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ABSTRACT 

Extreme rainfall can lead to heavy damage and losses, such as landslides, floods and 
agricultural productivity as well as the loss of human and animal lives. To mitigate these 
losses, water resources management policies are needed, among other goals, to study and 
predict the frequency of such events in a given region to minimize their harmful effects. 
The present study investigated the Generalized Extreme Value (GEV) probability 
distribution applied to the annual maximum daily precipitation data from rainfall stations 
in the southeastern Brazil. A total of 1,921 rainfall stations were considered, among which 
the stations with at least 15 years of uninterrupted observations were selected. 
Subsequently, the stationarity and adherence were tested. GEV probability distribution 
parameters were then estimated. The results enabled satisfactory spatial interpolation by 
ordinary kriging and the generation of maps of the distribution parameters. The 
semivariogram model with the best fit to the three GEV distribution parameters was the 
exponential model. 

 
INTRODUCTION 

Extreme rainfall events can cause substantial human 
and material losses, especially from landslides (Assis Dias 
et al., 2018; Kumar et al., 2017) and floods (Assis Dias et 
al., 2018; Hu et al., 2018), leading to crop production losses 
(Lunt et al., 2016) and increased water-borne diseases 
(Phung et al., 2017). 

To mitigate these losses, it is necessary to improve 
public policies on urbanization and the environment 
considering the particularities of each region. For this, it is 
necessary to analyze the frequencies with which such events 
occur in a given region in order to characterize it 
analytically. The occurrence of maximum rainfall events 
has a strongly random behavior in time and space; therefore, 
a stochastic approach is indispensable to analyze it. 

One strategy to study extreme rainfall events is to 
use a given probability distribution to model the frequency 
of observed rainfall data. The use of these distributions is 
crucial for the prevention of disasters involving extreme 
rainfall (Yuan et al., 2018). Several theoretical distributions 
are used in the literature to study maximum extreme events, 
including the Generalized Extreme Value probability 
distribution (GEV), which has aroused the interest of many 
researchers. 

Santos et al. (2016) used the GEV distribution in 
daily precipitation series of homogeneous regions of the 

Brazilian Amazon. The authors verified that the distribution 
satisfactorily modeled the precipitation data using 
Kolmogorov-Smirnov test. Pedron et al. (2017) used the 
GEV distribution to characterize extreme events of daily 
precipitation in the city of Curitiba, Brazil, and observed an 
increase in the frequency of extreme events, considering the 
variation of the distribution parameters. 

Fischer et al. (2018) investigated the seasonal cycle 
of total monthly rainfall maxima in Germany by modeling 
the GEV distribution and found that the model was 
appropriate for most of the rainfall stations used. The 
cumulative distribution function of the GEV distribution 
described by the authors was: 

    F(x: α, β, κ) = 𝑒
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The function is valid when 1 + κ ቀ
௫ିஒ

஑
ቁ > 0 and x is 

the studied variable; β is the position parameter; -∞ < β < 
∞; α is the scale parameter; α > 0 and κ is the shape 
parameter; and/or -∞ < κ < ∞. According to Pedron et al. 
(2017) and Katz (2010), the position parameter represents 
the location of the distribution peak relative to the center; 
the scale parameter represents the size of the deviation 
relative to the position parameter; and the shape parameter 
models the tail decay rate of the distribution. 
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GEV distribution encompasses three types of 
distribution depending on the value of the κ parameter 
(Fischer et al., 2018; Shamir et al., 2013). When this 
parameter is positive (κ > 0), the distribution is called a 
Frechet, or Type II, distribution, and the tail decay is slower 
and gradual. For a negative shape parameter (κ < 0), the 
distribution is called Weibull, or Type III, distribution. For 
the parameter with limit κ → 0, the distribution is called 
Gumbel distribution for maxima, or Type I, distribution, 
and the tail decay is more pronounced. 

Fischer et al. (2018) present the inverse of the 
cumulative GEV distribution for the estimation of quantiles 
at the given return period as: 

𝑥௣ = ቊ
𝛽 −

ఈ

ச
[1 − 𝑦௧

ି ச] 𝑘 ≠ 0

𝛽 − 𝛼𝑙𝑜𝑔(𝑦௧) 𝑘 → 0
ቋ                            (2) 

Where,  

xp is the quantile associated with the return time T, and 

𝑦௧ = − log ቀ
ଵ

்
ቁ  

 
After selecting a specific distribution and estimating 

its respective parameters, it is possible to determine the 
behavior of the parameters by interpolating the values in 
space if the number of stations is enough for the variable to 
present a spatial structure. Ordinary kriging is a type of 
spatial estimator that is unbiased and with minimum 
variance (Landim & Yamamoto, 2013), which has been 
widely used in the study of rainfall, yielding good results 
(Seo et al., 2015; Adhikary et al., 2016; Borges et al., 2016). 

Batista et al. (2018) used ordinary kriging with 
semivariogram estimators to determine the performance of 
the mean annual total rainfall mapping for the state of Minas 
Gerais and observed good performance for all estimators, 
with the semivariance estimator NEW-1 having the best 
performance. 

Adhikary et al. (2016) compared the methods of 
ordinary kriging, inverse square distance and kriging with 
genetic algorithms to spatially interpolate the monthly and 
annual rainfall data for the Yarra River basin in Australia. 
The results indicated that the methods based on kriging 
clearly outperformed the inverse square distance method. 
Among all methods based on kriging, ordinary kriging 
resulted in better estimates. 

The objective of the present study was to investigate 
the fit of the GEV to the annual maximum daily rainfall data 
for rainfall stations in southeastern Brazil, considering the 
stationarity and adherence of the data. The (α), (β) and (κ) 
parameters of the GEV distribution were estimated for each 
station using the L-moments method. Next, variograms of 
the parameters were fitted using spherical, Gaussian and 
exponential models and maps were developed for the 
parameters using ordinary kriging for spatial interpolation. 
A quantile map with a return period of 100 years was 
generated to identify the areas with the highest expected 
daily annual precipitation for the southeastern Brazil. 

 
MATERIAL AND METHODS 

Spatial distribution of rainfall stations and estimation of 
GEV parameters 

Data were obtained from the National Water 
Resources Information System (SNIRH) made available by 
the National Water Agency. After obtaining these historical 
series, the highest daily rainfall value of each year was 
selected for each station, and a new historical series of 
annual maximum daily rainfall was constructed for the 
available stations in the southeastern Brazil. 
The spatial distribution of the rainfall stations provided by 
SINRH (Figure 1) indicates the locations of the data 
collecting stations, and the number of rainfall stations per 
State and their respective areas are shown in Table 1. 
 

 
FIGURE 1. Geographical distribution of rainfall stations in southeastern Brazil.  
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TABLE 1. Rainfall stations by state. 

State Number of rainfall stations(a) Area(b) (km2) Density (km2 per station) 
MG 526 586,522 1,115 
SP 1,193 248,222 208 
RJ 119 43,780 367 
ES 83 46,095 555 

Total 1,921 - - 
*Source: (a) National Water Agency (ANA, 2013), (b) Brazilian Institute of Geography and Statistics (IBGE, 2013). 
 

The state of São Paulo has the highest number of 
rainfall stations (1,193 stations). Espírito Santo has the 
lowest number of stations, totaling 83, while Minas Gerais 
and Rio de Janeiro have 526 and 119 stations, respectively 
(Table 1). 

The first criterion for selecting the stations was the 
observation period, which was equal to or greater than 15 
uninterrupted years. The stationarity was then verified using 
the Spearman correlation test for each station. The 
Spearman correlation test is frequently used for trend 
checking in hydrological series (Fathian et al., 2015). 

Naghettini & Pinto (2007) and Shamir et al. (2013) 
clarify that there are different ways of estimating the GEV 
distribution parameters, including the moments method, the 
L-moments method and the maximum likelihood method. 
In this study, these parameters were estimated using the L-
moments method (LMM) following the recommendations 
of de Filho et al. (2017) and Junqueira Júnior et al. (2015), 
considering that the other methods can generate results 
unreliable for a small sample size. Since the majority of 
historical hydrological series in Brazil with reliability may 
be considered small (less than 40 years), the LMM can 
estimate better results. The adherence of the GEV 
distribution to each station was tested using the Filliben test 
(Filliben, 1975). After obtaining the parameters of the 
distribution, exploratory analysis of the data was conducted, 
followed by semivariogram modeling. 

Exploratory analysis, semivariogram construction and 
spatial interpolation 

To model a semivariogram, exploratory analysis was 
performed by evaluating frequency histograms, trend, 
boxplots and experimental semivariograms. 

The exploratory analysis was initiated by examining 
histograms of the values of each GEV distribution 
parameter together with the asymmetry values of the data. 
Kerry & Oliver (2007a) recommend verifying the 
asymmetry value of the dataset as a standard practice for 
exploratory data analysis in geostatistics. If the asymmetry 
value is between -1 and 1, the raw data can be used, but if 
the value is outside this limit, the histogram must be 
investigated. 

The existence of outliers was verified using boxplots 
to represent the variation in the observed data to locate the 
outliers of the dataset. The possible occurrence of spatial 
trends was verified, and the exploratory data analysis was 
performed on the spatial structure of the GEV distribution 
parameters using the exponential, spherical and Gaussian 
semivariogram models. The fit of the semivariograms 
models, the parameters (sill, range and nugget effect) were 
obtained using the weighted least squares method as 
described in Mello et al. (2005). After establishing the 
theoretical semivariogram model, the degree of spatial 
dependence (DSD) was evaluated. This index was 

measured according to the study of Cambardella et al. 
(1994): 

 DSD = ቀ
େଵ

େଵାେ଴
ቁ                                                         (3) 

Where,  

C1 is the contribution, and  

C0 is the nugget effect of the semivariogram.  
 

According to the author, if DSD < 25%, the degree 
of spatial dependence is considered weak; for DSD ≥ 25% 
and DSD < 75%, the spatial dependence degree is moderate; 
and if DSD ≥ 75%, there is a strong spatial dependence 
degree. After adjusting the theoretical model, the kriging 
method was applied to estimate non-sampled values. 
Goovaerts (1997) defines kriging as a family of generalized 
least squares regression algorithms. The ordinary kriging 
method (OK) uses the spatial continuity between 
neighboring samples to estimate values at any position 
within the space, with no trend and with minimal variance. 
The DSD and the results of the validation analyses were the 
criteria considered in choosing the best model. According 
to Carvalho et al. (2012), validation consists of the 
separation of a set of data from the sample that will not be 
part of the interpolation process. For the present study, 100 
stations were considered. After the theoretical 
semivariograms fitting, the values of the separated stations 
were then estimated using each one the models. Therefore, 
the values of the validation data were compared with the 
values estimated by the model. The reduced mean error 
(RME) and the error standard deviation (ESD) were used 
for this comparison. 

For calculation of the RME and ESD, Junqueira 
Júnior et al. (2008) used: 

RME =
1

n
. ෍  

(z(x୧) − z∗(x୧))

σ(x୧)

୬
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                              (4) 
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                        (5) 

Where, 

n is the number of validation data;  

z(xi) is the value observed at point i;  

z*(xi) is the estimated value for point i, and  

𝜎 is the standard deviation of kriging. RME should 
be 0 and ESD should be 1 to obtain ideal results. 
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The best semivariogram model was then selected 
and the thematic maps of the GEV distribution parameters 
were generated. The quantiles of intense rainfall were 
estimated and associated with the return period for the 
southeastern Brazil. To identify areas with higher 
vulnerability to extreme rainfall, a map with the annual 
maximum daily precipitation quantiles associated with a 
return period 100 years was created using the cumulative 
inverse function of the GEV distribution (Equation 2), 
based on the values of the parameters obtained for each 
station. After obtaining the quantiles for each station, a new 
spatial interpolation was performed using ordinary kriging 
to individualize the extreme values and obtain a thematic 
map of the study region. 
 
RESULTS AND DISCUSSION 

The minimum rainfall station density based on 
physiographic units recommended by the World 
Meteorological Organization (WMO) (1994) is shown in 
Table 2. 

 
TABLE 2. Densities recommended by the WMO. 

Physiographic unit 
Minimum density per station  

(km2 per station) 
Coastal areas 900 

Mountainous areas 250 

Plains areas 575 

Hilly areas 575 

Source: WMO (1994) 

The state of São Paulo has diverse physiographic 

units throughout its territory and the density of rainfall 

stations meets the most restrictive criteria; therefore, it can 

be concluded that this state meets the WMO 

recommendations (Table 2). The states of Rio de Janeiro 

and Espírito Santo meet the criteria of hilly, plains and 

coastal areas. The state of Minas Gerais, despite having 526 

stations, does not meet the recommendations since the 

density of rainfall stations is determined by one station per 

each 1,115 km2. 

Observation time records 

The histogram in Figure 2 and Table 3 present the 

extension of the data of the rainfall series for the 

southeastern Brazil. The standard deviation is high for the 

region over the 18-year period, indicating dispersion in the 

data relative to the mean, which is evident in the histogram 

based on the nonuniformity of the data. On average, the 

regions presented 37 years of observation, with the highest 

mean value for the state of São Paulo and the lowest value 

for the state of Minas Gerais. 

Considering the criterion of 15 years of 

uninterrupted observations, only 243 stations were 

discarded, with 1,678 stations remaining for the next step. 

 

FIGURE 2. Extension of the rainfall series for the southeast region. 
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TABLE 3. Descriptive statistics of the data extension of the rainfall series for the southeastern Brazil. 

Station Mean number of observations (years) Standard deviation 1st Quartile 3rd Quartile 
Minas Gerais 32 19.51 17 45 

São Paulo 41 16.18 28 51 
Rio de Janeiro 34 22.79 19 56 
Espírito Santo 37 16.5 15 66 

Southeast region 37 18.8 25 52 
 
Estimation of the GEV parameters for the stations 

Using the LMM method, the scale, position and 
shape parameters were estimated for the 951 stations 
distributed in the southeastern Brazil. The results of the 
estimation indicated scale values ranging from 9.76 to 
27.89; for the position parameter, the range was 81.13 to 
58.54, and for the shape parameter, the range was -0.114 to 
0.263. 

Analysis of stationarity and adherence 

The Spearman correlation test was performed using 
a 5% significance level, which enabled the identification of 
the stations that did not present stationarity. According to 
the results presented in Table 4, a total of 362 stations were 
nonstationary. 

TABLE 4. Result of the evaluation of the stationarity of 
rainfall stations by the Spearman test. 

State Nonstationary stations 
Minas Gerais 160 

São Paulo 142 
Rio de Janeiro 28 
Espírito Santo 32 

Total 362 

Nonstationary stations were discarded in the 

subsequent analyses. The analysis of adherence was 

performed next. According to the Filliben test (Filliben, 

1975), the data from 365 stations could not be represented 

by the GEV; therefore, they were also discarded, leaving the 

data for 951 rainfall stations for the exploratory analysis 

step. 

Exploratory analysis 

The histograms of the GEV parameters (Figure 3) 

show estimated asymmetry values of 0.52, -0.13 and 0.38 

for the alpha, beta and kappa parameters, respectively, 

which imply that there was no need for data transformation 

according to Kerry & Oliver (2007b). By analyzing the 

histogram of the shape parameter (Figure 3c), a range of 

values far from the data mass is observed, indicating 

possible existence of outliers, which was confirmed by 

observing the values shown in boxplots (Figure 4). 
 

 

 
(a) 

 
(b) 
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(c) 

FIGURE 3. Histograms of the parameters of the GEVPD. (a) scale parameter α; (b) position parameter β; (c) shape parameter κ. 

 
(a) 

 
(b) 

 
(c) 

FIGURE 4. Boxplots of the scale (a), position (b) and shape (c) parameters of the GEV distribution, with their outlier because 
the analyses of the boxplots enabled the detection of possible outliers, it was determined that the presence of outliers was 
detrimental to semivariogram modeling, as observed in Feld et al. (2016), Duggimpudi et al. (2017), St. Luce et al. (2014), 
Mingoti & Rosa (2008), Tobin et al. (2011) and Teixeira & Scalon (2014). These authors indicate that discrepant outliers can 
destabilize the computation of the parameters of the theoretical semivariogram, making the data spatialization unfeasible. It was 
therefore decided to remove the outliers from the dataset, leaving the values from 901 stations for the next step. 
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Spatial trend analysis 

Based on the analysis of Figures 5, 6 and 7, there is no spatial trend, i.e., the parameters are distributed randomly in space. 
 

 

                                                                   (a)                                                                          (b) 

FIGURE 5. Trend charts for the α parameter of the GEV distribution in Albers conic equal-area projections in the south-north 
(a) and west-east (b) directions. 
 

 

                                                               (a)                                                                       (b) 

FIGURE 6. Trend charts for the β parameter of the GEV distribution in Albers conic equal-area projections in the longitudinal 
(a) and latitudinal (b) directions. 

 

FIGURE 7. Trend charts for the κ parameter of the GEV distribution in Albers conic equal-area projections in the longitudinal 
(a) and latitudinal (b) directions.  
 
 
 
 



Marcelo L. Batista, Gilberto Coelho, Carlos R. de Mello, et al. 102 

 

 
Engenharia Agrícola, Jaboticabal, v.39, n.1, p.97-109, jan./feb. 2019 

Modeling the spatial continuity of the data 

The spatial continuity of the data was modeled after exploratory analysis and verification of the nonoccurrence of trends 
in the data, followed by ordinary kriging interpolation. The experimental and theoretical semivariograms for the exponential, 
Gaussian and spherical models for the three GEV parameters are shown in Figure 8.    

 

 
(a) 

 
(b) 

 
(c) 

FIGURE 8. Experimental and theoretical semivariograms for the α (a), β (b) and κ (c) parameters of the GEV using the 
exponential, Gaussian and spherical models, respectively. 
 

The models presented a good visual fitting, 
indicating spatial structure. The values of the nugget effect, 
contribution and range for each fitted model as well as the 
DSD are shown in Table 5. The GEV parameters showed 
significant spatial dependence, i.e., at least one degree of 
spatial dependence (moderate). 

The exponential model presented the highest DSD 
for the three studied parameters. In addition to presenting a 
higher spatial dependence degree, the model showed a 

larger range and a lower nugget effect for the three 
parameters. These results indicate that the exponential 
model is a valid choice. 

The results show that the exponential model 
provided reduced mean error values close to zero and an 
error standard deviation close to 1. The spherical and 
Gaussian models also presented small values; however, the 
exponential model was chosen because it presented the best 
spatial structure. 
 

104 
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TABLE 5. Validation results. 

Model 
Validation 

RME ESD 

Spherical 0.0147 0.93 

Gaussian 0.0179 0.91 

Exponential 0.0138 0.96 

Spherical -0.17 1.12 

Gaussian 0.52 1.82 

Exponential -0.12 1.07 

Spherical -0.03 1.06 

Gaussian 0.06 1.25 

Exponential 0.05 0.97 

The thematic maps of the GEV parameters were generated after choosing the exponential model. 
 
GEV distribution parameters mapping in southeastern Brazil 

The maps of the scale, position and shape parameters of the GEV distribution in the southeastern Brazil are shown in 
Figures 9, 10 and 11, respectively. 

 

 

FIGURE 9. Spatial interpolation of the scale parameter (α) by ordinary kriging. 
 

The spatialization of the alpha parameter indicates 

the differences between the regions. Triângulo Mineiro 

region and a small strip northwest of the state of São Paulo 

presented the highest values for this parameter; a region 

with slightly lower covers the northwest, north and 

northeast of Minas Gerais and north of Espírito Santo. The 

central region of Minas Gerais and much of the north of the 

state of Rio de Janeiro had, for the most part, intermediate 

alpha values, while the southern region of São Paulo had the 

lowest values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Marcelo L. Batista, Gilberto Coelho, Carlos R. de Mello, et al. 106 

 

 
Engenharia Agrícola, Jaboticabal, v.39, n.1, p.97-109, jan./feb. 2019 

 

 

FIGURE 10. Spatial interpolation of the position parameter (β) by ordinary kriging. 
 

 

FIGURE 11. Spatial interpolation of the shape parameter (κ) by ordinary kriging. 
 
The spatial distribution of the beta parameter is 

shown in Figure 10. The lowest beta values were located in 
the northeast region of Minas Gerais and in a portion of the 
southern border between Minas Gerais and São Paulo 
States. The intermediate values covered a broad area of 
southeastern Brazil, while the highest values were located 
in three distinct regions: Triângulo Mineiro, southern São 
Paulo and a small portion towards to the eastern Minas 
Gerais. 

Most shape parameter values (κ) were positive, 
resulting in a Type II GEV distribution (Fréchet). Following 
the interpretation of the GEV parameters proposed by Katz 
(2010), the shape parameter was related to the asymmetry 
of the observed data, and analysis of the map indicates that 

greater spatial variation in this parameter relative to the 
others was observed. 

In addition, this result corroborates those found by 
Papalexiou & Koutsoyiannis (2013), who tested which of 
the three GEV distribution types was best fitted to the 
annual maximum daily rainfall data of 15,137 rainfall 
stations around the world. The authors found that the Type 
II distribution (Fréchet) was better fitted to the observed 
data. 

According to values in Table 6, only 2.78% of the 
area of the map shows a negative shape parameter, i.e., it 
has a Type III (Weibull) distribution. The class 
corresponding to 25.89% of the map area has values close 
to zero, which indicates that these regions approximate the 
Type I (Gumbel) distribution. 
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TABLE 6. Classes of the shape parameter with their areas. 

Shape parameter class (𝜅) Map area (%) 
-0.114 to 0 2.78 
0 to 0.0826 25.89 

0.0826 to 0.1057 31, 08 
0.1057 to 0.1288 23.76 
0.1288 to 0.1857 13.09 
0.1857 to 0.264 3.40 

 
A 100-year return period map was created using the values of the parameters in the maps and applying the map algebra 

technique. This procedure was performed to identify the areas with the highest occurrences of maximum daily rainfall. The map 
is shown in Figure 12. 

 

 

FIGURE 12. Quantile associated with 100-year return time. 
 
Three regions were identified according to the 

delimitation shown in Figure 12. Region I, which covers the 
northern Minas Gerais, has a semi-arid rainfall regime, with 
little water vapor in the atmosphere, convective events and 
frontal systems on a smaller scale. Region II has the highest 
maximum rainfall quantiles. These high values may be the 
result of several factors, both at the micro- and macroscales. 
A local scale factor is the orographic influence, consisting 
of the ascent of moist and warm air masses over natural 
barriers that cool and condense as they gain altitude, in 
addition to the milder temperature, which favors cloud 
formation (Mello & Viola, 2013). The main orographic 
elements that contribute to these effects are the Canastra and 
Espinhaço Mountains, located to the west and east of Minas 
Gerais, respectively, and the Mar and Mantiqueira 
Mountains, which are close to the sea, causing very intense 
rains in the coastal region. Another influential factor is the 
mesoscale convective complexes (MCC), as described by 

Reboita et al. (2010), which consist of lines of instability 
with water vapor generated in the Amazon region and 
spread throughout most of the South American continent in 
the summer. 

A large-scale factor is the South Atlantic 
Convergence Zone (SACZ), a typical summer phenomenon 
in South America. Its main characteristic is the persistence 
of a northwest-southeast oriented cloud cover, and it plays 
a predominant role in the rainfall regime in the region where 
it occurs, causing high rainfall rates (Carvalho et al., 2012). 
This range of high values presented in the maps is close to 
the results of Carvalho et al. (2012), who studied extreme 
rainfall events related to the SACZ. It is important to 
highlight the factors associated with the SACZ and its 
relationship with other global climatic phenomena, such as 
El Niño and La Niña. According to Kodama (1992), the 
SACZ occurs mainly between 10° and 20° latitude, thus 
affecting much of the southeast region of Brazil. 
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For Region III, which encompasses Rio de Janeiro 
and the area west of São Paulo, the expected rainfall values 
are lower than those of Region II. According to Teixeira 
(2010), the frontal systems are very active in this region, 
with the formation of long rainfall events with low 
intensities and the possibility of convective rainfall 
formation. 
 
CONCLUSIONS 

The annual maximum daily rainfall data from 951 of 
the 1,921 analyzed stations are stationary according to the 
Spearman test criterion and are adequate in relation to the 
GEV distribution according to the Filliben test. The spatial 
correlation of the GEV parameters using semivariograms 
was determined, and the shape parameter presented the 
lowest spatial continuity. The associated quantile map with 
a 100-year return period indicates areas of high maximum 
daily rainfall values. These areas require greater attention in 
development projects that use water resources directly and 
indirectly. 
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