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ABSTRACT: This study uses several measures derived from the error matrix for comparing two 

thematic maps generated with the same sample set. The reference map was generated with all the 

sample elements and the map set as the model was generated without the two points detected as 

influential by the analysis of local influence diagnostics. The data analyzed refer to the wheat 

productivity in an agricultural area of 13.55 ha considering a sampling grid of 50 x 50 m comprising 

50 georeferenced sample elements. The comparison measures derived from the error matrix 

indicated that despite some similarity on the maps, they are different. The difference between the 

estimated production by the reference map and the actual production was of 350 kilograms. The 

same difference calculated with the mode map was of 50 kilograms, indicating that the study of 

influential points is of fundamental importance to obtain a more reliable estimative and use of 

measures obtained from the error matrix is a good option to make comparisons between thematic 

maps. 
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MEDIDAS DE COMPARAÇÃO DE MAPAS GERADOS POR MÉTODOS 

GEOESTATÍSTICOS 

 

RESUMO: Este trabalho utiliza diversas medidas derivadas da matriz dos erros para comparar dois 

mapas temáticos gerados com o mesmo conjunto amostral. O mapa de referência foi gerado com 

todos os elementos amostrais e o mapa definido como mapa modelo foi gerado sem dois pontos 

detectados comoinfluentes por meio da análise de diagnósticos de influência local. Os dados 

analisados referem-se à produtividade de trigo em uma área agrícola de 13,55 há, considerando uma 

grade amostral de 50 x 50 m totalizando 50 elementos amostrais georreferenciados. As medidas de 

comparação obtidas a partir da matriz dos erros indicaram que, apesar de os mapas apresentarem 

certa semelhança, eles são diferentes. A diferença entre a produção estimada pelo mapa de 

referência e a produção real foi de 350 quilogramas. A mesma diferença calculada com o mapa-

modelo foi de 50 quilogramas, indicando que o estudo de pontos influentes é de fundamental 

importância para obter uma estimação mais precisa, e a utilização de medidas obtidas da matriz dos 

erros é uma adequada opção para realizar comparações entre mapas temáticos. 

 

PALAVRAS-CHAVE: matriz dos erros, matriz de confusão, influência local. 
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INTRODUCTION 

In the early 90s, began to be developed technologies to manage the spatial variability 

associated with aspects of agricultural production. Productivity varies spatially, and to determine 

the causes of this variation is the challenge that faces the precision agriculture. The processing and 

the integration of data, in precision agriculture are usually made in order to select and model the 

variables that best explain the productivity (JOHANN et al., 2002). 

The techniques of localized application and varying rates of agricultural inputs with the help 

of geostatistics has been one of the areas to focus efforts in recent research (CORA & BERALDO, 

2006, SOUZA et al., 2007), and facing this, it is desirable the study of methodologies that allows 

the comparison of thematic maps generated by different techniques, because only a visual 

comparison is subjective and important differences between maps can be ignored. 

The aim of this study is to use measures derived from the error matrix to compare two 

thematic maps constructed by geostatistical methods, being one map generated with all samples and 

defined as a reference map and the other map is generated without two points detected as influential 

by the diagnostic technique of local influence and defined as model. 

 

MATERIALS AND METHODS 

The experimental area covers a grain production field with 13.55 hectares, located in the city 

of Salto do Lontra - PR, which was cultivated with the wheat cultivar IAPAR 78. In the monitored 

area, was defined a regular sampling grid of 50 x 50 m a total of 50 georeferenced locations (Figure 

1 (A)). 

 

 
 

FIGURE 1. (A) Location of the 50 sampling points and (B) Area plots division, the gray area was 

not used in the experiment. 

  

In Figure 1 (B) it is observed that the area was divided into nine plots to facilitate mechanical 

harvesting, making possible to determine the wheat real production. The area shaded in Figure 1 (B) 

represents a region of rocks that is not monitored in the experiment. In the sampling points were 

collected the wheat plots in an area of 1 m
2
. These plots were threshed, weighed and converted into 

t ha
-1

. To perform the geostatistical analysis it was used the software R (R DEVELOPMENT CORE 

TEAM, 2009) and its GeorR package (RIBEIRO JUNIOR & DIGGLE, 2001). 

To model data with a spatial structure, it was considered a Gaussian stochastic process {Z(s), 

sS},with 2S , being 2  two-dimensional Euclidean space.Supposing that the data, 

Z(s1),...,Z(sn),of this process are recorded in known spatial locations si  (i = 1,..., n),and generated by 

the model Z(si) = µ(si) +  (si),where the deterministic terms µ(si) and stochastic (si) may depend 

on the spatial location where Z(si) was obtained.It is assumed that the stochastic error  (.) has mean 

zero, E[ (si)] = 0,that the variation between points in the space is determined by some covariance 

function C(si, su)=COV[ (si),  (su)] and that for some known functions of s, as x1(s),...,xp(s),the 
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mean is defined as µ(s) = 


p

u

uu sx
1

)(  ,being, β1,...,βp unknown parameters to be estimated. In an 

equally form and in a matrix form, we have Z = X β + ε,being, E (ε) = 0 (null vector) and the 

covariance matrix ofΣ= [(σiu)], in which σiu = C(si, su).It is assumed that Σ is nonsingular that X has 

columns with full rank and that Z follows abnormal n-variant distribution with mean vector Xβ and 

covariance matrix Σ. 

Considering the parametric form of the covariance matrix Σ= φ1In + φ2R, (MARDIA & 

MARSHALL, 1984), where φ1 is the parameter known as the nugget effect, φ2 is known as the 

contribution parameter, R=R(φ3)=[(riu)]  is an nxn symmetric matrix, with diagonal elements rii =1, 

i=1,...,n, where φ3is the range function (a) of  the model, and  In is an nxn identity matrix. The 

parametric form of the covariance matrix Σ, occurs for various isotropic processes, where the 

covariance C(si, su) is defined according to the covariance function C(hiu)=φ2riu,where hiu is the 

Euclidean distance between the points si and su.. In the covariance functions C(hiu), the variance of 

the stochastic process Z is C(0)= φ1+ φ2, and can be defined as semivariance γ(h)=C(0) – C(h). 

In this study for the adjustment of a spatial model to the experimental semivarigram it was 

used the exponential, spherical and Gaussian models, for the parameters estimation it was used the 

ordinary least squares(OLS), the weighted least squares (WLS1),the maximum likelihood (ML) and 

the restricted maximum likelihood (RML) estimation methods (MARDIA& MASHALL, 1984).To 

choose the space model that best suits the semivariances it was used the cross-validation technique 

(VAUCLIN et al., 1983; FARACO et al., 2008) and to investigate the existence of influential points 

it was carried out a diagnostic analysis of local influence (BORSSOI et al., 2009). 

For a set of observed data l(θ) is the log-likelihood function of the postulated model, where θ 

= (β, φ1, φ2, φ3)
T
 and that ω a disturbance vector belonging to a disturbance space Ω. And that l(θ/ω) 

is the logarithm of the likelihood function corresponding to the perturbed model by ωΩ. It is 

assumed that there is aω0Ω such that l(θ) = l(θ/ω0), for all θ and that l (θ / ω) is twice 

differentiable on (θ
T
, ω

T
)

T
.Consider the following perturbation scheme: Zω = Z + ω, with ω = 

(ω1,...,ωn)
T
response perturbation vector and ω0 = (0,...,0)

T
 the point of no perturbation. With this 

perturbation scheme is intended to detect possible outliers in the data that affect the maximum 

likelihood estimator of θ. The ω perturbation influence in the ML estimator of the θ parameter 

vector can be evaluated by the likelihood difference, defined by LD(ω) = ))ˆ()ˆ((2  ll  , where 

̂ is the ML estimator of θ of the assumption model and ̂ is the ML estimator of θ of the disturbed 

model. COOK (1986) proposed to study the local behavior of the LD (ω) around ω0, using the 

normal curve of LD (ω) in ω0 in the direction of some unitary vector l, defined Cl =2|l
T
Δ

T
L

-1
Δl|, 

with ||l|| = 1, where L is the observed information matrix, evaluated in  ˆ , Δ is a matrix (p + q) 

xn given by  

 

Δ = (Δβ
T
, Δφ

T
)
T
, evaluated in  ˆ  and in ω = ω0,                                                                (01) 

In witch,  

1 TX  
and Δφ =

T

l







 )/(2

                                                                                          (02) 

with, 11

2
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)/(  


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Where the observed information matrix is



















LL

LL
L                                                            (04) 

that is, Lββ = –(X
T
Σ

-1
X)                                                                                                                    (05)              
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T
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Lmax is the eigenvector, normalized, associated with the largest eigenvalue, in modulus, from 

the matrix B = Δ
T
L

-1
Δ. The graphic elements | Lmax | versus i (order) may reveal what kind of 

perturbation hat has the greatest influence in LD (ω) in the vicinity of ω0 (COOK, 1986; BORSSOI 

et al., 2009). 

Table 1 shows the generic form of an error matrix (GRINAND et al., 2008).In this matrix, the 

pixels
 
of the reference map are quantified in columns while the pixels of the model map are 

quantified in the lines. Each matrix element represents the number of pixels belonging to the class 

Ci, i=1,...,k, of the model map and the class Cj, j=1,...,k, ofthe reference map. 

 

TABLE 1. Generic error matrix of k x k order. 

Pixels of the reference map 

P
ix

el
s 

o
f 

th
e 

m
o
d
el

 m
ap

 

Classes C1 C2 ... Ck 
Total per line 

ni. 

C1 n11 n12 ... n1k n1. 

C2 n21 n22 ... n2k n2. 

: : : : : 

. . . . . 

Ck nk1 nkk ... nkk nk. 

Total per 

column 

n.i 

n.1 n.2 ... n.k 
Grand total 

n 

K:class number; Ci: class I; ni.: total of pixels in Ciclass of the model map; n.i: : total of pixels in Cjclass of the reference map. 

 

The elements of the main diagonal (when i = j) represent cases where the pixels have the 

same classification in both maps while the elements out of the diagonal represent the main 

erroneous classifications.Using the error matrix elements, the following indexes were calculated; 

the Global Accuracy (GA) (BACH et al., 2006), the user accuracy (UAi) (ELLIS & PORTER-

BOLLAND, 2008), the producer accuracy (PAi) LIU et al., 2007), the Kappa ( K̂ ) 

(JENNESS&WYNNE, 2005, LI et al, 2008)and the Tau (T) (RIEGL & PURKIS, 2005), presented 

respectively from Equations (9) to (13). 

n

n

GA

k

i

ii
 1                                                                                                                             (09) 




i

ii
i

n

n
UA                                                                                                                                 (10) 

 
 
 
1Assemblage of the words Picture and Elements. Represents the smallest element of a map to which is possible to assign a value. In 
this study, the pixels will be defined as the matrix elements of the Kriger values. 
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The global accuracy (GA) is a statistical assessment used to measure the similarity between 

something real or of reference and an adjusted model, however, this measure is to be presented in 

association with other measures that take into account other values contained in the error matrix and 

not only the main diagonal elements. The user accuracy index (UAi) represents the ratio between the 

number of pixels correctly classified in class i over the total number of pixels classified in class i of 

the model map and the producer accuracy index (PAi) is an statistic that gives the probability of a 

pixel to be classified in class i if it really belong s to class i. 

The Kappa index ( K̂ ) usually ranges between 0 and 1, with values close to 1 reflecting 

greater agreement (ALMEIDA & VIEIRA, 2008; LI et al, 2008). According to the classification of 

KRIPENDORFF (1980), K̂  is classified with low accuracy if K̂ <0.67, average accuracy if 0.67 

 K̂ < 0.80 and high accuracy if K̂   0.80.The Tau index (T) is similar to Kappa, however, 

differentiates by using in its formulation the probabilities priori for each class. When these 

probabilities a priori are equal, we have pi = 1 / k, where k represents the number of classes.Another 

way to compare thematic maps is provided by measurements obtained from the confusion matrix 

per class (JENNESS & WYNNE, 2005), this matrix consists of four elements, kkk na  , 

kkkk nnb   , kkkk nnc    and )( kkkk cband  , obtained from the error matrix. The 

sensitivity index Sk = ak/(ak+ck) is a measure that indicates the probability of a pixel in the model 

map be classified as belonging to class k if it actually belongs to class k in the reference map and is 

therefore an equivalent measure to the producer accuracy. The specificity index Ek = dk/(bk+dk) 

indicates the probability of a pixel not belonging to the class kin the reference map being classified 

as not belonging to class k in the model map. The false positive rate TFPk = bk/(bk+dk) represents 

the commission errors and indicates the proportion of pixels that do not belong to class k in the 

reference map that are classified as belonging to class k in the model map. The false negative rate 

TFNk = ck/(ak+ck) represents the omission errors and indicates the proportion of pixels that belong 

to the class k of the reference map and were classified in other classes in the model map. Based on 

these measures, it is possible to compare individually the classes of the model map with the classes 

of the reference map. For a global comparison of the maps, JENNESS & WYNNE(2005) present 

the total confusion matrix, in which the values 



k

i

iina
1

          (True Positive) 

and 
  


k

i

k

ji

k

ij

ijnd
1

(True Negative) are correct estimates, whereas the values 
 


k

i

k

ij

ijnb
1

(False 

Positive) and 
 


k

j

k

ji

ijnc
1

(False Negative) are considered estimation errors.The errors of type b are 

also known as commission or overestimation errors, while errors of type c are known as omission 

errors. 
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Table 2 presents some measurements of the total confusion matrix. The total sensitivity (S) 

and the total specificity (E) index are analogous in its versions per class; with the difference that 

now they show measures for the full map. The Matthews correlation coefficient (MCC) is a discrete 

version of the Pearson correlation coefficient and its values are found in the interval [-1, 1], that is 

the value 1 is equivalent to a perfect prediction, 0 is equivalent to a random prediction and -1 means 

an inverse prediction. 

 

TABLE 2. Measures derived from total confusion matrix. 

Measures Equation 

S a/(a+c) 

E d/(b+d) 

CCM ((a∙d) –(b∙c))/((a+b)∙(a+c)∙(d+b)∙(d+c))
1/2

 

 

RESULTS AND DISCUSSION 

The samplings exploratory analysis had an wheat average yield of 1.31 t ha-1, and the 

minimum production of 0.30 t ha
-1

 and a maximum of 2.40 t ha
-1

 with standard deviation of 0.54 t 

ha
-1

 and coefficient of variation (CV) of 41.40%, considering an heterogeneity among the sample 

values of the wheat productivity. 

A variographic study was carried out using the whole sample and was concluded by the cross-

validation technique that the best fitted model was an exponential with a parameter estimation 

method of maximum likelihood (ML). 

It was conducted a variographic study   using the whole sample and found the cross-validation 

technique that best fitted model was an exponential with parameter estimation method of maximum 

likelihood (ML). Picture 2 (A) shows a graph of influence of the self-location vector |Lmax| versus i 

that it is found that the sampling elements 12 and 18 were considered  influential, and thus can 

change some kind of decision in the construction of models geostatistical and /or construction of 

thematic maps. The figure 2(B) shows the location of influential points in the monitored area. 

 

 
 

FIGURE 2. Diagnostic graph |Lmax| x i; (B) Localization of the influential points. 

 

Thus, it was decided to make a new geostatistical analysis by removing the points considered 

influential. The criterion of cross-validation indicated that the best adjusted model was the Gaussian 

with  estimation method parameters restricted maximum likelihood (RML). Figure 3 shows the 

semivariograms adjusted with and without the influential points and their parameters (φ1, φ2, a). 
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FIGURE 3. Adjusted semivariograms: (A) Complete set: exponential model – ML and (B) Set 

without influential points: Gaussian model – RML. Parameters – a: range, 
1 : nugget 

effect and 2 : contribution.  

 

It is noteworthy that despite the exponential model-ML present a greater range of spatial 

dependence(389.4 m) compared to the  Gaussian model-RML(125.6 m), both models show a strong 

spatial dependence. Figure 4 (A) shows the thematic map generated using the exponential model-

ML and Figure 4 (B) shows the thematic map generated using the Gaussian model-RML. Both 

maps were generated by ordinary kriging interpolation using a grid composed of 5423 pixels 

classified as the same caption using classes C1 = [0,371; 0,784], C2 = [0,784; 1,198], C3 = [1,198; 

1,611], C4 = [1,611; 2,024] e C5 = [2,024; 2,437]. 

 

 
 

FIGURE 4. (A) Thematic map of the wheat’s productivity using 50 sampling units in the 

interpolation and (B) Thematic map of the wheat’s productivity using 48 sampling 

units in the interpolation.  

 

The maps were constructed using five classes, this number being determined in such a manner 

that enables both a visual identification of areas of productivity as convenience to perform localized 

applications of inputs, for a large number of intervals results in very small regions, making handling 

found unfeasible. It is observed in Figure 4 that the regions of greatest difference are the regions of 

influential points, however, various other regions differ, indicating that the withdrawal of influential 

points affected the maps as a whole. To better compare the maps, it is appropriate to quantify their 

5423 pixels in an array of errors (Table 3), defining the map generated with all the points as the 

reference map and the map generated without influential points as the model map. 

 

TABLE 3. Error matrix of wheat’s productivity maps. 

 Pixels of reference map 
TOTAL   C1 C2 C3 C4 C5 

P
ix

el
s 

o
f 

m
o
d
el

 m
ap

 C1 485 272 9 0 0 766 

C2 45 1202 124 18 0 1389 

C3 7 206 1218 99 19 1549 

C4 0 0 135 616 241 992 

C5 0 0 0 135 592 727 

TOTAL 537 1680 1486 868 852 5423 

 

 In the matrix of the errors, the pixels of the reference map are measured in columns and the 

pixels of the model map are quantified in the lines. Thus, it has that from the 5423 pixels in each 

S
em

iv
ar

ia
n
ce

 

Productivity (t há
-1
) 

No modified region 
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map 537 pixels are in the first class of the reference map and 766 pixels are in the first class of the 

model map. This first information allows realizing an  estimate of the wheat production in the area 

to be compared with the actual grain yield, collected and weighed by the manufacturer, which was 

18.49 tons. The total area of 13.551 hectares was monitored and corresponds to 5423 pixels. 

Performing an arithmetic operation, it is found that the 537 pixels of  the first class of the reference 

map represent an area of 1.3419 hectares. Multiplying this area by the midpoint of the first class 

(0.5778), it is obtained the estimate of 0.78 tons. Following the same procedure for the other 

classes, it is obtained the estimated production in tons of the area in Table 4. 

 

TABLE 4. Estimated production in each subtitle class. 

Map C1 C2 C3 C4 C5 Total 

Reference 0.78 4.16 5.21 3.94 4.75 18.84 

Model 1.11 3.44 5.43 4.50 4.05 18.54 

 

It is noted in Table 4 that the production estimated by reference map was 18.84 tons, 350 kg 

above the real production and estimated production using the map model was 18.54 tons, 50 kg 

more than actual production. Thus, it is emphasized that the withdrawal of influential points was of 

great importance in the analysis because it allowed the estimated production with better precision. 

The matrix of errors is obtained from Table 3 that the EG index = 0.76, ie the overall accuracy was 

76%. This value indicates that the thematic maps differ, because if they were equal, the overall 

accuracy would be 1. Accuracy can be investigated for each of the five classes, using the contents 

of Table 5. 

 

TABLE 5. User (AUi) and producer (APi) accuracy indexes 

 C1 C2 C3 C4 C5 

AUi 0.6432 0.8654 0.7863 0.6210 0.8143 

APi 0.9032 0.7155 0.8197 0.7097 0.6948 

 

It is noted from Table 5 that the AU4 index indicates that 37.9% of the pixels that belong to 

the class C4 on the model map belong to other classes in the reference map and the index AP4 

indicates that the probability of a pixel to be classified in class C4 of the model map if it really 

belongs to this class in the reference map is 0.7097. Using the elements of Table 3 calculated the 

Kappa index = 0.69 and considering the equality of the a priori probabilities of each class it was 

calculated the index Tau T = 0.70. These indexes were close, indicating an average accuracy of the 

maps, according to the classification of the Kappa (KRIPENDORFF, 1980). Table 6 presents the 

measurements of the confusion matrices of each class Ci. It stands out with the class C5 is the lowest 

sensitivity and highest specificity, so the probability of a pixel to be classified in class C5 on the 

model map if this pixel belongs to the class C5 of the reference map, is the lowest if compared to 

other classes and the probability of a pixel of the model map does not present yield in the range 

[2.024, 2.437] as the pixel has no productivity in the same range reference map is greater when 

compared with other classes. 

 

TABLE 6. Measures obtained from the confusion matrix of each class. 

Classes Sk Ek TFPk TFNk 

C1 0,9032 0,9425 0,0575 0,0968 

C2 0,7155 0,9500 0,0500 0,2845 

C3 0,8197 0,9159 0,0841 0,1803 

C4 0,7097 0,9175 0,0825 0,2903 

C5 0,6948 0,9705 0,0295 0,3052 
Sk:Sensitivity, Ek:Specificity, TFPk: False positive rate e TFNk:False negative rate. 
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 It is observed that the biggest mistake of over estimating (TFPk) occurs in the class C3 and the 

largest error of omission (TFNk) occurs in the class C5. Using the elements of the matrix of errors in 

Table 3, it is obtained the following complete confusion matrix: a = 4113, b =1310, c =1 310 and d 

=20 382. Using these values obtains S =0.76, E =0.94 and CCM= 0.70.An important feature of the 

total sensitivity index (S) is that it equals the rate of global accuracy (GA), so the overall capacity 

on the model map correctly classified pixels is 0.76. The total level of specificity (E) indicates that 

the capacity on the model map to avoid incorrect treating is 0.94.The correlation of Matthews’s 

coefficient (CCM) obtained was 0.70 and as this index is value 1 if the maps are the same, it 

appears that the model map differs as compared with the generated map with all points. 

 An important issue that must be addressed is to define a priori the number of classes, as the 

increase of these implies a decrease in the similarity between the maps. For example, considering 7, 

10, 15 and 20 classes, it is obtained respectively indices of GA= 0.72, GA =0.61, GA = 0.50, GA 

=0.40 that are smaller than the overall accuracy considering five classes. Considering that one of the 

functions of the thematic map is to indicate locations for a localized management, it is important to 

choose a number of classes that makes this work possible. MONMOIER (1993) recommends that 

the number of ideal classes is around five classes and never more than seven classes, because it is 

preferable to represent with few  groups with symbols of areas  graphically stable  rather than risk a 

fine representation of difficult visualization. 

 

CONCLUSIONS 

The results showed that the measures derived from the error matrix if the confusion matrix is 

appropriate to compare thematic maps, as they provide global values and still allow making 

comparisons by class. Considering that the wheat production is estimated by the model map close to 

actual production obtained, it is concluded that it is fundamentally important to carry out research 

on influential points, and the technique of local influences appropriate for that function. 
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