresponds to areas 
that are already open, mainly west of the ASF, water 
courses and in its surroundings and areas of permanent 
preservation (APP). In general, areas of low and high 
wood value occupied most of the map.

As a result of the sum of the probability maps 
of the selected models, the wood value zones for 
Amburana acreana, Apuleia leiocarpa and Castilla 
ulei were obtained in the area where the occurrence 
points that generated the models were distributed.

In general, the largest area on the map is made 
up of the area with high timber value, that is, the area 
in which there is a greater probability of fi nding the 
three wood species and that eff ectively have forests. 
Based on these zones of wood value for the species, 
the APUs were defi ned for the area with the highest 
probability of occurrence (Figure 1C). 

The limitations of annual production units 
coincided with the natural dividers, which are 
the watercourses, water dividers (slope line) as 
recommended by Souza and Soares (2013), the roads 
were also considered as limiters of the APUs. In the 
areas with the highest timber value, the APUs had a 
smaller area, considering that in these areas a higher 
density of individuals is expected and thus a greater 
volume of wood. Unlike this, for areas of lower wood 

Table 3 – Values of AUC and omission (%) of the models distributed by species, sampling systems and sampling intensity (%).
Tabela 3 – Valores de AUC e omissão (%) dos modelos distribuídos por espécie, sistemas de amostragem e intensidade amostral (%).
                              Amburana acreana                        Apuleia leiocarpa                               Castilla ulei

System   Intensity   AUC Omission  AUC Omission  AUC Omission 

Random   0.5 0.724 23.2 0.746 18.9 0.792 20.3
  0.8 0.725 23.7 0.747 14.3 0.78 18.8
Conglomerate 0.5 0.517 11.4 0.754 20.3 0.793 20.5
  0.8 0.814 18.1 0.747 12.7 0.803 16.1
Systematic 0.5 0.531   3.9 0.737 19.0 0.783 19.3
  0.8 0.642 30.0 0.765 22.4 0.804 16.9
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value, APUs had a larger area, so that the fi nal volume 
is as proportional as possible between them (Table 4). 

We observed a signifi cant variation in the volume 
of species in the original APUs in the management 
area in relation to the APUs that were divided with the 
aid of the models. The diff erence between the volume 
of species per APU can be related both to the size of 
the production units as well as the density and DBH 
of the species.

The variation coeffi  cient of the original APUs 
was greater than 50%, only for the Apuleia leiocarpa 
species, which was smaller (CV = 48.3%), which 
denotes a large variation in volume between the 
production units, while the CV of the defi ned APUs 
was between 21.3 to 32.9%.

4. DISCUSSION

The AUC values for the models were on average 
(AUC = 0.7), this result corresponds to the study by 
Figueiredo and Figueiredo (2019), which analyzed the 
prediction of the distribution of timber forest species, 
on a local scale (approximately 35,000 ha), using 
occurrence data grouped by diametric class. Here, this 
relationship was not true only for Amburana acreana 
(AUC = 0.6), a species that had a lower number of 
occurrences to generate the models.

As there was no signifi cant diff erence when 
diff erent sampling systems and sampling intensity 
were used for Apuleia leiocarpa and Castilla ulei, any 
of the systems and intensities can be used to generate 
predictive models for these species, as they are species 
of greater density in the area.

For Amburana acreana, it is necessary to have 
a greater number of occurrence records for the 

construction of the models, that is, greater sampling 
intensity. Because the increase in the sampling intensity 
and a greater number of occurrences better distributed 
in the geographic space can provide improvement in 
the prediction of the models (Figueiredo et al., 2015).

The smaller number of occurrence records to 
generate the Amburana acreana models refl ected in 
the decrease in AUC in the systematic and systematic 
conglomerate system, however just increasing the 
number of occurrences may not be effi  cient as in the 
work of Aguirre Gutiérrez et al. (2013), in which 
the increase in the number of records signifi cantly 
decreased the AUC values, although this result is 
expected when using pseudo-absences or historical 
data, this is not our case.

We follow the same criteria as Doninck et al. 
(2019) to maintain or remove predictive variables, 
they removed the variable when the correlation was 
greater than 0.78.

The HAND was the third most important variable 
for the models of Amburana acreana, probably 
because this variable is indirectly related to the depth 
of the water table, indicating the availability of water 
in the soil (Rennó et al., 2008).

Despite the correlation considered high (0.77) 
between the NDVI and band 3, but below the criterion 
used, the maintenance of the NDVI is important 
because with the inclusion of this variable in the 
models, the deforested areas are not predicted as areas 
of environmental suitability for the species not being 
necessary to mask deforested areas (Prates Clark et 
al., 2008; Figueiredo et al., 2015).

Band 3 and 4 contributed more than NDVI, as 
well as in the work of Pérez Chaves et al. (2018), 

Table 4 – Volume of wood of the species Amburana acreana, Apuleia leiocarpa and Castilla ulei in the APUs defi ned from the species 
distribution models, Antimary State Forest, Bujari, Acre, 2020. 

Tabela 4 – Volume de madeira das espécies Amburana acreana, Apuleia leiocarpa e Castilla ulei nas UPAs defi nidas a partir dos modelos 
de distribuição de espécies, Floresta Estadual do Antimary, Bujari, Acre, 2020.

  Amburana  acreana Apuleia leiocarpa Castilla ulei

   Volume (m๎)

APU 01    907.3   4,602.3 2,129.1
APU 02 1,875.1   4,811.9 3,682.8
APU 03 1,401.1   5,176.7 3,160.4
APU 04 1,628.3   5,995.8 4,584.4
APU 05    824.0   3,318.1 1,986.8
APU 06    852.6   3,317.7 2,763.5
Total 7,488.4 27,222.4 1,8307
Average 1,248.1   4,537.1 3,051.2
Standard deviation    411.0      965.2    897.0
Coeffi  cient of variation (%)      32.9        21.3      29.4
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where the authors report that the importance of 
these bands is related to the fact that photosynthesis 
of vegetation absorbs a large proportion of incident 
red radiation and refl ects a high proportion of near 
infrared radiation.

We verifi ed that variables from remote sensing 
are good predictors for most models of species 
distribution, as in the study by Pérez Chaves et al. 
(2018). Landsat and SRTM data, in combination with 
the rate-based rapid fi eld inventory, should serve as 
a basis for planning research and conservation of 
vast and remote forests (Higgins et al., 2012). The 
addition of Landsat-based layers of environmental 
data improves the discriminatory capacity of models 
compared to models that use only layers of climatic 
data (Doninck et al., 2019).

Considering that the occurrences for the modeling 
were obtained according to three sampling systems 
and two sampling intensities. The omission of the 
models probably occurred because the distribution of 
the occurrence points that generated the models was 
not able to capture the gradient of altitude variation, 
the most important variable for the three species, 
refl ecting the importance of the better distribution of 
data in the area and not just an increase in the number 
of points.

It was possible to verify, for all species in the 
omission area, lower altitude values than for the 
occurrence points used in the calibration of the 
models, consequently there were problems in the 
transferability of the models, as they were unable to 
predict the occurrence of the species for the areas 
with lower altimetric height. One way to reduce the 
omission for the models in this case is to previously 
stratify the environment by topographic gradient 
and distribute plots in order to cover the altimetric 
amplitude of the area.

Despite the problems related to the omission and 
transferability of the models to other areas, knowing 
the potential distribution of timber forest species can 
assist both in the formation of forest management areas 
as well as in the defi nition of more equiproductive 
annual production units at the species level. In this 
way, the defi nition of production units based on 
models of potential distribution of species and zones 
of wood value becomes yet another alternative to 
optimize the defi nition of APUs in management areas, 

and thus regulate volume production (Silva et al., 
2018a).

Despite a signifi cant decrease in the diff erence 
in wood volume between the APUs defi ned with 
the aid of the models, it was not possible to provide 
equiproductive units by species. This shows that only 
the modeling of the potential distribution of species 
and the formation of production units based on the 
models is not capable of promoting, by itself, the 
equiproductive distribution of volume by species.

Even so, knowing the potential distribution of 
timber forest species can assist both in the formation 
of forest management areas as well as in the defi nition 
of more equiproductive annual production units at the 
species level.

5.  CONCLUSION

The best results in the prediction of the potential 
distribution of Amburana acreana, Apuleia leiocarpa 
and Castilla ulei were obtained with the occurrence 
data from the forest inventory using the systematic 
conglomerate system with a sample intensity of 0.8%.

The defi nition of the annual production units with 
the help of species distribution modeling contributed 
to reduce the diff erence in the volume of wood between 
the APUs, when compared with conventional methods 
of forest planning, but they were not equiproductive.
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