
 

Engenharia Agrícola 
 

ISSN: 1809-4430 (on-line) 

www.engenhariaagricola.org.br 
 

 

 

2 Universidade de São Paulo/ Escola Superior de Agricultura "Luiz de Queiroz"/ Piracicaba - SP, Brasil. 
3 Universidade de São Paulo/ Faculdade de Zootecnia e Engenharia de Alimentos/ Pirassununga - SP, Brasil. 
Received in: 2-9-2018 
Accepted in: 2-13-2019 

Engenharia Agrícola, Jaboticabal, v.39, n.2, p.240-247, mar./apr. 2019 

Doi: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v39n2p240-247/2019 
 

A MEASUREMENT SYSTEM BASED ON LiDAR TECHNOLOGY TO CHARACTERIZE THE 
CANOPY OF SUGARCANE PLANTS 

 
Tatiana F. Canata1*, José P. Molin2, Rafael V. de Sousa3 

 

1*Corresponding author. Universidade de São Paulo/ Escola Superior de Agricultura "Luiz de Queiroz"/ Piracicaba - SP, Brasil.  
E-mail: tatiana.canata@usp.br | ORCID ID: https://orcid.org/0000-0003-3255-5361 

 
 
KEYWORDS  

canopy geometry, 
instrumentation, laser 
sensor, remote 
sensing. 

ABSTRACT  

Laser sensor applications associated with LiDAR (Light Detection and Ranging) 
technology on platforms allow the evaluation of crop and forest biomass in a non-invasive 
way. This study presents the development of a measurement system based on LiDAR 
technology aimed at the proposed assessment of the height of sugarcane plants during the 
pre-harvest period. A laser sensor, a GNSS (Global Navigation Satellite System) receiver, 
and an inertial unit compose the measurement system. The equipment was integrated with 
a computer for data acquisition and installed on an agricultural tractor platform. The 
GNSS receiver with a real-time kinematic signal was synchronized to the laser sensor to 
obtain the point cloud and to the inertial unit to evaluate the intensity of the vibration from 
platform oscillation. Data acquisition was carried about 10 days before sugarcane harvest. 
The developed steps of acquisition and data processing enabled the generation of point 
clouds with a density of about 2,000 points m−² and the extraction of metrics related to the 
height of sugarcane plants. The influence of vibration in the dataset was more significant 
in one of the experimental fields due the high-amplitude spectral power observed. 

 
 
INTRODUCTION 

Agricultural practices related to precision 
agriculture (PA) generally require a higher sampling range 
of variables and greater precision in the execution of tasks 
than are required by traditional agriculture. PA, as an 
agricultural production management system aimed at 
optimizing production through variability management and 
its associated factors, has demanded sensing and 
communication technologies to allow the improvement of 
its costs and operational efficiency (Molin et al., 2015). 

Brazil is the largest sugarcane producer and 
exporter of its derivative products. The current cultivated 
area of sugarcane in the country is 9.05 million hectares 
with an average yield estimated at 72.70 t ha−1 for the 
2018/19 season. Sugar production is estimated at over 
35.48 million tons, and ethanol production is estimated at 
28.16 billion liters (CONAB, 2018). The Brazilian 
adoption of PA is still restricted to the employment of 
autonomous steering systems in sugarcane harvesters 
(Silva et al., 2011). 

The dimension and complexity of the production of 
sugarcane requires the development and application of 
remote sensing technologies related to agricultural 
management, such as planting techniques, cultivation, and 

harvesting, which must be georeferenced and 
economically viable. Among the remote sensing 
techniques, active optical sensors involve a form of 
prediction of sugarcane biomass and nitrogen rates at 
variable rates during the development stage (Amaral & 
Molin, 2011; Portz et al., 2012). 

The applications of unmanned aerial vehicles 
(UAVs) with embedded digital cameras and GNSS 
(Global Navigation Satellite System) receivers have 
contributed to monitoring agricultural crops in real time 
(Díaz-Varela et al., 2015). Souza et al. (2017) used an 
UAV with an embedded digital camera to generate point 
clouds regarding sugarcane vegetation. However, their 
main limitation is the high cost associated with electronic 
devices of lower weight. Additionally, there is a higher 
signal saturation trend for such sensors in advanced 
production conditions of grassland crops (Povh et al., 
2008). 

Scanning devices have been investigated for 
measuring geometrical parameters, which are associated 
with variations in its potential yield, and biophysical 
processes affecting the development of the plants (Mulla, 
2013; Rosell & Sanz, 2012). Currently, the electronic 
devices used for this purpose are ultrasonic, laser, and 
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radar sensors. Portz et al. (2012) found that the height of 
sugarcane stems identified by ultrasonic sensors during 
their development stage is associated with the biomass 
content, but the operating performance of this type of 
sensor limits its use at large scale. 

To overcome such challenges, some studies focused 
the use of scanning systems based on LiDAR (Light 
Detection and Ranging) technology for the 
characterization of perennial crops due its ability to detect 
spatial variability of the crop with high resolution and 
repeatability (Arnó et al., 2013). The first prototypes of the 
terrestrial platforms with this type of embedded 
technology are reported in Precision Horticulture to 
identify the spatial variability of orchard yield (Escolà et 
al., 2016). 

Laser sensors are embedded in terrestrial or aerial 
platforms to estimate crop and forest biomass (Andújar et 
al., 2016; Li et al., 2014; Silva et al., 2016), to generate 
three-dimensional (3D) models in citriculture (Colaço et 
al., 2017), to measure fluids derived from spraying 
(Gregorio et al., 2016), and to detect obstacles using 
autonomous vehicles (Bayar et al., 2016), among others. 
This device emits pulses in the form of light beams to 
determine the distance between the sensor and the target 
object. The main result provided by LiDAR is the point 
cloud, which, after processing, allows the construction of a 
3D model of the target object. The measurement systems 
based on laser sensors infer the geometric characteristics 
of the plants with sufficient accuracy to guide several 
agronomic practices (Mendez et al., 2012). 

The objective of this study was to develop a 
measurement system to acquire and process LiDAR data in 
order to obtain heights of sugarcane plants in a canopy in 
the pre-harvest period. The paper elucidates the 
components used to elaborate the measurement system 
based on LiDAR and its processes to acquire and process 
field data. 

 
MATERIAL AND METHODS 

Measurement system 

The measurement system consists of a laser sensor, 
GNSS receivers, and an inertial unit to georeference the 
canopy data from sugarcane plants and to quantify the 
influence of the vibration on the performance of LiDAR 
under field conditions. A laser sensor, SICK© model 
LMS200, with two-dimensional (2D) scanning was used, 
with no need of direct contact with the target object. A 
single-pulse beam (905 nm) was emitted in the 2D plane 
with a scanning angle set to 180.0° (181 measuring 
angles), angular resolution of 1.0°, scanning range of 8.0 
m, and frequency of 75 Hz. The return time of the light 
beam (time of flight) to the device determines the distance 
between the target object and the sensor instantly. 

A pair of GNSS receivers, TOPCON© model GR3, 
were used with real-time kinematic differential correction 
and L1/L2 signals, with an accuracy of 0.01 m, set to a 
frequency of 10 Hz in combination with other sensors for 
georeferencing measurements (Feng & Wang, 2008). The 
synchronization established between the GNSS receiver 
and the laser sensor allowed the registration of the position 
for each point reached by the emitted light beam (Del-
Moral-Martinez et al., 2015). 

A static orientation sensor, SBG Systems© model 
IG-500N, was aligned with the laser sensor and the GNSS 
receiver to quantify the influence of mechanical vibration 
and oscillation in the dataset under field conditions. The 
data collection rate was set to 66 Hz, and the raw data 
corresponded to Euler angles with a resolution of 0.05°. 

Data acquisition and processing 

The equipment was installed at 5.0 m above the 
ground on a metallic support structure mounted on an 
agricultural tractor traveling at a constant speed of 1.0 m 
s−1. To ensure the stability of the equipment during the 
data acquisition, a structure was rigidly coupled to the side 
of the tractor. Figure 1 illustrates the mounting of the 
sensors on the tractor coupled to the metal structure. 

 

 

FIGURE 1. Equipment used in the measurement system 
based on LiDAR 

 
Figure 2 illustrates the assignment configuration of 

the measurement system, where the x and y axes represent, 
respectively, the direction of movement of the agricultural 
tractor and the direction of scanning by the laser sensor. 
The coordinate z is calculated from the measured angle () 
indicated by the measurement system and the distance 
from the sensor to the ground (H). From these settings, 
multiple readings of the canopy plants are recorded while 
the tractor is moving, so each reading represents a 
longitudinal section of the canopy plants in the travel 
direction. 

 

 

FIGURE 2. Measurement system configuration. Adapted 
from Selbeck et al. (2010) 
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The distance values provided by the laser sensor are 

in the form of polar coordinates, which are converted into 

cartesian coordinates (XYZ) by the equations: 

X = dij sin(ij)         (1) 

 

Y = yij             (2) 

 

Z = H – dij cos(ij)         (3) 

Where,  

ij is the position of the points hit by the laser beam;  

X is the Cartesian coordinate on the x axis of the 

point ij (m);  

dij is the distance between the laser sensor and the 

target (m);  

ij is the measurement angle from the laser sensor (°);  

Y is the cartesian coordinate on the y axis of the 

point ij (m);  

yij is the direction of scanning by the laser sensor;  

Z is the cartesian coordinate on the z axis of the 

point ij (m), and  

H is the height of the laser sensor in relation to the 

ground (m). 

 

The data acquisition of the laser sensor was 

synchronized with the GNSS receiver through a 

connection to a toughbook PANASONIC© model CF-19. 

For transferring laser sensor data to the computer, a RS-

422 communication protocol with a baud rate set to 500 

kbps was used. The data transfer from the GNSS receiver 

used the protocol NEMA 0183 at a baud rate of 115200 

(RS-232). The logic program of data acquisition was 

developed in Java language in Processing 2.2.1 software 

(Fry & Reas, 2014), where it is necessary to indicate the 

serial communication port (COM) in which the devices are 

connected, and the data transmission rate set for each 

device. 

The LiDAR data obtained by the measurement 

system were stored in text format containing the 

georeference (latitude, longitude and elevation) and the 

distance between the laser sensor and the canopy plants at 

each measurement angle. The post-processing of the 

dataset was developed in RStudio 1.0.136 software          

(R Core Team, 2015), indicating the height of the laser 

sensor (H) in relation to the ground. Figure 3 shows the 

flowchart related to the processing of laser sensor and 

GNSS receiver data. 

 

FIGURE 3. Programming routine for processing LiDAR data. 
 
Due to the different frequencies of the equipment 

during data acquisition, the dataset from the measurement 
system was interpolated by the inverse distance squared 
method, as proposed in the literature for LiDAR 
applications (Anderson et al., 2005). The result of data 
processing is a single file in text format indicating the 
distance to the target (vegetation height) and its geographic 
coordinates. From this file, it is possible to generate a point 
cloud, where each point hit by the light beam has its 
coordinates allocated in the same reference coordinate 
system: Universal Transverse Mercator (UTM). The point 
cloud was analyzed by CloudCompare 2.8 software to 
identify the sugarcane crop and ground level, and manual 
data filtering was required after processing due to the 
differing points on the boundaries and the overlapping data 
in experimental fields. From the point cloud, the average 
vegetation height (Hഥ) was calculated in the post-processing 
step according to the equation:  

Hഥ = ෍  
zi

n

୬

୧ୀଵ

            (4)

Where,  

Hഥ is the average vegetation height (m);  

zi is the cartesian coordinate on the z axis at the 
point i (m), and  

n is the number of points obtained from the post-
processing step. 

 
The coefficient of variation (CV) was calculated to 

verify the spatial variability of the heights indicated by the 
laser sensor according to the equation:  

CV = 
100 × ஢

ୌഥ
         (5) 

Where,  

CV is the coefficient of variation (%);  

 is the standard deviation (m), and  

Hഥ is the average vegetation height (m). 
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Influence of the platform vibration for the LiDAR 
dataset 

The static orientation sensor was connected via 
USB protocol to the laptop with the software sbgCenter 
installed for the data acquisition. The selected 
displacements were the transversal (roll), lateral (pitch), 
and longitudinal (yaw). The acceleration on the z axis was 
set to 115200 bps. 

The data generated by the static orientation sensor 
were processed by a programming routine developed in 
Matlab 9.1 software using vertical acceleration 
components such as the sum of the raw data (𝑧̈) and the 
gravitational acceleration (9.8 m s−2). In order to quantify 
the influence of the acceleration in the vertical component 
in the measurement system, the spectral power density was 
calculated on the basis of the Discrete Fourier Transform 
according to the equation:  

Sa (fi) = 
ଵ

ிsே
ห∑ 𝑧̈ே

ଵ i 𝑒ି௝ଶగே ห²       (6) 

Where,  

Sa is the spectral power density (dB);  

fi is the ith discrete frequency spectrum (Hz);  

Fs is the frequency at which the signal is sampled (Hz);  

N is the number of sampling points in a time 
interval, and  

𝑧̈i is the ith vertical acceleration component (m s−2). 
 

The acceleration amplitudes in the vertical 
component (Az) were analyzed in the time domain through 
the root mean square (RMS) calculation according to the 
equation: 

AzRMS = ቂ
1 

i
∑ z̈²i 1iቃ1/2        (7) 

Where,  

AzRMS is the RMS value referring to the vertical 
acceleration component (m s−2), and  

𝑧̈1i is the ith acceleration in the vertical direction 
(m s−2). 

 
Experimental fields of sugarcane 

Tests of the measurement system were conducted in 
two experimental fields of sugarcane composed of plots 
separated by rows. The rows allowed the tractor traffic 
with sensors coupled to the structure to move between the 
plots. In the first year of study, one of the fields (field I — 
0.76 ha) was used to carry out the step of methodology 
development. In the second year, two experimental fields 
(field II — 0.56 ha) were used for data acquisition about 
10 days before the sugarcane harvest in order to evaluate 
the proposed method. 

 
RESULTS AND DISCUSSION 

Point cloud generation 

The first results (Figure 4) refer to the methodology 
development step to generate the point cloud after the 
filtering of the measurement system data in experimental 
field I. The corresponding histogram (Figure 4b) allows to 
verify the distribution of the vegetation height and its 
frequency, relative to the ground level in the dataset. Each 
point allocated to the point cloud refers to a point hit by 
the light laser beam emitted by the sensor in the conditions 
of the sugarcane canopy plants with the geographic 
coordinates allocated in the UTM reference system. 

 

 
FIGURE 4. Point cloud from the first stage of the study (a); corresponding histogram (b) 

 
The total number of post-processed points allocated 

to the point cloud was 27 million for the first stage of this 
study using field I, representing a density of 3,515 points 
m−2. This shows the capacity achieved by the laser sensor 
settings proposed in this study. About 16.30% of the total 
points impacted by the laser sensor refer to the soil for the 
experimental conditions identified in this field. 

For the second stage of study, Table 1 shows the 
descriptive statistics of post-processed data related to the 
two experimental fields of sugarcane. The post-processed 
data were obtained by filtering the raw data to eliminate 
the outliers and the overlap caused by the dimensions of 
the plots. 
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TABLE 1. Descriptive statistics of the post-processed data in the experimental fields I and II. 

Fields Number of points 
Density 

(points m−2) 

Vegetation height (m) 
CV (%) 

Minimum Maximum Average Median SD 

I 15,855,696 2,086 0.16 4.50 2.76 2.86 0.70 25.38 

II 12,376,298 2,210 0.24 3.58 2.12 2.72 0.71 33.49 

SD: standard deviation; CV: coefficient of variation. 
 
It should be noted that the minimum heights of the 

point clouds fitted to fields I and II are 0.16 and 0.24 m, 
respectively, where the minimum height refers to the 
distance between the GNSS receiver and the laser sensor 
coupled to the support, so the minimum distance (ground 
level) in the point cloud does not correspond to 0 m. One 
of the characteristics of the laser sensors is the high data 
acquisition capability: as shown in results, the density of 
allocated points is about 2,000 points m−2. In continuous 
and extensive fields, this approach should be reviewed 
using raster surface layers and pixels of a minimum size. 

The descriptive statistics of post-processed data 
from the measurement system indicate a CV of 25.0 to 
45.0%. In this case, the high CV value refers to the number 
of points hit and recorded by the laser sensor, regardless of 
whether the target object matches the soil or the plants. It 
was observed that during the pre-harvest period, the leaves 
and cane tops interfere with the identification of the stems 
by the measurement system. Thus, it is understood that the 
approach should include the estimation of the height and 
stem density, so it might also be possible to estimate the 
sugarcane yield. The future analysis procedure must 

evaluate the correlation between the canopy vegetation 
tops and the sugarcane yield effectively. 

The top of the plants detected by the laser sensor, 
characterized by leaves with vertical arrangement, is the 
highest layer of the point cloud, visualized as an irregular 
surface. The aim is to find the relationship between this 
surface and the stalk height and then relate it to the yield. 
The vigor and shape of the leaves on the top of the plant 
are dependent on some factors, such as genetic variety, the 
time of the year associated with water stress, and others, 
which can characterize a source of error in the expected 
model. This result corroborates the investigations by 
Dworak et al. (2011) and Sanz-Cortiella et al. (2011), 
indicating that the laser sensor performance is associated 
with the format of the target object, such as its regularity, 
and the geometry of the light beam emitted by the laser 
sensor. 

Figure 5 illustrates the point cloud related to the 
experimental field I during the second stage of the study, 
where a more dispersed behavior of the plant size was 
found in relation to the conditions of the field in the 
previous year (Figure 4). The plant gaps allocated at the 
top right of Figure 5a are due to the plant falling over. 

 

 

FIGURE 5. Point cloud from the second stage of the study (a); corresponding histogram (b) 
 
Few points (7.91%) of the light beam hit the ground 

(z < 0.50 m), with most of the data in the distribution 
showing a vegetation height ranging from 2.80 to 3.50 m. 
Under these conditions, the top points, identified as the 
maximum height of vegetation, should provide some 
information related to the estimation of sugarcane yield. 
The point cloud generated from the dataset related to the 
experimental field II is shown in Figure 6, showing the 
detection of the lack of plants and plants falling over as 
interference in the performance of the laser sensor. 

In both periods of assessments in the field, the 
distribution of sugarcane plants near each other, as well as 
the overlap of typical leaves in the pre-harvest conditions, 
made it difficult to detect the size of the sugarcane plants. 
The detection of the soil represented 10.84% of sampled 
points, and therefore there was a low density of sample 
points that allowed the elaboration, for example, of digital 
terrain models and, from this approach, the best estimation 
of plant height, such as an inference to obtain the height of 
the sugarcane stalks from just one layer of data. 
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FIGURE 6. Point cloud related to the experimental field II (a); corresponding histogram (b) 

 
Lodged plants in the experimental fields disturbed 

the vegetation structure and therefore the capacity of the 
laser sensor to identify the distribution of plants. However, 
such condition should be considered for commercial 
production fields in the yield estimation. Such information 
is also useful for the harvesting manager, which can result 
in operational limitations for mechanized harvesting 
systems. 

During the data acquisition in the field, it was 
observed that the continuous incidence of sunlight on the 
laser sensor stops its data collection by serial 
communication. Ehlert et al. (2006) reported the same 

effect when using laser sensors in a controlled 
environment and in field conditions. A possible solution to 
this problem would be to use the sensor during periods of 
lower light intensity or to provide a protective structure for 
the sensor to reflect the sunlight away. 

Quantification of the influence of vibration in the 
dataset 

The descriptive statistics for the data obtained from 
the static orientation sensor for fields I and II are shown in 
Table 2. 

 

TABLE 2. Descriptive statistics of data from the static orientation sensor for fields I and II. 

 Roll (°) Yaw (°) Pitch (°) Acceleration (m s−2) Power (dB) 

 Fields 
 I II I II I II I II I II 

Minimum −305.06 −218.23 −79.80 −41.40 −305.25 −252.01 2.12 2.36 0 0 

Maximum 182.92 171.93 0.00 −1.45 203.1 242.77 15.0 8.79 408.57 653.90 

Average 23.86 7.09 −28.75 −21.07 7.47 −0.36 3.95 4.72 174.58 144.61 

SD 36.79 27.83 5.42 13.53 59.71 34.36 0.52 1.09 142.80 32.50 

RMS 43.85 28.72 29.26 25.04 60.17 34.36 3.99 4.84 225.24 8.50 

SD: standard deviation; RMS: root mean square value. 
 
The oscillation measurements (roll, pitch, and yaw) 

showed a higher standard deviation (up to 59.71°) due to 
the sensitivity of the sensor, which allowed it to acquire 
data above and below the reference axis (0°). The 
acceleration in the z axis showed 3.99 and 4.84 m s−2 
values for fields I and II, respectively, values which are 
considered common in the literature (David et al., 2016). 
The spectral power density showed a greater RMS in field 
I (225.24 dB). Figure 7 illustrates the power spectral 
density calculated in accordance with the acceleration 
component in the vertical axes (𝑧̈) and its signal sampling 
frequencies obtained in fields I and II. 

The spectral power density is divided into two 
analyses. The first involves the frequencies lower than 1.0 
Hz with average amplitudes of 174.58 dB (field I) and 

144.61 dB (field II) caused by the transfer of mechanical 
vibration to the measurement system. The second 
corresponds to frequencies of around 4.0 Hz, which are 
associated with the engine vibration of the tractor used in 
this study (Cunha et al., 2009). There is a peak power 
amplitude of around 4.0 Hz in both cases, indicating the 
effect of the engine vibration on the sensor support 
structure. The high-amplitude power observed in field I 
(142.80 dB) suggests a need to implement stabilization 
filters that can be applied to the data during the post-
processing step (David et al., 2016). As it is unlikely that 
vehicle traffic would be used in sugarcane fields in pre-
harvest conditions, LiDAR technology must be viable on 
other platforms, so that the analysis can be applied to new 
scenarios. 
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FIGURE 7. Spectral power density calculated for experimental field I (a); experimental field II (b) 
 
CONCLUSIONS 

The proposed measurement system showed 
capability for the detection of sugarcane plants in the pre-
harvest period, unlike other optical remote sensing 
techniques, which suffer from signal saturation. The 
procedures developed for acquisition and processing of 
LiDAR data using a terrestrial platform enabled the 
detection of the distribution of sugarcane plants. 
Depending on some field conditions, a stabilization filter 
should be installed in order to improve data collection. 
Furthermore, it is necessary to develop procedures that 
will enable the estimation of stalk height from the 
vegetation height. 
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