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ABSTRACT 

Unmanned aerial vehicles (UAVs) are a promising tool for technology development and 
transfer and for the economic success of the agricultural sector. The objective of this study 
is to assess the validity of biomass estimation in a commercial maize plantation using 
aerial images obtained by a UAV. The proposed methodology involved analyzing images 
acquired in scheduled flights, processing orthophoto (georeferenced image) data, 
evaluating digital terrain elevation models, and assessing the quality of dense point 
clouds. Data were collected using two cameras, one with a 16-megapixel flat lens and the 
other with a 12-megapixel fish-eye lens coupled to a UAV, at two flight altitudes (30 and 
60 meters) over hybrid maize (AG1051) crop irrigated by center pivot in the municipality 
of Limoeiro do Norte, Ceará, Brazil. Crop biomass was estimated in 1 m2 plots sampled 
randomly, and data were validated by interpreting aerial images of target areas. The 
measurements of biomass using UAV-based aerial images were promising. The estimated 
values were more accurate using the fish-eye lens at 30 m altitude, corresponding to 2.97 
kg m-2, which is very close to the values measured in the field (2.92 kg m-2). 

 
 
INTRODUCTION 

Precision agriculture is promising for developing 
technologies that contribute to the economic success of 
agricultural activities. Unmanned aerial vehicles (UAVs) 
are advanced technology, and several UAV-based 
applications have been developed over the years, allowing 
market expansion and an increase in the demand for services 
(De Lara et al., 2019; Han et al., 2019). UAVs are useful for 
acquiring high spatial resolution aerial images at a cost 
lower than that of other methods (Honkavaara et al., 2013; 
Marcial-Pablo et al., 2019; Niu et al., 2019). 

UAV-based applications in agriculture have 
contributed to technological innovation. Calderón et al. 
(2013) used a UAV coupled to multispectral and thermal 
sensors to identify fungi in an olive tree plantation. Bendig 
et al. (2014) used remote sensing techniques and UAVs to 
estimate plant biomass and height in barley and rice crops. 
Shahbazi et al. (2015) and James et al. (2017) developed and 
evaluated a UAV system for high-precision mapping and 
3D model generation to assess the quality of the 
georeferencing model and the point clouds produced. Han 
et al. (2016) and Santesteban et al. (2017) combined thermal 

and multispectral cameras with UAVs to determine the 
correlation between temperature and water content in crops. 
Alsalam (2017) used UAV-based high-resolution images 
for identifying and mapping invasive plants in the 
cultivation of a forage species. 

Aerial images are processed using specific computer 
software, which builds three-dimensional (3D) models 
based on two-dimensional (2D) data using the 
photogrammetric principle through image superposition. 
These programs use algorithms such as structure from 
motion (SfM) (Ullman, 1979), which recognize patterns by 
overlapping and aligning images acquired by a moving 
camera in an agricultural area. The algorithm detects and 
describes the attribute or local pattern of each 2D point, and 
this procedure is performed for each image in which the 
same pattern is found. Some studies described the structure 
and applicability of SfM (Verhoeven et al., 2012; Mancini 
et al., 2013). In addition, SfM photogrammetry has become 
even more attractive in recent years because of advances in 
matching images from moving cameras, allowing the 
accurate acquisition of dense 3D point clouds at full 
coverage (Piermattei et al., 2019). The 3D structure of the 
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canopy surface is constructed from 2D images because the 
position of features in multiple image overlays (together 
with their respective coordinates) can be estimated in a 3D 
environment using triangulation (Swinfield et al., 2019). 

In crop yield forecasting, it is essential to assess the 
possibility of estimating biomass using remote sensing 
techniques because of several advantages over conventional 
(destructive) field sampling methods (Fassnacht et al., 
2014; Wani et al., 2015), as demonstrated by Bendig et al. 
(2014), who used high spatial resolution images with UAVs 
to correlate biomass in barley and rice crops with plant 
height using digital elevation models and found strong 
statistical correlations. 

The objective of this study is to develop a UAV-
based aerial data processing methodology to estimate maize 
biomass. The proposed technique uses digital image 
processing software and procedures to create 3D models. 

 
MATERIAL AND METHODS 

Study area 

The study was carried out in the city of Limoeiro do 
Norte (5º12,771' S and 38º1,388' W, 198 km from 
Fortaleza), Ceará, Brazil, on October 2015, in a 100-hectare 
area used for the commercial cultivation of maize (AG 
1051, Agroceres®) irrigated by central pivot 74 days after 
planting (pre-harvest for silage) (Figure 1). 

 

 

Source: Google Earth images and maps of the Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística). 

FIGURE 1. Map of the study site where samplings were performed. 
 
Data collection 

A Phantom 2 UAV (DJI Innovations) was used as a 
platform for the image acquisition sensor. Phantom UAVs 
are classified as multi-rotor (quad-rotor), and flight 
autonomy is approximately 15 min. The Phantom 2 model 
has a 5200 mAh battery with a working voltage of 11.1 V. 

The definition of the sample area was established in 
the field using Ground Station software, allowing 
programming the automatic flight, the desired altitude, and 
the cruising speed of the UAV. 

The images were acquired in October 2015 during 
three flights using a 16-megapixel Ricoh GR digital camera 
(focal length of 18.3 mm) at an altitude of 60 m above 
ground level, and a 12-megapixel GoPro Hero 4 Silver 
camera with a fish-eye lens (focal length of 2.8 mm) at an 

altitude of 30 and 60 m above ground level. The flights 
performed at a height of 60 and 30 m covered an area of 
approximately 5.1 ha (161 m  316 m) and 1.0 ha, 
respectively. It was not possible to use the Ricoh GR camera 
at a height of 30 m because of technical defects in the 
sensor. Image overlap was 65% lateral and 85% frontal, and 
these values were the lower limits for applying the SfM 
algorithm (Ullman, 1979). To achieve the necessary overlap 
for the composition of dense point clouds, the software 
defined the horizontal flight speed (5 m s-1) and image 
capture frequency. 

The flight altitudes were chosen on the basis of the 
pixel size produced (less than 0.1 m) in the orthophotos, 
enabling a level of detail compatible with the study 
objectives, and avoiding a mixture of pixels on targets such 
as the plant canopy, allowing measuring canopy height. 
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To calculate the biomass in the field and later 
validate the results using the proposed methodology, data 
were collected in eight 1 m² sampling plots (validation units, 
each with approximately 10 plants) in the maize cultivation 
area. The canopy volume was measured in each plot, and 
the average plant height was measured in the field. A 
conventional (destructive) sampling method was performed 
by cutting the plants with pruning shears to calculate the 
projected volume in each plot and obtain fresh mass values 
in the laboratory, according to the methodology proposed 
by T'Mannetje (2000). The soil characteristics, cultural 
practices, and maize variety were similar between the plots. 
A total of eight composite samples were collected because 
this size was sufficient to estimate the agronomic 
characteristics of the crop. These data allowed determining 
the silo density (SD), canopy density (CD), and fresh 
biomass (FB) according to the following equations: 

𝑆𝐷 =
ிெ

௏஼
                                                                (1) 

Where: 

SD is the silo density (kg m-3); 

FM is the fresh mass of maize (kg), 

VC is the volume of chopped maize (m³). 
 

The measured CD values were multiplied by the 
volume obtained by processing cloud points in the 3D 
model, resulting in the total mass of the maize crop. 

𝐶𝐷 =
ிெ

஺×ு
                                                              (2) 

Where: 

CD is the canopy density (kg m-3); 

A is the area of one sampling unit (1 m²); 

H is the average plant height in each sampling unit (m). 
 

𝐹𝐵 =
ிெ

஺
                                                                (3) 

Where: 

FB is the fresh biomass (kg m-2). 
 
Before the flight, nine ground control points (GCPs) 

made of ceramic material (Figure 2A) were distributed in 
the study site and used to register the sample plots during 
the georeferencing of digital elevation models. The 
coordinates of each GCP were obtained using satellite 
navigation systems - GNSS Trimble® R4 and ProMark3 
Magellan® (Figure 2B), with millimeter precision. An 
image acquired from the UAV is shown in Figure 2C. 

 

 

FIGURE 2. A – A ground control point (GCP) made of ceramic material; B - Acquisition of geographic coordinates from a GCP 
using a GPS (R4 Trimble); C - Aerial image of a maize crop acquired with a UAV sensor.  

A computer with a 3.40 GHz Intel Core™ i7-3770 
processor, 8 GB RAM, and Windows 8 operating system 
(64 bits) was used for image processing. PhotoScan 
software (AgiSoft) allowed the efficient and sequential 
generation and manipulation of the orthomosaic and the 
composition of the desired 3D model. Data processing was 
divided into seven stages: 1, import of aerial images; 2, 
image matching; 3, camera calibration; 4, creation of the 3D 
mesh and georeferencing; 5, production of dense point 
clouds; 6. generation of orthophotos and export of 
documents; 7, export of dense cloud points. Dense clouds 
are clusters of 3D points created by the identification of the 

same pixel in two or more UAV photographs by the SfM 
algorithm, resulting in a point pattern that represents the 
terrain model. 

For processing and interpreting the data generated in 
the 3D model, the biomass was calculated by selecting the 
plot located in the center of the study area, corresponding to 
approximately 1 hectare (10,000 m²), and the dense point 
cloud of this plot was exported by the software. The 
generated text file (.txt) contained data on tie point 
geographic coordinates, in the x, y, and z axes according to 
a predefined datum, color (red-green-blue [RGB]), and the 
pitch, roll, and yaw axes information (normals). 
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The data on dense point clouds were grouped into 
height classes using an algorithm in C++ language, and data 
on pixel color (RGB) and positioning (pitch, roll, and yaw) 
were excluded, leaving only height information. The height 
of each pixel was sorted in ascending order and grouped into 
classes to two decimal places, and this level of accuracy was 
satisfactory. The average heights and respective standard 
deviations of cloud points were calculated for the data from 
the three flights to evaluate data dispersion around the 
average. A column with data on the frequency of 
appearance of each height class was added to create a 
histogram. A histogram of each pixel was constructed to 
determine the height frequency, and the two most frequent 
values were considered the stand height of the maize crop 
and elevation of the uncovered soil. 

Pixels of the same size and spatial location were 
sampled in the point clouds in the areas corresponding to 
the validation units for each processing performed. A 
completely random design with four treatments, eight 
repetitions, and ten experimental units was used. Ten plants 
were used to determine the average height in the eight 
repetitions performed in the field (control treatment [T4]). 
The pixel clusters (plant heights) from point clouds were 
sampled according to the cloud density generated for the 
other treatments (T1, T2, and T3). Average heights in the 
following treatments were subjected to analysis of variance 
and Tukey’s test: T1 - Phantom UAV equipped with a 16-
megapixel Ricoh GR camera (focal length of 18.3 mm) at a 
height of 60 m and data processing using PhotoScan 
software; T2 - Phantom UAV equipped with a 12-
megapixel GoPro Hero 4 Silver camera at a height of 60 m, 
and data processing in PhotoScan software; T3 - Phantom 
UAV equipped with a 12-megapixel GoPro Hero 4 Silver 

camera at a height of 30 m and data processing in PhotoScan 
software; T4 (control) - plant heights determined in the field 
using a measuring tape. 

A probability test was performed to identify the 
height classes at a level of confidence of 5%, and the 
amplitude of the classes was calculated by the difference in 
height values. Pixel cluster size was based on dense point 
clouds, pixel area, and appearance frequency according to 
the following equation: 

𝑆 =  𝑃𝐴 ×  𝑃𝐻 ×  𝐹                                            (4) 

Where: 

S is the pixel cluster size (m³),  

PA is the pixel area (m²),  

PH is the pixel height (m), and  

F is the frequency of appearance of the pixel in 
question. 

The sum of the pixel cluster sizes corresponded to 
the total volume of the imaged area. 

The biomass of the area of interest was obtained by 
multiplying S by CD. Therefore, biomass was determined 
by dividing the mass by the effective area (approximately 1 
hectare [10,000 m2], excluding the outliers). 

Biomass and volume were assessed in the three 
treatments. The stand biomass and volume values in each 
treatment were compared with each other and with the 
means calculated using the field sampling method. 

The explanatory flowchart of data processing, 
including the acquisition of aerial images using the UAV 
and data analysis, is shown in Figure 3. 

 

 

FIGURE 3. Flowchart of the methodology used for estimating maize biomass.  

RESULTS AND DISCUSSION 

The average values of fresh mass, plant height, crop volume, SD, FB, crop volume per hectare, and mass per hectare in 
field samples in two sampling days are shown in Table 1. 

 

Aerial images 

Processing - PhotoScan 

Dense Cloud point 

Export of Dense Cloud data 

Reporting and Orthophoto 

Dense Cloud Data classification into altitude 
classes 

Histogram 
Volume Biomass 
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TABLE 1. Agricultural traits of maize (AG 1051) crop in Limoeiro do Norte, Ceará, Brazil. 

  FM (kg) DM (kg) H (m) VC (m³) 
CD 

kg m-3 
FB 

(kg m-2) 
V 

(m³ ha-1) 
Mass (t/ha) 

Means 2.93 0.61 2.22 0.02 1.32 2.93 153.75 29.29 
FM, fresh mass of maize (kg); DM, dry mass of maize (kg); H, average height of the plants in each 1 m² plot; VC, volume of chopped maize 
(m³); CD, canopy density (kg m-3); FB, fresh biomass (kg m-2); V, crop volume per hectare (m³ ha-1); Mass, crop mass per hectare (t/ha). 

 
The values of the agricultural traits (Table 1) have the same order of magnitude as those in the study by Santos et al. 

(2010), wherein the average FM of six maize hybrids cultivated for silage production in Pernambuco, Brazil, was 33.8 t ha-1, and 
Guareschi et al. (2010), in which the average FM of three maize hybrids grown for spike and silage production in Goiás, Brazil, 
was 32.05 t ha-1. 

The aerial images (1 hectare) of a maize crop are shown in Figure 4. 
 

 

FIGURE 4. Georeferenced orthophotos from three 1-ha sections of a maize plantation located in Limoeiro do Norte, Ceará, 
Brazil, 2015. A - T1; B - T2; C - T3.  

 
The georeferencing error values for processing of 

T1, T2, and T3, corresponding to 0.15, 0.31, and 0.34 m, 
respectively, were below the average errors found by 
Bachmann et al. (2013) (0.8 m) using PhotoScan to construct 
orthophotos in an agricultural area and test the geographic 
data acquisition system of a UAV (Oktokopter, HiSystems 
GmbH) and an RTK-GNSS millimeter precision system. 
This finding is related to the altitude of the flight performed 
by Bachmann et al. (2013) (100 meters). Flight altitude is 

directly related to the spatial resolution (level of detail) of 
images and to the georeferencing error. In addition, nine GCPs 
were used in the present study for model georeferencing, 
whereas Bachmann et al. (2013) used three GCPs, which 
increased precision error in digital imaging. 

Average errors of plant height measurements from 
dense point clouds and respective standard deviations are 
shown in Table 2. Errors below 0.26 m were determined in 
the three treatments. 

 
TABLE 2. Average errors of plant height measurements from dense point clouds and standard deviations. 

Treatments Altitude range (m) Height error (m) Average altitude (m) Standard deviation (m) 
T1 2.659 0.03 132.08 0.77 
T2 2.598 0.25 137.36 0.75 
T3 3.189 0.26 137.67 0.94 

Height error was obtained from the georeferencing error report of PhotoScan. T1, 16-megapixel Ricoh GRLENS camera at an altitude of 60 
m. T2, 12-megapixel GoPro Hero 4 Silver camera at an altitude of 60 m. T3, 12-megapixel GoPro Hero 4 Silver camera at an altitude of 30 m. 
T4, Field measurements (control). 

 
Zarco-Tejada et al. (2014) evaluated the quality of 

assessment of olive plant height using a low-cost camera. 
The authors found a high correlation (R² = 0.83) between 
point cloud data and height measurements under field 
conditions and an estimated error below 0.5 meters, 
demonstrating the high accuracy of the method of 
reconstruction of digital elevation models using UAVs. 

In the present study, the height error was determined 
by comparing the GNSS altitudes with the point cloud 
heights immediately above the GCP. T1, which was 
performed using images from the Ricoh GRLENS camera, 
presented the lowest errors between treatments (Table 2), 
which agrees with the study by Siebert & Teizer (2014), 
who estimated height accuracy in a survey using a UAV and 

buildings of known height as a reference and found an error 
of 0.025 m. 

The height frequencies (Figures 5A, C, and E) and 
the respective probabilities of occurrence (Figures 5B, D, 
and F), as well as the results of statistical analysis, are 
shown in Figure 5. Outliers—values with a probability of 
less than 0.5% and more than 99.5%—were excluded from 
the analysis to reduce variance around the mean. The 
heights of the pixels of the point clouds were similar to field 
values. 

The peaks with the highest and lowest frequencies 
(Figures A, C, and E) of the most representative heights in 
the point clouds were considered plant heights and 
elevations of bare soil, respectively. 
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FIGURE 5. Maize plant height frequency and probability. A and B, T1 processing; C and D, T2 processing; E and F, T3 processing.  
 

Frequency and probability values were similar 
across the samples. The peaks shown in Figure 5A are closer 
to each other and have smaller amplitudes, whereas the four 
peaks shown in Figure 5E are well-defined (Table 3). This 
result may be related to the quality of georeferencing. 
During this procedure, the higher is the amount of position 
information associated with the orthophoto mosaic, the 
higher is the level of accuracy of the entire mosaic. In this  

study, only eight GCPs were used, and this characteristic 
affected the quality of the point clouds. 

Errors were calculated by subtracting actual plant 
heights from heights derived from point clouds. The 
differences in height (ΔH) (Table 3) were compared with 
the average heights estimated in the field (2.22 m), and the 
results from T2 processing were closer to field values. 

 
TABLE 3. Height values and the most representative values in the height histogram. 

Treatments H0.5% (m) H99.5% (m) Highest frequency peak (m) Lowest frequency peak (m) ΔH (m) Error (m) 

T1 130.754 133.413 132.533 131.034 1.499 0.701 

T2 136.062 138.660 138.461 136.392 2.069 0.131 

T3 136.034 139.223 138.503 136.604 1.899 0.301 

H0.5%, height class at the 0.5% level; H99.5%, height class at the 99.5% level; ΔH, height difference between the highest and lowest peak of 
altitude classes. The error was determined by subtracting actual plant heights from heights derived from point clouds. T1, 16-megapixel Ricoh 
GRLENS camera at an altitude of 60 m. T2, 12-megapixel GoPro Hero 4 Silver camera at an altitude of 60 m. T3, 12-megapixel GoPro Hero 
4 Silver camera at an altitude of 30 m. T4, Field measurements (control). 
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The results of the variance analysis of point cloud-derived heights in the four treatments are shown in Table 4. The results 
of the means test and the statistical relationship between treatments are shown in Table 5. The values were obtained from eight 
random samplings using the respective point clouds of each treatment. 
 
TABLE 4. Variance analysis of average heights of maize plants. 

PV DF SQ QM F 

Treatments 3 2,26803 0,75601 19,0087** 

Residual 28 1,11361 0,03977  

Total 31 3,38165   

**different at a level of significance of 1% (p<0.01); *different at a level of significance of 5% (0.01≤p<0.05); ns, not significantly different 
(p≥0.05). 
 
TABLE 5. Average canopy heights (meters) in each treatment. 

DMS, 0.27196; MG, 1.97606; CV%, 10.09; midpoint, 1.72496. The means followed by the same letter were not significantly different from 
each other using Tukey’s test at a level of significance of 5%. 

 
Treatments 2 and 3 did not differ significantly 

(p>0.05) from the control (treatment 4) and had a better 
definition in the generated model, which improved the 
estimation of plant height. This finding is related to the high 
degree of overlap produced with a fish-eye lens, which has 
a much wider field of view compared to the flat lens used in 
treatment 1. This flight configuration results in significant 

image overlap, i.e., more tie points between them. 
Therefore, the higher is the degree of overlap of aerial 
images, the higher is pixel combination during the 
construction of point clouds. 

The crop volume and biomass results from 
processing point cloud data for calculating the FB of maize 
are shown in Table 6. 

 
TABLE 6. Results obtained from point clouds for calculating the fresh biomass of maize. 

Treatments Estimated volume (m³) Flight area (m²) GSD (m pixel-1) Estimated mass (t) Estimated biomass (kg m-2) 

T1 17,800.85 17,800.85 0.04055 23.58 2.21 

T2 20,351.78 10,017.40 0.10303 26.96 2.72 

T3 23,988.85 10,910.20 0.04793 31.77 2.97 

GSD, ground sampling distance; The estimated mass was determined by multiplying the crop density by the crop volume from the point clouds. 
T1, 16-megapixel Ricoh GRLENS camera at an altitude of 60 m. T2, 12-megapixel GoPro Hero 4 Silver camera at an altitude of 60 m. T3, 
12-megapixel GoPro Hero 4 Silver camera at an altitude of 30 m. T4, Field measurements (control). 

 
The mass values estimated by the proposed model 

varied between 23.58 and 31.77 tons, corroborating the 
study by Santos et al. (2010) (33.8 tons) and Guareschi et 
al. (2010) (32.05 tons). The estimated biomass values were 
similar to those reported in the literature for maize 
plantations, evidencing the adequacy of the number of 
samples for the composition of the method. 

The biomass values estimated by the proposed 
method are shown in Table 6 and evidence the strong 
approximation of T3 values to field values (2.93 kg m-2). In 
contrast, T1 underestimated field biomass as a result of the 
poor quality of the point cloud due to the low field of view 
of the plane lens of the Ricoh camera. In this case, a flight 
plan with a higher image superposition is required, 
increasing the pattern recognition capability of the software 
algorithm. The image superposition achieved with the 
GoPro camera (T2 and T3) was more accurate than that of 
T1 because of its spherical lens, generating a denser point 
cloud. Therefore, T2 and T3 represented the sampled area 

with the highest fidelity, allowing measuring plant height, 
estimating biomass, and assessing the validity of this 
estimation in a commercial maize crop using UAV-based 
aerial images. 

The information on canopy volume and height 
inferred from the point clouds allowed consistently 
estimating biomass in the study area. In this respect, Bendig 
et al. (2014) estimated biomass in barley and rice 
plantations, proposing a correlation between plant height 
and biomass using UAV images, and concluded that plant 
height models were strongly correlated with plant biomass, 
which opens new horizons for determining harvest yield by 
high spatial resolution image processing. 

Therefore, estimating agricultural characteristics 
using remote sensing methods represents a new field of 
research involving UAVs, as shown in the present study, 
demonstrating that the quality of terrain modeling is crucial 
in precision agriculture. 

Treatment averages 

T1  16-megapixel Ricoh GRLENS camera at an altitude of 60 m 1,53026 b 

T2  12-megapixel GoPro Hero 4 Silver camera at an altitude of 60 m 2,02880 a 

T3  12-megapixel GoPro Hero 4 Silver camera at an altitude of 30 m 2,12392 a 

T4  Field measurements (control) 2,2225 a 



Vinícius B. C. Calou, Adunias dos S. Teixeira, Luis C. J. Moreira, et al.  751

 

 
Engenharia Agrícola, Jaboticabal, v.39, n.6, p.744-752, nov./dec. 2019 

CONCLUSIONS 

The proposed methodology proved to be adequate 
for estimating maize biomass. The methodology involving 
the processing and generation of a 3D terrain model using 
aerial images acquired with a GoPro Hero 4 Silver camera 
at an altitude of 30 m produced values closer to those 
determined using a standard (destructive) sampling method. 
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