
 

Engenharia Agrícola 
 

ISSN: 1809-4430 (on-line) 

www.engenhariaagricola.org.br 
 

 

 
2 University of Campinas, School of Agricultural Engineering/ Campinas - SP, Brazil. 
Area Editor: Fabio Henrique Rojo Baio 
Received in: 4-9-2019 
Accepted in: 6-13-2019 

Engenharia Agrícola, Jaboticabal, v.39, special issue, p.85-95, sep. 2019 

Doi: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v39nep85-95/2019 
 

Special Issue: Precision Agriculture 
 

SPATIAL DEPENDENCE DEGREE AND SAMPLING NEIGHBORHOOD INFLUENCE ON 
INTERPOLATION PROCESS FOR FERTILIZER PRESCRIPTION MAPS 

 
Lucas R. do Amaral1*, Diego D. Della Justina2 

 

1*Corresponding author. University of Campinas, School of Agricultural Engineering/ Campinas - SP, Brazil.  
E-mail: lucas.amaral@feagri.unicamp.br | ORCID ID: http://orcid.org/0000-0001-8071-4449 

 
 
KEYWORDS  

data interpolation, 
soil sampling, 
geostatistics, site-
specific management. 

ABSTRACT 

Data interpolation is widely required in precision agriculture. However, its effectiveness 
is a function of the characteristics of the dataset, being necessary for the evaluation of 
several parameters. This study aimed to identify how the spatial interpolators, Kriging, 
and Inverse Distance Weighting, are influenced by the degree of spatial dependence of 
the variables analyzed and the number of neighbors considered in the interpolation 
process (sampling neighborhood). Soil samples were collected from three sugarcane 
fields. By the optimization process, we verified that the sampling neighborhood 
influences the accuracy of interpolations, but there is not a standard recommendation to 
follow. Thus, the best sampling neighborhood must ever be optimized for each case when 
preparing fertilizer prescription maps. Evaluating the performance of interpolations is 
always important to infer the reliability of the prescription maps, since no index that 
measures the degree of spatial dependence is effective. Because high prediction errors 
can occur when spatial dependence is poorly modeled, one cannot expect crop response 
with the continuous application of fertilizers in variable rates. Thus, work with 
homogeneous soil zones can be an interesting palliative approach. This study guides 
precision agriculture practitioners on some points that should be carefully considered in 
the data interpolation process for generating fertilizer prescription maps. 

 
 
INTRODUCTION  

Precision agriculture is a management approach 
that aims to address spatial and temporal variabilities of 
production factors in agricultural fields (Banu, 2015). 
Among the site-specific interventions enabled by 
precision agriculture, one of the most widely used is the 
variable-rate fertilizer application. This technique 
presupposes that soil fertility varies within fields; 
therefore, the use of fertilizers can be optimized with its 
localized application (Mueller et al., 2004). 

Spatial variability of soil fertility is routinely 
surveyed through grid soil sampling (Mallarino & Wittry, 
2004). However, the farmer’s capacity in employing 
adequate sampling density to the whole field is limited since 
soil sampling is laborious and laboratory analyses are 
expensive. This often leads to inappropriate number and 
disposition of samples being unsuitable for representing the 
variability of soil properties intended to be mapped 

(Mueller et al., 2004; Nanni et al., 2011; Siqueira et al., 
2014). Consequently, the return on soil fertility mapping 
and variable-rate fertilizer application is impaired.  

With the results of soil analyses in hand, these data 
must be interpolated to obtain continuous maps that can be 
interpreted and converted into fertilizer rates. The 
interpolation method that offers the best performance is 
admittedly the kriging method (Diggle & Ribeiro, 2007). 
However, for the correct performance of this technique, the 
analyst must pay attention to several issues of spatial 
dependence modeling (Oliver & Webster, 2014; Vieira et 
al., 2010) before effectively obtaining an interpolated map, 
which often causes this interpolation method to be 
improperly used or not employed at all. There are several 
deterministic interpolators alternative to kriging. The most 
widely used is a weighted average calculation as a function 
of the distance between samples, the so-called inverse 
distance weighting (IDW) (Li & Heap, 2011) since it 
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performs well for variables with different behaviors and is 
easily implemented in software programs and 
computational routines (Betzek et al., 2019). However, such 
deterministic interpolators do not take into account the 
spatial dependence and specific behavior of the data, which 
may lead to lower efficiency in mapping the spatial 
distribution of a given variable when compared to kriging 
(stochastic interpolator) (Betzek et al., 2019). Moreover, 
Mueller et al. (2004) state that reliable spatial predictions 
are dependent on the spatial autocorrelation between 
samples; thus, it is important to understand how the degree 
of spatial dependence of a given soil property influences the 
interpolation performance. Nonetheless, there have been 
many conflicting reports concerning the efficiency of 
interpolation procedures (Robinson & Metternicht, 2006), 
mainly because soil fertility variability may present a high 
level of non-spatial structure (random component) due to 
anthropic influence (i.e., crop management throughout the 
seasons). Thus, it is important to determine whether 
kriging can, in fact, yield higher accuracy in creating 
prescription maps in comparison to simpler interpolation 
methods (e.g., IDW).  

In addition, the interpolation process is a complex 
procedure in which the appropriate adjustment of some 
settings may afford gains in accuracy. In this sense, one of 
the parameters that influence the quality of the predictions 
is the local neighborhood surrounding the unsampled 

locations, i.e., the number of neighborhood samples taken 
into account in the interpolation process (here called the 
sampling neighborhood) as demonstrated by Robinson & 
Metternicht (2006) and Vieira et al. (2010). 

Thus, our main goal was to identify how kriging and 
IDW are influenced by the number of observations 
considered in this process (sampling neighborhood) as well 
as the degree of spatial dependence. Moreover, this study 
aims to provide important information to practitioners of 
precision agriculture about the proper procedures to 
interpolate data and generate fertilizer prescription maps.  

 
MATERIAL AND METHODS 

This study comprised three fields cultivated with 
sugarcane within São Paulo State, Brazil, each with 
different levels of spatial dependence of potassium 
availability in the soil (mmolc dm-3) (Table 1). Data were 
interpolated using IDW and ordinary kriging methods (Li & 
Heap, 2011) to optimize the sampling neighborhood and 
improve prediction accuracy. Such interpolation efficiency 
was related to spatial dependence indices proposed in the 
literature in order to investigate the expected quality of the 
map prior to interpolation. Two sampling densities were 
tested to evaluate their impact regarding interpolation 
procedures and sampling neighborhoods. Fertilizer 
prescription maps were created to express the results of the 
above-mentioned variables.  

 
TABLE 1. Characteristics of the study sites, samplings performed and soil analysis. 

Field 
Area 
(ha) 

Number of 
soil samples1 

Subsamples for 
each sample 

point2 

Sampling 
density3            

(ha sample-1) 

Sampled 
depth 
(cm) 

Average potassium soil 
availability (CV%) 

1 115.7 114 6 1.0 0 – 40 1.01 mmolc/dm3 (79.2%) 

2 88.4 95 8 1.0 0 – 20 3.61 mmolc/dm3 (35.2%) 

3 98.6 194 3 0.5 0 – 20 0.9 mmolc/dm3 (74.7%) 
1 Number of samples after removal of outliers; 2number of soil subsamples collected within 5 m of the center point with an auger; 3 Sampling 
density originally collected.  

 
The dataset of each field was divided into 

calibration and validation sets (Table 2). About 90% of the 
samples were retained for calibration (data to be 
interpolated), whereas the remaining 10% were used as an 
external validation set (Fig. 1) to quantify the error of the 
estimated potassium fertilizer rate. Samples of the 
validation set were selected to ensure the spatial 
representativeness of each field. The selection of validation 
samples was performed based on the spatial distribution of 
points generated from the function optimMSSD, available in 
the spsann package (Samuel-Rosa, 2017). Such functions 

aim to minimize the average squared distance between 
sampling and prediction locations to ensure spatial 
representativeness of the external validation set. Before 
dataset division, outliers were removed in order to avoid 
their influence on interpolation results. Samples were 
removed according to the criterion of Anselin Local 
Moran’s I (Fu et al., 2016) through the function 
‘Optimized Outlier Analysis’ available in the Arcmap 
software (ArcGIS ESRI), which identifies samples with 
low values within a region where the neighborhood shows 
high values and vice versa.  

 
TABLE 2. Number of samples and sampling density (ha samples-1) according to the dataset (dense, sparse, and external 
validation samples) and number of outliers removed in each field. 

Field 
No. of samples 

in dense 
sampling 

Final sampling 
density (ha 
sample-1) 

No. of samples 
in sparse 
sampling 

Final sampling 
density (ha 
sample-1) 

No. of samples 
in external 
validation 

No. of samples 
removed as 

outliers1 

1 97 1.19 26 4.13 17 4 

2 80 1.11 21 4.02 15 1 

3 165 0.60 35 2.99 29 3 

1 outliers removed according to the criterion of Anselin Local Moran’s I (Fu et al., 2016) 
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FIGURE 1. Experimental fields, showing the disposition of the samples according to the datasets (dense and sparse sampling 
and external validation samples). 

 
From the calibration set, two sampling densities 

were tested (Fig. 1). The first was named “dense 
sampling” in which all data from the calibration set were 
maintained (Table 2). In the second set, only a quarter of 
the samples were kept and named “sparse sampling” 
(Table 2), which aimed to simulate the most common 
situation in practice (Siqueira et al., 2014), when the high 
cost prevents denser sampling.  

Potassium prescription maps were interpolated by 
both ordinary kriging and IDW methods. For kriging, we 
conducted semivariogram modeling for all scenarios 
studied (Table 2) using the spatial dependence modeling 
practices recommended by Oliver & Webster (2014). Thus, 
we evaluated the presence of spatial trends in the dataset, 
adopted the lag distance corresponding approximately to the 
average distance between samples, and tested which model 
should be used (spherical, exponential or Gaussian) through 
cross-validation. The Gaussian model did not adjust to any 
of the datasets. 

In addition, another parameter that deserves to be 
tested by cross-validation is the sampling neighborhood 
used for interpolation (i.e., neighborhood size or the number 
of neighbors) (Robinson & Metternicht, 2006; Vieira et al., 
2010). Thus, a grid search was conducted to determine the 
optimal number of neighbors for each interpolation method 
(IDW and kriging). We tested combinations with a 
minimum of four neighbors until the total number of 
samples (all samples) for each field, minus one; interval of 
three neighbors was used. The combinations of minimum 
and maximum numbers of neighbors were evaluated by 
leave-one-out cross-validation using the calibration dataset. 

The combination of neighbors that yielded the highest 
coefficient of determination (R2) and the lowest error (root 
mean square error (RMSE)) was selected. 

Moreover, we tested IDW because it is widely used 
by precision agriculture practitioners. Such deterministic 
interpolator predictions are proportional to the inverse of 
the distance raised to a power value p (Li & Heap, 2011). 
We investigated the effect of the p value by evaluating IDW 
interpolations using three integer values for p (p=1, p=2, 
and p=3 for IDWp1, IDWp2, and IDWp3, respectively). We 
also performed a neighborhood search for IDW by leave-
one-out cross-validation to assess the best combination of 
neighbors for interpolation. 

We contrasted the performance of both kriging and 
IDW, optimized for the sampling neighborhood with IDW 
interpolation, without performing a neighborhood search 
(all samples were considered). Predictions weighted by the 
square of the distance (IDWp2) were considered as the null 
model (IDWnull). This setup aimed to compare what is 
usually done by practitioners since the null model is the 
most implemented setup present in interpolation software.  

The final evaluation of interpolations was performed 
using the independent dataset (i.e., external validation 
samples). This procedure allowed the calculation of the 
ratio of percent deviation (RPD) - a statistic that measures 
the suitability of the generated models and the quality of the 
predictions obtained. According to the classification 
proposed by Viscarra Rossel et al. (2006), the RPD can be 
subdivided: RPD < 1.0 indicates a very poor model and its 
use is not recommended; RPD between 1.0 and 1.4 indicates 
a poor model in which only high and low values are 
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distinguishable; RPD between 1.4 and 1.8 indicates a 
regular model that allows its use for interferences and 
correlations; RPD between 1.8 and 2.0 indicates a good 
model, which provides quantitative predictions;                
RPD between 2.0 and 2.5 indicates a very good model         
for quantifications; and RPD > 2.5 indicates a great model 
for quantification. 

In order to compare the prediction errors in terms of 
the potassium fertilizer amount (kg ha-1), we defined an 
equation for fertilizer prescription (Equation 1) from the 
fertilizer recommendation table for sugarcane planting 
available in the “Fertilization and Liming Recommendation 
for the São Paulo State” (van Raij et al., 1996), adopting an 
expected productivity between 100 and 150 t ha-1. 

Krate= −23.781 × Kavail. + 150.25      (1) 

Where:   

Krate is the potassium rate to be applied in kg ha-1, and  

Kavail. is the potassium availability in soil in mmolc dm-3. 
 

Furthermore, we calculated the Moran’s index (MI) 
of the samples in the calibration sets to verify the clustering 
level of the data (spatial autocorrelation, Driemeier et al., 
2016). The MI was computed using the Moran test function 
available in the ‘spdep’ package of the R statistical 
environment (Bivand & Wong, 2018). The aim here was to 
relate the interpolation performance with this index, which 
can be calculated based on both the position and values of 
the soil samples (i.e., information obtained previous to 
interpolation) since high spatial autocorrelation leads to 
high prediction accuracy (Mueller et al., 2004). Thus, 
practitioners could obtain a prior inference about the 
interpolation quality to determine whether variable-rate 
fertilizer applications will bring the expected return on 
investment.  

In addition, we used two other methods related to 
spatial autocorrelation that can be used to infer the expected 
interpolation quality prior to actually performing the 
procedure. One is the degree of spatial dependence (DSD) 
proposed by Cambardella et al. (1994), which is widely 
used in literature and classifies the spatial dependence as 
high, medium, or low depending on the proportion of the 
nugget to sill effect of the modeled semivariogram. 
However, this index is dependent of the semivariogram 
model and does not consider all aspects of the semivariogram 
geometry (Seidel & Oliveira, 2016), which can compromise 
comparisons among different datasets. Thus, we also used the 
index of spatial dependence (ISD) recently proposed by 
Seidel & Oliveira (2016), which aims to overcome the 
limitations observed by the DSD of Cambardella et al. 
(1994), when taking into account more parameters instead of 
only sill and nugget effect; this index also considers the 
semivariogram model, the range obtained from it, and the 
maximum distance between samples from a given dataset. 

RESULTS AND DISCUSSION 

Both spatial interpolation methods, kriging and 
IDW, can produce equivalent results in the representation 
of soil spatial variability within the scope of precision 
agriculture (Table 3, external validation). This contradicts 
what several researchers indicated when stating that kriging 
was the most accurate prediction method (Mueller et al., 
2004; Oliver & Webster, 2014). We understand that this 
occurs in agricultural fields because there is a high amount 
of anthropic influence on the spatial structure of soil fertility 
properties; assuming that observations close to each other 
are more alike than those that are far apart (Goovaerts, 
1999) makes the spatial dependence less significant. Thus, 
interpolation accuracy is impaired, suggesting an 
equivalence between the methods since the quality of 
spatial predictions are dependent on the spatial 
autocorrelation between samples (Mueller et al., 2004). 
Betzek et al. (2019) recently found similar results working 
with interpolation optimization of chemical soil attributes 
and yield data for denser samplings (>3.5 points ha-1). 
However, in such studies, the authors did not follow the 
procedures for variogram modeling proposed by Oliver & 
Webster (2014) since they were developing an automatic 
procedure for such analysis. This could be the reason why 
IDW was superior to kriging in some situations in their 
study. Nevertheless, here we showed that the equivalent 
accuracy between kriging and IDW interpolation may 
indeed appear on data that present a low degree of spatial 
dependence. When such low spatial dependence occurs, 
caused by anthropic influence on agricultural fields, kriging 
smooths the data distribution, impairing its prediction 
efficiency (Yamamoto, 2005). Thus, an IDW interpolator is 
faithful to the value of the samples, and the predictions can 
achieve similar prediction accuracy or be more assertive. 

To obtain the best possible result of interpolations, 
no matter the method, the analyst has to consider as many 
factors as possible (Vieira et al., 2010). In this sense, the 
number of neighbors (sampling neighborhood) is an 
important parameter to be considered, and its optimization 
allows significant improvement of interpolation 
performance. Such importance can be noted when 
comparing the lower performance of IDWnull in predicting 
K fertilizer rates compared to the other optimized 
interpolations (kriging and IDWp1) (Table 3). Note that the 
slope of the relationship between predicted and measured 
fertilizer rates has improved considerably (it is closer to 
one) for most models, indicating it to be an important factor 
to be considered when seeking the correct quantification of 
an attribute (Vieira et al., 2010). Thus, we suggest that 
future studies take this factor into consideration, instead of 
only R2 and RMSE.  
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TABLE 3. Performance of interpolation methods in predicting potassium fertilizer rates for external validation samples. We used 
the best sampling neighborhood indicated by the optimization process (kriging and IDWp1) and the IDW null model (IDWnull). 
The interpolation methods with the best performance for each dataset are indicated in bold and take into account the coefficient 
of determination, RMSE (kg ha-1) and the slope of the relationship between predicted and measured fertilizer rates. 

 Interpolation R2 RMSE Slope R2 RMSE Slope 

 Field 1 – Dense sampling Field 1 – Sparse sampling 

Kriging 0.62 11.15 0.70 0.53 12.38 0.54 

IDWp1 0.63 11.03 0.73 0.54 12.20 0.46 

IDWnull 0.60 11.73 0.47 0.46 13.28 0.38 

 Field 2 – Dense sampling Field 2 – Sparse sampling 

Kriging 0.62 17.64 0.82 0.44 19.98 0.49 

IDWp1 0.59 18.27 0.71 0.47 18.78 0.57 

IDWnull 0.61 17.76 0.46 0.41 20.05 0.47 

 Field 3 – Dense sampling Field 2 – Sparse sampling 

Kriging 0.01 16.53 0.04 0.00 19.25 0.04 

IDWp1 0.01 16.58 0.05 0.01 17.55 0.04 

IDWnull 0.00 16.12 0.02 0.00 17.56 −0.01 

 
Despite all variation in the performance of 

interpolations, we chose to select the spherical model to fit 
the theoretical semivariogram, followed by kriging 
interpolation, as well as the use of the IDWp1 in the 
sequence of the analyses in this study. The spherical model 
presented superior performance in most scenarios and, 
when it did not, its results were very close to the exponential 
model (data not presented). The same occurred with the 
IDWp1, which had a scenario with a slightly lower 
performance than IDWp2 which is about 0.01 mmolc dm-3 
(RMSE) higher (data not presented). Thus, we ensured that 
there was no other source of variation in our results.  

The sparser the soil sampling, the lower the 
reliability of data interpolation (Table 4). Although Li & 
Heap (2011) did not find a reduction in interpolation 
accuracy when working with a lower sampling density, they 
were dealing with mining and environmental data, which 
are less susceptible to human interference. Thus, the higher  

the anthropic influence, the lower the spatial dependence, 
which impairs interpolation performance. Also, the harder 
it was to adjust the semivariogram (Fig. 2), the worse the 
performance of predictions (Table 4). This difficulty was 
more pronounced when working with datasets with large 
distances between samples (i.e., sparse sampling). When 
this happens, the semivariogram modeling process becomes 
more dependent on the analyst’s experience; this is noted in 
Figure 2 in which the lags of the experimental 
semivariograms are larger and exhibit greater variation 
(inconsistent behavior). This increases the influence on the 
decision-making of the analyst responsible for the 
semivariogram analysis and, as a consequence, may 
jeopardize the final quality of the kriging process. Thus, a 
fine adjustment in lag size is necessary in the case of poor 
sampling distribution, which influences the parameters 
obtained (nugget effect, sill, and range).  
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FIGURE 2. Semivariograms obtained with dense (left) and sparse (right) sampling for each field, showing the inconsistency of 
the lag values and poor model adjustment when the sparse samplings were evaluated. 
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TABLE 4. The best configuration of sampling neighborhood and interpolation process for each dataset (three fields and two 
sampling densities) according to cross-validation results. Such configurations were used in all other interpolations carried out in 
this study (external validation and map preparation). 

 Interpolation Sampling Model1 n.min2 n.max3 R2 RMSE4 
Field 1 
Kriging dense spherical 4 7 0.67 0.46 
IDW dense power = 1 4 4 0.68 0.46 
Kriging sparse spherical 4 7 0.23 0.67 
IDW sparse power = 1 4 4 0.16 0.68 
Field 2 
Kriging dense spherical 4 64 0.35 2.11 
IDW dense power = 1 4 7 0.36 2.08 
Kriging sparse spherical 4 7 0.27 2.43 
IDW sparse power = 1 4 4 0.20 2.42 
Field 3 
Kriging dense spherical 4 58 0.16 0.61 
IDW dense power = 1 4 13 0.15 0.61 
Kriging sparse spherical 4 10 0.30 0.48 
IDW sparse power = 1 4 4 0.20 0.50 
1 Model used: kriging = spherical; IDW = inverse distance weighting power equal to 1 (IDWp1). 2 and 3 are the minimum and maximum number 
of neighbors used in interpolation, respectively. 4 root mean squared error (mmolc dm-3) between values measured and predicted by interpolation. 

 
An alternative to this difficulty and subjectivity 

intrinsic to the semivariogram modeling, enforced by the 
method of moments, would be to fit the semivariogram 
function using the restricted maximum likelihood method 
(REML), which allows one to infer the best model by 
evaluating the data as a whole (Diggle & Ribeiro, 2007); 
therefore, avoiding the analyst’s knowledge dependence. 
However, more studies with agricultural data must be 
performed to evaluate the superiority of REML for kriging. 
In this study, we did not use REML because it could 
significantly influence the performance of interpolations, 
which could, in turn, mask the factors that we would like to 
test (i.e., sampling neighborhood and interpolation methods 
routinely used in practice).  

Our investigation showed that the indices that 
supposedly quantify the spatial dependence of a given 
dataset are unsatisfactory in predicting the interpolation 
accuracy (Fig. 3). From the performance of the interpolators 
measured by cross-validation in the calibration set (Table 4) 
and the validation set (Table 3), we noted that the best 
predictions occurred in Field 1, followed by Field 2, and 

then, Field 3, given that the latter had completely 
unsatisfactory performance (R2 between predicted and 
measured next to zero). Therefore, we can assume that the 
spatial dependence observed in these fields increases from 
Field 1 to Field 3. However, none of the spatial dependence 
indices showed results similar to that inferred by the 
validation techniques (Fig. 3). When evaluating the RDP, 
we did not notice similarity among the indices evaluated, 
showing that they are insufficient to compare the spatial 
dependence of datasets with different characteristics. It is 
noteworthy that both ISD and DSD are influenced by the 
spacing between samples, which may change 
semivariogram geometry (Fig. 2) and mask the results, 
expecially in sparse datasets. Thus, different sampling 
densities are not comparable for those indices. As a result, 
cross-validation (or external validation) of data is the best 
way to infer the quality of interpolations quantitatively, 
whereas visual analysis of the semivariogram, despite being 
subjective, also allows an expectation of performance 
(qualitative analysis) of the subsequent interpolation when 
analyzed by experienced analysts. 
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FIGURE 3. Comparison among the indices proposed to evaluate the spatial autocorrelation of data (spatial dependence – ISD, 
DSD and MI) and the performance of the predictions conducted on the external validation set (RPD and R2). The letters above 
the bars refer to the classification of spatial dependence proposed by the respective indices, as indicated above. The value of the 
indices were modified for graphical visualization purposes. 
ISD: Index of Spatial Dependence – the values were divided by 20 (ISD/20). The letters indicate: P - weak spatial dependence; M - moderate 
spatial dependence; S - strong spatial dependence, according to Seidel & Oliveira (2016). 
DSD: Spatial Dependence – the values obtained (in decimal) were subtracted from one (1-DSD); thus, higher values indicate greater spatial 
dependence (Cambardella et al., 1994). The letters indicate: M - moderate spatial dependence; S - strong spatial dependence. 
MI: Moran’s Index. The letters/symbols indicate presence (*) or absence (ns) of spatial autocorrelation with 95% confidence. 
RPD: Ratio of Percentage Deviation – values divided by two (RPD/2). The letters indicate: VP - very poor model and its use is not 
recommended; P - poor model, in which only high and low values are distinguishable; M - regular model that allows its use for inferences 
and correlations, according to Viscarra Rossel et al. (2006). 
R2: coefficient of determination. 
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Due to the reasons mentioned above, analyzing 
interpolation quality should always be performed since the 
appearance of the map can deceive the unaware 
practitioner/analyst. As shown in Figure 4, interpolated 
maps by the IDW, without the optimization of sampling 
neighborhood (IDWnull), result in a map apparently more 
“reasonable” since it presents more rounded and smoothed 
features. This can be intuitively understood as a better 
representation of a natural variable (e.g., nutrient 
availability in the soil) than the maps with more defined 
limits and more acute contours, which were obtained when 
using fewer neighbors for the interpolation (Fig. 4). 

However, the results of the external validation process 
(Table 3) indicate otherwise. Therefore, the appearance of 
the maps must be interpreted with caution. 

Another question when looking to the IDWnull map 
in Figure 4 is that we can identify some “bull eyes” 
(concentric circles) which is a characteristic of IDW 
interpolator. This is reported in the literature as an artificial 
interruption of the spatial continuity. Thus, the appearance 
of the map where the IDW parameters were optimized, we 
note that such spots are no longer concentric. This is the 
reason for its better performance (IDWp1), as already 
reported in Table 3. 

 

 

FIGURE 4. Potassium fertilizer prescription maps interpolated using KRIG, IDWp1 and IDWnull for sparse and dense samplings 
– example of Field 1. 
KRIG: Ordinary Kriging with neighborhood search. 
IDWp1: Inverse Distance Weighting with power of 1 (p=1 – IDW[p1]) with neighborhood search. 
IDWnull: Inverse Distance Weighting with power of 2 (p=2 - IDW[null]) without neighborhood search. 
 

Misinterpretation of the quality of the predictions 
can also be conducted when evaluating maps from different 
sampling densities (Fig. 4). When dealing with sparse 
samples, the maps naturally present larger regions with 
more rectilinear and smoother contours as noted by others 
(Nanni et al., 2011; Siqueira et al., 2014). Our results show 
that, in sugarcane fields, soil samples every four hectares is 
inefficient in the characterization of the spatial variability of 
potassium (Table 3). Although we used the potassium 
variability as an example, this behavior can be generalized 
to all variables that have high anthropic influence, 

especially those of soil chemical fertility. This shows that it 
is mandatory to evaluate the quality of interpolations before 
deciding whether to adopt the generated prescription map as 
this can directly impact the payback of precision 
agriculture.  

In this sense, the error associated with interpolation 
predictions can be so high that it can jeopardize the entire 
result of the variable-rate fertilizer application. In this study, 
we found mean errors of interpolation between 12 and 20 
kg ha-1 (Table 3, RMSE), which represents errors in relation 
to an average fertilizer rate of 9, 28 and 13% for Fields 1, 2 
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and 3, respectively. In the case of high prediction error, the 
variable-rate application could be replaced by 
homogeneous zones of application (Mallarino & Wittry, 
2004; Khosla et al., 2008), perhaps following the standard 
recommendation tables for fertilizers established by 
traditional experimentation (van Raij et al., 1996), which 
generally recommend only four or five fertilizer rates based 
on soil nutrient availability classes. This would facilitate the 
implementation of site-specific fertilization management 
and avoid high errors in the prescribed fertilizer rates. Thus, 
nutrient availability required for proper crop development 
would be ensured without risk of nutritional deficiency by 
application of insufficient fertilizer rates. At the same time, 
the environmental impact would be reduced by avoiding 
excessive rates. 

 
CONCLUSIONS 

The sampling neighborhood influences the accuracy 
of interpolations and is important to be considered when 
preparing variable-rate fertilizer prescription maps. 
However, there is no optimal number of neighbors to be 
used. Thus, this parameter should always be individually 
evaluated and optimized for each dataset prior to final 
interpolation in order to obtain optimal fertilizer 
prescription maps. 

The quality of interpolations depends on the spatial 
structure of the variable under study, that is, the soil 
property must present spatial dependence. To access the 
performance of interpolations by procedures of external or 
cross-validation, it is mandatory to infer the reliability of the 
maps obtained. Although we have tested three indices that 
supposedly quantify spatial dependence without needing 
the validation process, they all showed limitations and did 
not present direct similarity with the real accuracy of the 
interpolation predictions. 

As expected, smaller densities of samples may 
jeopardize data interpolation since this tends to impair the 
spatial dependence evaluation. Thus, the definition of 
homogeneous zones for fertilizer application appears to be 
a palliative approach. 
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