
 

Engenharia Agrícola 
 

ISSN: 1809-4430 (on-line) 

www.engenhariaagricola.org.br 
 

 

 

1 Western Paraná State University/ Cascavel - PR, Brasil. 

Area Editor: Teresa Cristina Tarlé Pissarra 
Received in: 6-16-2016 
Accepted in: 10-1-2019 

Engenharia Agrícola, Jaboticabal, v.40, n.1, p.96-104, jan./feb. 2020 

Doi: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v40n1p96-104/2020 
 

NUGGET EFFECT INFLUENCE ON SPATIAL VARIABILITY OF AGRICULTURAL DATA 
 

Luciana P. C. Guedes1*, Raquel T. Bach1, Miguel A. Uribe-Opazo1 

 

1*Corresponding author. Western Paraná State University/ Cascavel - PR, Brasil.  
E-mail: Luciana_pagliosa@hotmail.com | ORCID ID: https://orcid.org/0000-0001-6631-2478

 
 
KEYWORDS  

Geostatistics, Spatial 
Dependence Index 
(SDI), Relative 
Nugget Effect (RNE), 
Spatial Estimation.  

ABSTRACT 

Spatial variability description of soil chemical properties by thematic maps depends 
substantially on suitable geostatistical models. One of the parameters composing a 
geostatistical model is nugget effect. This study aimed to evaluate the simultaneous 
influence of nugget effect and sampling design on geostatistical model estimation and 
estimation of soil chemical properties at unsampled sites, considering simulated data. Our 
results will be used as scientific basis for spatial variability analyses of soil chemical 
properties in agricultural areas. Given the simulation results and agricultural data, we 
concluded that the high nugget effect values obtained here reduced spatial estimation 
efficiency. Moreover, a systematic sampling design promoted the least accurate estimates 
of geostatistical model and at non-sampled sites. Despite that, these nugget effect 
estimates should be kept in the analysis. However, further studies will be needed to 
investigate which factors are responsible for such high nugget effect values. 

 
 

INTRODUCTION 

Spatial analysis of a georeferenced variable using 
geostatistical models enables measuring the spatial 
dependence degree among samples within a determined 
area, thus describing its spatial dependence structure 
(Guedes et al., 2018). The spatial dependence analysis, 
mainly of soil chemical properties in farmlands, allows to 
know their values in subregions (management zones) 
within the area of interest, which, in turn, enables the 
application of agricultural inputs at specific points 
(Gazolla-Neto et al., 2016). 

The spatial dependence structure of a certain 
georeferenced variable should be described considering a 
stochastic process, whose data are expressed by Z(s1), 
Z(s2), …, Z(sn), which are known in n sites si (i = 1, …, n), 
being that si = (xi, yi)T is a two-dimensional vector. The 
georeferenced variable can be expressed by a Gaussian 
spatial linear model: Z(si) = µ(si) + (si) (Uribe-Opazo et 
al., 2012), in which µ(si) = µ is the deterministic term, µ is 
a constant, and (si) represents the stochastic term with 
mean zero, i.e., E[(si)] = 0; and variation between points 
in space separated by an Euclidean distance hij = ||h||, so 
that h = si - sj (i, j = 1, …, n) is determined by a covariance 
function: C(hij) = cov[(si), (sj)] = σij, which depends only 
on h. Moreover, a covariance matrix is found from the 
covariance function, as follows: Σ = [(σij)] (Dalposso et al., 
2018; Guedes et al., 2011; 2018).  

One of the functions used to describe a spatial 
dependence structure is referred to as a semivariance 
function γ(hij). It measures dissimilarity between values 
sampled at sites separated by a distance hij, for stationary 
and isotropic processes, and is associated with the 
covariance function by γ(hij) = C(0) – C(hij) (Uribe-Opazo 
et al., 2012).  

In the literature, different theoretical models have 
been developed to define spatial dependence structure 
(semivariance function), and several methods have been 
used to estimate these models (Cressie, 2015; Monego et 
al., 2015; Cortés-D et al., 2016). The model estimated for 
semivariance function has the following parameters: range 
(a), partial sill (C1), nugget effect (C0), and sill (C0+ C1). 
Range is the longest distance between sampling sites 
spatially correlated within an area. Sill is the semivariance 
value when distance equals range, corresponding to the 
variance of a georeferenced variable (Kestring et al., 2015). 

Semivariance function has a minimum distance 
(hmin), within which its semivariance value (γ(hij)) is 
calculated. When it is high, the phenomenon has high 
variability over a small range of distances. In these 
situations, the semivariance function has a parameter 
called nugget effect (Peng & Wu, 2014; Cressie, 2015; 
Genton & Kleiber, 2015. Small-scale variability may be 
associated with features of the studied process and/ or 
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measurement errors. It may also occur due to data 
heterogeneity or sampling size and scheme (BOSSEW et 
al., 2014; Seidel & Oliveira, 2014; Lark & Marchant, 
2018; Wadoux et al., 2019).  

Vallejos & Osorio (2014), Cressie (2015), Bassani 
et al. (2018) suggested a relationship between nugget 
effect and (a) features related to spatial prediction, (b) a 
structure that describes spatial dependence and (c) sample 
design. Chipeta et al. (2016) described that when nugget 
effect is not zero, a sampling design with closer pairs of 
sampling points should be considered to improve 
geostatistical model estimation and spatial prediction. 

 However, there is a gap about the implications of 
nugget effect and sample design on geostatistical model 
estimation and spatial prediction simultaneously 
(expressed by thematic maps). This is especially true if the 
evaluation considers the simultaneous influence of nugget 
effect and sampling design.  

Thus, the goals of this study were: 1) to evaluate 
the influence of nugget effect on geostatistical model 
estimation and estimation at non-sampled sites of a 
georeferenced variable, using Monte Carlo simulated data 
and considering different sample designs (random, 
systematic, and lattice plus close pairs); 2) to analyze the 
spatial variability of the following soil chemical 
properties: carbon, calcium, magnesium, and pH, 
considering the sampling data of an area whose sampling 
design was a lattice plus close pairs. 
 
MATERIAL AND METHODS 

Simulated datasets originated from multivariate 
stochastic processes, assuming stationary variables, with 
an isotropic Gaussian linear model (Uribe-Opazo et al., 
2012). Sampling designs with 100 sampling points 
arranged in a regular area with a maximum limit of 
coordinates equal to 100 m were considered. Three sample 
designs were simulated: systematic (lattice) 10 × 10 grid, 
random and lattice 19 × 19 grid added by 19 randomly 
chosen nearby points (lattice plus close pairs). Sample size 
and the latter sampling design were chosen due to the 
design used in the study area. 

Twelve trials were considered for each sample 
design, totaling 36 sets of simulations. For each set of 
simulation were considered 100 simulations, totaling 3600 
simulations for every trials. Each simulation attempt was 
made considering an exponential model for semivariate 
function, with fixed parameters for a practical range equal 
to 60 m and a sill of 10 m. Nugget effect was the 
parameter that varied between trials. Thus, 12 trials were 
performed considering the following nugget effect values: 
0, 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, and 9. 

Semivariance function parameters were estimated 
for each simulation by maximum likelihood and respective 
asymptotic standard errors were calculated (De Bastiani et 
al., 2018). Moreover, the following measures that quantify 
the spatial dependence intensity were estimated: relative 
nugget effect (RNE) (Equation 1) and spatial dependence 
index (SDI) (Equation 2). 

 

RNE = ቀ
𝐂𝟎

𝐂𝟎ା𝐂𝟏
ቁ ∙ 100                                         (1) 

 

SDI = MF . ቀ
𝐂𝟏

𝐂𝟎ା𝐂𝟏
ቁ . ቀ

𝐚

𝐪.𝐌𝐃
ቁ. 100                      (2) 

in which: MF is the model factor and reflects the spatial 
dependence strength of each model (for exponential, 
spherical, and gaussian models, MF values are 0.317, 
0.375, and 0.504 respectively); C0 is the nugget effect; C0 

+ C1 is the sill; a is the practical range; and q.MD is the 
fraction (q) of the maximum distance (MD) between 
sample points. In this study, we assumed q as 50% of the 
maximum distance. RNE value was proposed by 
Cambardella et al. (1994), which describes the proportion 
of sill represented by the nugget effect. Yet, SDI was 
proposed by Seidel & Oliveira (2014) and includes a 
greater amount of information in its calculation compared 
to the RNE (nugget effect, sill, practical range, and 
semivariance function model).  

Scale of values of RNE and SDI indexes are 
different from each other, as well as their interpretation. 
While RNE ranges from 0 to 100% for all semivariance 
function models, SDI depends on semivariance function 
model. According to Seidel & Oliveira (2014), for 
exponential, spherical, and Gaussian functions, SDI varies 
respectively from 0 to 31.7%, from 0 to 37.5%, and from 0 
to 50.4%. Regardless of the model describing 
semivariance function, the closer the SDI to its maximum 
value, the greater the spatial dependence of the variable 
under study. 

Considering the estimated geostatistical models, the 
values of the georeferenced variables at unsampled sites 
were estimated using the kriging method. Spatial 
estimation mean variance or kriging variance (𝝈𝟎

𝟐തതത) was 
calculated since it is an estimation efficiency measure, 
wherein the lower its value, the better the spatial estimation 
efficiency (Cressie, 2015; Kleijnen & Mehdad, 2016). 

Simulations using nugget effect values from 0 to 8 
were compared to those with nugget effect equal to 9. This 
comparison encompassed the following measures: the sum 
of squared difference between spatial estimates and 
accuracy measure, known as overall accuracy (OA) (De 
Bastiani et al., 2012). Comparison methods were chosen to 
compare georeferenced spatial estimates with those 
generated with a lower degree of spatial dependence. 

We also analyzed the spatial variability of a set of 
real data from a commercial grain area of 167.35 ha. The 
area is located in the city of Cascavel, western Paraná 
State, Brazil. The geographical coordinates are the 
following: 24.95º S latitude, 53.37º W longitude, and 650 
m above sea level. Local soil is classified as Oxisol, with 
clayey texture and deep layers of good water storage 
capacity, porosity, and permeability (De Bastiani et al., 
2012). Local climate is very wet and classified as 
mesothermal, Cfa (Köeppen), with an average annual 
temperature of 21ºC (Kestring et al., 2015). 
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A lattice plus close pairs sampling was performed, 
with a maximum distance of 141 m between sampling 
sites. In some sites, random samples were taken at shorter 
distances: 75 and 50 m between sites, resulting in a total of 
102 sampling points. All samples were georeferenced and 
located with the aid of a signal reception device of Global 
Positioning System (GPS) GEOEXPLORE 3, in the UTM 
spatial coordinate system. 

Soybeans have been grown under no-till system 
since 1994. We used data from the 2010/2011 crop season, 
which are related to the following soil chemical properties: 
carbon (C – g dm-3), calcium (Ca – cmol dm-3), magnesium 
(Mg – cmol dm-3), and pH. The dataset of this study was 
acquired by routine chemical analysis, collecting a soil 
sample at each marked point and five subsamples of the 
0.0 to 0.2 m depth range, close to the marked points, being 
mixed and placed in plastic bags of about 500 g, thus 
composing a representative sample of the portion. These 
samples were sent to the Laboratory of Soil Analysis of the 
Central Cooperative for Agricultural Research 
(COODETEC) for routine chemical analyses.  

The best model was fit to the semivariance function 
for each variable under study, according to cross-validation 
criteria (Lu et al. 2012; Robinson et al., 2013). Asymptotic 
standard errors, RNE (Equation 1) and SDI (Equation 2), 

were calculated for each model. Moreover, using the kriging 
method, thematic maps of spatial variability of variables 
were created for the area under study. Simulated data sets 
and statistical and geostatistical analyses were performed by 
R software (R Development Core Team, 2018), using the 
geoR module (Ribeiro Junior & Diggle, 2001). 

 
RESULTS AND DISCUSSION 

Simulated Data Analysis  

Nugget effect estimation was the mostly influenced 
parameter by sample design changes in all simulations. On 
average, the worst results were obtained in systematic 
sampling, where the estimated values were more distant 
from the nominal value of this parameter (Table 1). 
Moreover, the standard error estimates of C0 were higher 
(Figure 1-a) compared to those of random design and 
lattice plus close pairs (Figure 1-b and 1-c). 

Nugget effect was overestimated in simulations 
using lower values of this parameter, but underestimated 
when higher values were used. The best estimates were 
achieved in random design as it was one of the sampling 
designs. Nugget effect estimates were on average close to 
the nominal value, showing less variability (Table 1) and 
lower standard errors (Figure 1-b).  

 
TABLE 1. Descriptive statistics for estimates of nugget effect (C଴). 

𝐶଴ nominal value 
Systematic Random Lattice Plus Close Pairs 

Mean CV (%) Mean CV (%) Mean CV (%) 

0 0.297 225.670  0.068 210.730 0.254 202.170 

1 5.873 69.060 0.761 74.390 0.770 125.620 

2 4.531 82.690 1.600 53.850 1.396 99.400 

2.5 4.472 79.270 2.028 49.120 1.724 91.300 

3 4.225 78.970 2.455 46.200 2.108 82.880 

4 3.546 82.080 3.368 41.270 2.820 73.150 

5 2.747 91.110 4.202 41.970 3.525 67.370 

6 2.162 98.960 4.961 42.380 4.369 61.430 

7 1.581 113.460 5.887 40.130 5.026 59.940 

7.5 1.303 125.200 6.159 41.120 5.335 60.950 

8 1.058 137.860 6.589 41.850 5.606 62.170 

9 0.645 167.020 7.443 44.580 6.662 53.050 

CV: coefficient of variation (%). 
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Lattice plus close pairs was considered the second-
best design in terms of nugget effect estimation, as it also 
showed on average nugget effect estimates closer to the 
nominal value (Table 1) and low standard error estimates 
(Figure 1-c). But unlike the previous one, this model 
showed a greater variability of estimates compared to 
those of the random design. 

All sampling designs in this study generated similar 
range and sill estimates. In this sense, relevant differences 
in C0 estimates influenced directly RNE and inversely SDI 

index calculations. When considering RNE and SDI 
indexes and all simulations, the lowest spatial dependence 
was observed in systematic sampling if compared with 
random design and lattice plus close pairs. Estimations of 
RNE and SDI indexes closer to the nominal values were 
obtained by random design.  

These results corroborate the conclusion of 
Kestring et al. (2015), Zhao et al. (2016), and Bussel et al. 
(2016), who claimed who stated about sample design and 
size influences on geostatistical model estimation. 

 

 
(a)                                                  (b)                                                  (c) 

FIGURE 1. Box plot Graphs: estimates of standard deviation (or error) (SD) of nugget effect for each sampling design:         
(a) systematic, (b) random, and (c) lattice plus close pairs. 

 
Table 2 also presents a descriptive summary of 

average kriging variance (𝝈𝟎
𝟐തതത) for a georeferenced variable 

at non-sampled sites, with different nugget effect values 
and sampling designs. Average kriging variance results 
were similar for all sampling designs and increased as 
nugget effect was raised. 

According to Cressie (2015), georeferenced variables 
can be decomposed into two random terms: a second-order 
stationary process and a white-noise measurement process. 
In this case, when interpolation is done at an unsampled 
point, variance estimate exceeds stationary variance by the 
amount of white-noise measurement variance 
(corresponding to nugget effect variation) (Burgess & 
Webster, 2019). Therefore, the nugget effect and kriging 
variation are directly related. Average kriging variance 
shows how efficient a spatial estimation of unsampled sites 
was, thus, the smaller the spatial estimation the more 
efficient it is. These results (Table 2) showed that the higher 
the nugget effect (i.e., the lower the spatial dependence 
degree of a georeferenced variable), the lower the efficiency 
of spatial estimation by kriging.  

Kriging spatial estimation results in unsampled sites 
for simulations with C0 between 0 and 8 were compared to 

those obtained for simulation with C0 equal to 9 (Table 2 
and Figure 2) by the sum of squared difference (SSD) 
(Table 2). In all sample designs, as the nugget effect 
increased, SSD between spatial estimates decreased. 

This result indicates that the closer the nugget effect 
values are in a geostatistical model for spatial estimation, 
the more similar their results are in terms of estimation, 
regardless of the sampling design. The geostatistical model 
used for comparison (C0 = 9) represents a georeferenced 
variable with pure nugget effect, that is, without spatial 
dependence. Thus, the results of SSD (Table 2) showed 
that the stronger the spatial dependence of a georeferenced 
variable (lower C0 value), the greater the dissimilarity 
thereof with a georeferenced variable without spatial 
dependence, as far as spatial prediction is concerned. 

Kriging equations depend on semivariance 
function, especially for nugget effect. Higher values of this 
parameter imply higher kriging weight for distant samples, 
which, in turn, produces a smoother thematic map (Bassani 
et al., 2018). 

With C0 changes, the systematic design showed less 
sensitivity to spatial estimation (lowest SSD (Table 2), 
underestimating nugget effect (Table 1)). 
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TABLE 2. Descriptive statistics for average kriging variance (𝜎଴
ଶതതത) and the sum of squared difference (SSD) between spatial 

estimations. CV is the coefficient of variation (%). 

Nominal value of 
(𝐶଴) 

Estimated 
Measures 

Systematic Random Lattice Plus Close Pairs 

Mean CV (%) Mean CV (%) Mean CV (%) 

0 
𝜎଴

ଶതതത 2.593 23.490 2.900 15.300 2.647 19.960 

SSD 11090 31.770 20110 43.160 20960 45.890 

1 
𝜎଴

ଶതതത 3.251 25.220 3.893 15.760 3.462 21.890 

SSD 9533 32.980 17560 45.540 18890 47.630 

2 
𝜎଴

ଶതതത 3.941 25.270 4.786 15.860 4.288 22.340 

SSD 7999 35.230 15140 48.170 16750 49.710 

2.5 
𝜎଴

ଶതതത 4.304 24.990 5.208 15.870 4.694 22.180 

SSD 7230 36.820 13990 49.620 15700 50.790 

3 
𝜎଴

ଶതതത 4.683 24.320 5.616 15.870 5.112 21.690 

SSD 6452 38.190 12890 51.170 14610 52.080 

4 
𝜎଴

ଶതതത 5.434 23.090 6.339 18.790 5.898 20.750 

SSD 4970 42.08 10770 54.710 12580 54.440 

5 
𝜎଴

ଶതതത 6.161 22.030 6.996 21.400 6.571 22.520 

SSD 3629 48.870 8778 58.950 10660 56.970 

6 
𝜎଴

ଶതതത 6.771 26.010 7.656 21.270 7.041 28.610 

SSD 2320 61.810 6978 63.240 8844 60.290 

7 
𝜎଴

ଶതതത 7.135 31.270 7.784 31.640 7.674 28.090 

SSD 1300 87.090 5326 68.010 7192 63.290 

7.5 
𝜎଴

ଶതതത 7.335 32.810 7.978 33.400 7.652 33.050 

SSD 905.700 109.580 4593 71.870 6373 65.920 

8 
𝜎଴

ଶതതത 7.160 40.890 7.580 45.270 7.328 42.580 

SSD 595.900 145.294 3925 73.030 5668 67.430 

9 𝜎଴
ଶതതത 5.541 77.450 5.384 88.200 5.384 88.180 

 
These results evidenced the importance of 

accurately modelling the nugget effect, considering its 
association with kriging estimation and sampling design. 
For high nugget effect values (concerning its sill), it is 
therefore recommended to consider a sample design with 
many short-distance sites (Chipeta et al., 2016), to 
minimize uncertainties in semivariance function 
parameters and kriging estimates (Wadoux et al., 2019). 

Figure 2 shows the box plot graphs for each 
sampling design, with similarity measure OA by 
comparing spatial estimations, considering estimates 
from data simulated using nugget effect equals to 9 (as 
reference for mapping) and spatial estimation from data 
simulated using the other values of nugget effect (as a 
model maps). 
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(a)                                                   (b)                                                  (c) 

FIGURE 2. Box plot Graphs of overall accuracy (𝑂𝐴෢ ) for each sampling design: (a) systematic, (b) random, and (c) lattice plus 
close pairs. Dotted lines indicate ranges of minimum values of high similarity. 

 
In both random (Figure 2-b) and lattice plus close 

pairs (Figures 2-c) designs, the increased nugget effect in 
the simulations generated a high percentage of simulations 
with low similarity between spatial estimates (OA < 0.85, 
De Bastiani et al., 2012). In considering C0 = {3, 4, 5, 6, 
7.5} (moderate spatial dependence; Cambardella et al., 
1994) and C0 = {0, 1, 2, 2.5} (strong spatial dependence; 
Cambardella et al., 1994),  the spatial estimates of these 
sampling designs had low similarity in 100% of 
simulations with OA values.  

For systematic sampling (Figures 2-a), the findings 
described above are valid for all simulations considering 
the nugget effect values that describe the georeferenced 
variable as having weak spatial dependence; and most 
nugget effect values that consider the georeferenced 
variable as having moderate spatial dependence. 

The systematic sampling showed the highest 
measurements of accuracy compared with the others, 
especially for C0 above 5. For C0 = 8, which belongs to the 
same classification as spatial dependence intensity for the 
data simulated with nugget effect equal to 9, simulations 
increased (20%) with OA ≥ 0.85, which indicates high 

similarity between spatial estimations carried out at non-
sampled sites (De Bastiani et al., 2012).  

Based on the results, the systematic design had 
lower sensitivity to the spatial estimation process, with 
changes in nugget effect value, when compared with the 
random sampling and lattice plus close pairs. This is due to 
the poor quality of nugget effect estimation in systematic 
sampling (Table 1 and Figure 1), which hence produced a 
low quality in kriging estimation. 
 
SPATIAL VARIABILITY ANALYSIS OF SOIL 
CHEMICAL PROPERTIES 

Descriptive statistics for carbon (C), calcium (Ca), 
magnesium (Mg), and pH are given in Table 3. In analyzing 
these values, we can note that all parameters presented data  
with low dispersion and homogeneity. According to cross-
validation criteria, the Gaussian model was the best-estimated 
model of the semivariance function for C, Ca, and Mg. As for 
pH, the best-estimated model was the exponential one. The 
spatial dependence radius for C, Ca, Mg, and pH were 
254.90, 639.90, 685.47, and 300 m, respectively. 

 
TABLE 3. Means and standard deviations (in brackets) of carbon, calcium, magnesium, and pH. Best-estimated model of the 
semivariance function and respective estimated parameter, estimation standard error (in brackets), spatial dependence index 
(SDI), and relative nugget effect (RNE). 

Parameter  Mean Model Nugget (𝐶଴) Sill (𝐶ଵ) Range (a) SDI RNE 

Carbon 
 (C) 

26.93 
Gaussian 

5.512 4.994 254.900 
6.92% 52.47% 

(3.25) (1.063) (1.993) (64.207) 

Calcium (Ca) 
5.20 

Gaussian 
1.432 0.5859 639.900 

10.60% 70.96% 
(1.37) (0.214) (0.422) (269.636) 

Magnesium (Mg)
2.25 

Gaussian 
0.401 0.076 685.474 

6.25% 84.03% 
(0.69) (0.059) (0.066) (416.130) 

pH 
5.10 

Exponential 
0.099 0.053 300.000 

8.26% 64.87% 
(0.39) (0.027) (0.033) (264.550) 
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All parameters showed nugget effect values higher 
than sill ones. If we associate this with simulation results, 
we could notice that these high nugget effect values for all 
parameters generate loss of efficiency in spatial estimation 
by kriging. However, as reported by Webster & Oliver 
(2007), such values should not be disregarded because the 
model must be correctly estimated and incorporate the 
estimated nugget effect value. Furthermore, in analyzing 
spatial dependence degree, the parameters C, Ca, and pH 
are classified as with moderate (25% < RNE ≤ 75%) while 
Mg as with weak (RNE > 75%) (Cambardella et al., 1994). 

Based on quartiles, the same analysis was 
performed for SDI since it makes up the strictest index to  

evaluate degree of spatial dependence. This approach was 
used to rank C, Ca, and Mg within a weak spatial 
dependence and pH within a moderate degree (Seidel & 
Oliveira, 2014). When comparing the two indices, we 
found a difference for C and Ca, which is related to the 
range value and the estimated model. 

Figure 3 displays the thematic maps of estimates for 
each factor. We observed that the thematic maps for 
carb2on (Figure 3-a) and pH (Figure 3-d) had less 
smoothing as for distribution of estimates in the area, 
whereas calcium (Figure 3-b) and magnesium (Figure 3-c) 
had more smoothed maps.  

 

 (a) (b)

(c) (d) 

FIGURE 3. Thematic maps of: (a) carbon (C), (b) calcium (Ca), (c) magnesium (Mg), and (d) pH. 
 
Calcium and magnesium showed weak spatial 

dependence and nugget effect values higher than those of 
sill (Table 3). Such finding emphasizes the influence of 
nugget effect on the spatial estimation of georeferenced 
parameters in non-sampled sites, and as a result, a greater 
thematic-map smoothing for high nugget effect values. 

According to Webster & Oliver (2007) and 
Hofmann et al. (2010), increasing values of nugget effect 
provide an improved distribution of weights in spatial 
estimation, which hence generates smoother thematic 
maps. The nugget effect can be decreased by shortening 
gaps between samples, i.e., increasing sample density 
(Kestring et al., 2015); however, it is usually unfeasible for 
soil properties due to the costly requirements. 

The spatial variability map for carbon (Figure 3-a) 
showed that lower carbon contents are located midwestern, 

while high levels are mainly within the northern region. 
The thematic maps for calcium (Figure 3-b) and pH 
(Figure 3-d) presented reduced levels mainly within the 
southern region. Figure (3-c) presents the thematic map for 
magnesium, in which can be seen that the northern and 
southern regions have the lowest magnesium contents of 
the studied area. 

 
CONCLUSIONS 

The behavior of near-origin semivariograms 
described by the nugget effect strongly affects spatial 
estimation by kriging of georeferenced parameters at 
unsampled sites. Nugget effect has negative influence on 
stability of this type of modeling, that is, the higher the 
nugget effect, the lower the kriging efficiency of spatial 
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prediction. Nugget effect was also directly related to 
smoothed kriging estimates. 

Systematic sampling exhibited the least accurate 
nugget effect estimation, the worst efficiency of spatial 
estimation, and the lowest degree of sensitivity to spatial 
changes as the nugget effect changes. Given the changes in 
nugget effect values, the best parameter estimates of the 
geostatistical model and estimates at unsampled sites 
occurred with the use of random design, followed by the 
lattice plus close pairs. 

High nugget effect value was observed for all soil 
chemical properties. Low carbon contents were found in 
the midwestern region, while in the northern they were 
high. Calcium and pH presented the lowest values in the 
southern region, and the lowest magnesium levels were 
observed in the northern and southern regions. 
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