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ABSTRACT 

This study used spectral data integrated with the agrometeorological model by Doorenbos 
and Kassam to estimate soybean grain productivity in the state of Mato Grosso, Brazil. In 
the developed model, spectral data were used instead of meteorological data and 
biophysical parameters of the crop. For this purpose, the products of real and potential 
evapotranspiration (MOD16), normalized difference vegetation index – NDVI 
(MOD13Q1), and leaf area index (MOD15A2H) from the MODIS satellite were used, in 
addition to sunstroke data obtained by using the visible channel from the satellite GOES 
IMAGER. The results obtained showed that, with the proposed methodology, it was 
possible to follow the development of soybean cultivation throughout the cycle and to 
estimate production and productivity in the study area.  Willmott's agreement index was 
0.99 and 0.96 and Pearson's correlation coefficient was 0.99 and 0.84 for production and 
productivity, respectively.  

 
 
INTRODUCTION 

Soybean (Glycine max (L.) Merr.] is one of the main 
agricultural crops in the world and Brazil, which is a leader 
in terms of productivity, stands out as one of the world's 
most important producers of soybeans (Artuzo et al., 2018). 
A quarter of national production is concentrated in the state 
of Mato Grosso, whose production is estimated to be at 
113,923 million tons, according to the 2016/2017 harvest 
(CONAB, 2017).  

The Brazilian estimates of soybean productivity 
essentially follow two axes: either by subjective methods 
(Gusso et al., 2017), which do not allow for a quantitative 
analysis of the errors involved (Rizzi & Rudorff, 2007); or 
by a drop in yield based on agrometeorological models 
(Meshesha & Abeje, 2018), which study the interaction 
between climate and productivity (Salimon & Anderson, 
2017; Gajić et al. 2018), seeking to quantify the effects of 
climate variations on plant behavior (Nascimento et al., 
2018). In this context, there is a growing demand for 
methodologies that acquire productivity information and 
monitor large-scale soybean crops. 

For many decades, mathematical models have been 
developed to characterize the effects of climatic variations 
on the development of soybean production, as demonstrated 
by Doorenbos & Kassam (1979) and Lacasa et al. (2018), 
among others. However, most models need meteorological 
data and biophysical measurements collected in the field, 
which make it difficult to use them on a large-scale 
(Betbeder et al,, 2016; Gusso et al., 2017; Zeng et al., 2016).  

More advanced tools need to be employed and the 
most promising techniques are spectral agrometeorological 
models, which combine agrometeorological models with 
spectral data obtained by satellite images (Betbeder et al., 
2016). With advances in the science of remote sensing, 
these models have gained prominence by improving 
estimates of agricultural production (Ovando et al., 2018). 
In the case of soybean, knowledge on spectral behavior can 
characterize the different phases of phenological 
development (Mercante et al., 2012), as well as the acquire 
information on biophysical parameters, planted area, and 
productivity (Gusso et al., 2013), and, thus, are beneficial to 
crop monitoring.  

As such, this study is based on the hypothesis that 
the integration of spectral data from high-resolution 
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satellites with agrometeorological models is an efficient 
method for estimating soybean productivity. Thus, using 
soybean production clusters in the state of Mato Grosso as 
a case study, an agrometeorological-spectral model is 
presented that is capable of estimating soybean grain 
productivity in the study area. Additionally, this study 
verified the potential of high-resolution orbital data in 
monitoring the phenological dynamics of culture in the field 
between the period corresponding to harvest in 2012/2013. 

MATERIAL AND METHODS 

Experimental Data  

The field experiment was conducted in soybean 
producing clusters in the state of Mato Grosso, Brazil, 
during the 2012/2013 harvest. The collection of 
productivity data was carried out on 10 plots located in the 
state of Mato Grosso, with a total area of 1,915.02 hectares 
(Figure 1). 

 

 

FIGURE 1. Study area. In (a), Mato Grosso is highlighted; in (b), location of the 10 plots in the field collection area are shown; 
in (c), plots 1 and 2 are highlighted, and in (d), plots from 3 to 10 are highlighted.  

 
Information on the actual productivity and 

phenological stage were collected from the field in plots that 
were arranged and categorized according to date of planting 
(between 09/16/2012 and 09/21/2012) and the soybean 
cycle, which was divided into vegetative (V) and 
reproductive (R) stages (Fehr & Caviness, 1977). Spectral 
information from satellites with a high resolution of the 
climate was acquired for the same period of cultivation in 
the field, between the Julian Day (JD) of sowing 
(09/21/2012) and JD of harvest (01/17/2013), totaling a 
cycle of 120 days. At the end of this analysis, net production 
values collected in the field were obtained for each plot. 
These values were subsequently compared with the 
productivity estimated by the model for validation and 
analysis of model efficiency. 

Agrometeorological Model 

The model developed by Doorenbos and Kassam 
(1979) was adopted for estimating crop yield. In the 
soybean crop yield forecast model, Yp corresponds to the 
potential productivity of the analyzed crop and Yest is the 
actual production, estimated under optimal weather 
conditions, i.e. without water and/or thermal restraints. 
Mathematically, the model is defined by: 

Yest = Yp [1 - ky (1 - ETr/ETm)]                     (1) 

Where:  

ky = productivity response factor;  

ETr = real evapotranspiration, and  

ETm = maximum evapotranspiration.  
 

The estimation of potential crop productivity (Yp) 
was conducted by adopting the “Agro-ecological Zoning 
Method” (Doorenbos et al., Kassam, 1994). The potential 
productivity estimation model (YP) is expressed in [eq. (2)]. 

Yp = PPBP x CLAI x CR x CC x ND [kg ha-1]      (2) 

Where:  

PPBP = gross production potential of dry matter for 
the standard crop;  

CLAI is the coefficient used to correct the leaf area 
index of the crop;  

CR = coefficient used to correct crop maintenance 
respiration;  

CC = correction for what was actually harvested, and  

ND = number of days in the period analyzed. For CR, 
a value of 0.5 was adopted for each JD because, 
according to reanalysis data from Merra-2, the 
average air temperature of the study area was higher 
than 20°C for all plots during the period analyzed.  

 
The adopted harvest coefficient (Cc) was 0.3 and the 

residual moisture content (U%) was 8%, since it is a non-
irrigated area (Doorenbos & Kassam, 1994). For soybean, 
there were 120 cycle days (ND) and CLAI was obtained by 
[eq. (3)], according to methodology by Battisti et al. (2013). 

CLAI = (0.0093+0.185 x LAI-0.0175 x LAI2)         (3) 

Where:  

CIAF is the coefficient for correcting the leaf area 
index specific for the crop.  
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The result of this equation assumes that the water, 
nutritional, and plant health requirements of the crop are 
met and that the yield is only conditioned by the 
characteristics of the crop and by the availability of solar 
radiation, photoperiod, and air temperature.   

Spectral Data 

To apply the agrometeorological model of 
Doorenbos & Kassam (1979), data were used to introduce 
the spectral component, as described in Table 1. 

 
TABLE 1. Spectral data used. 

Data source Product Specifications Scene 

Terra/sensor MODIS 
Real evapotranspiration and potential 
evapotranspiration (MOD16) 

Time Resolution: 8 days/Spatial 
Resolution: 1 km 

h12v10 

DSA/CPTEC - INPE 
Hours of sunlight (n) obtained by GOES 
Channel 1 
Imager - 0.55 μm (Sunshine hours) 

Time Resolution: Daily Spatial 
Resolution: 4 km 

State of Mato 
Grosso 

Terra+Aqua sensor 
MODIS 

Vegetation Index - NDVI 
(MOD13Q1+MYD13Q1) 

Time Resolution: 8 days/Spatial 
Resolution: 250 m 

h12v10 

Terra sensor MODIS Leaf area index (MOD15A2H) 
Time Resolution: 8 days/Spatial 
Resolution: 1 km 

H12v10 

Terra+Aqua sensor 
MODIS 

Pixel reliability (MOD13Q1+MYD13Q1) 
 
Pixel with value 0 = Data able to be 
used with confidence 

H12v10 

Merra – 2 Temperature Daily temperature Plot centroid 
 

All acquired images were cut by using the shapefile 
of the 10 soybean plots for the 8-day interval corresponding 
to each JD, totaling 128 images, of which there were a 
temporal series of 16 images for each of the 8 spectral data 
in raster format (Table 1). The images were re-sampled 
using the nearest neighbor algorithm to standardize spatial 
resolution at 250 m. In order to obtain data of higher quality 
and reliability and free of clouds, masks were created and 
applied using images from Pixel Reliability in order to 
preserve only pixels of value 1, which were considered fit 
and reliable. All pixels contained in the plots were 
extracted, generating shapefiles made of points, according 
to the pixel value in the images corresponding to the plot 
limits. The variables related to real and potential 
evapotranspiration, derived from the MOD16 product, were 
used in the calculation of the penalty of potential productivity 
caused by water deficiency, instead of the equations proposed 
for calculation of real and potential evapotranspiration in the 
model by Doorenbos & Kassam (1979).  

Temperature Data 

Daily temperature was acquired by the output from 
"Modern-Era Retrospective Analysis for Research and 
Applications" (MERRA-2) product (Table 1). The location 
of the pixel from MERRA-2 was identified according to the 
centroid of each plot in the study area and the data was 
extracted on a daily scale.  

Agrometeorological-Spectral Model 

Calculation of the agrometeorological-spectral 
model was performed by employing satellite images instead 
of field variables, wherein the images used were re-sampled 
for 250 m spatial resolution. The pixel values of each input 
variable were inserted into the agrometeorological-spectral 
model. After calculating productivity (kg ha-1) for each 
pixel inserted in the areas of coverage for each plot, 
productivity averages in kg/hectare were calculated for each 
Julian Day. The calculated productivity for each Julian 
Day was compared to the real productivity data obtained 
in the field.   

To insert the spectral data into the agrometeorological 
model, the values of PPBp (potential gross dry matter 
production of the standard crop) were obtained by the sum of 
the potential productivity rates for clean sky (PPBc) and 
cloudy sky (PPBn) periods, according to eqs (4) and (5) 
developed by Pereira et al., (2007). PPBp was estimated 
every 8 days according to the time resolution of MODIS data 
throughout the cycle.  

PPBc = [(107.2+8.604 x Qo) x cTc x n/N]            (4) 
 

PPBn = [(31.7+5.234 x Qo) x cTn x (1-n/N)]       (5) 

Where:  

Qo is the global extraterrestrial solar irradiance in cal 
cm2 d-1;  

cTc and cTn are correction factors for air 
temperature on light and cloudy sky days;  

n is the daily sunshine hours per day, and  

N is the maximum number of hours of daily sunlight 
(photoperiod).  

 
To calculate the maximum evapotranspiration of the 

crop, [eq. (6)] by Doorenbos & Kassam (1979) was used: 

ETc = ETo  x Kc                                                    (6) 

Where:  

ETc is the crop evapotranspiration (mm/8 days);  

ETo is the reference evapotranspiration (mm/8 
days), and  

Kc is the crop coefficient. 
 

Spectral information pertaining to the product 
MOD16A2 obtained by the Terra satellite was used to 
calculate evapotranspiration of the crop (ETc). The values 
for kc and ky, productivity response factors, followed the 
methodology by Doorenbos & Kassam (1979) (Table 2). 
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TABLE 2. Crop coefficient (Kc) and soybean productivity factor (Ky) at various stages of development.    

Crop Stages of Crop Development  

 I II III IV V 

kc 0.3–0.4 0.7–0.8 1.1–1.15 0.7–0.8 0.4–0.5 

ky 0.2 0.8 1.00  0.85 

Source: Doorenbos & Kassam (1979). 
 
Statistical analyses 

All statistical analyses were carried out on the trial 
software IBM Statistical Package for the Social Science 
(SPSS), taking into account the net production obtained in 
the field for the 10 plots examined and comparing it with a 
net output estimated by the agrometeorological-spectral 

model. The following statistical methods were adopted: 
linear regression, Pearson correlation, and Willmott's 
concordance index (Willmott et al., 1985). 
 
RESULTS AND DISCUSSION 

Monitoring of soy crops by spectral variables 
 

 

FIGURE 2. Spectral behavior of Normalized Difference Vegetation Index (NDVI) during the analysis period. The Y-axis is the 
NDVI values and the X-axis is the day after planting. 
 

Figure 2 shows the time evolution of the average 
Normalized Difference Vegetation Index (NDVI) on 
soybean in the 10 plots analyzed during the growing season 
of harvest 2012/2013. The NDVI variation is related to the 
phenological stages of soybean. Low NDVI values were 
observed at the beginning and end of the soybean 
development cycle, more specifically in September 2012 
and January 2013. In Figure 2, an initial increase in NDVI 
can be observed at the time of germination, approximately 
8 days after planting, the period in which the seed absorbs 
50% of its volume in water, called the emergence phase 
(VE). In V1 and V2 (8–24 days after planting), NDVI 
rapidly increases, rising to 0.67, which demonstrates the 
sensitivity of the NDVI index to the addition of phytomass 
in the initial phase of the crop cycle, as reported by Rizzi & 
Rudorff (2007).  At 40 days after planting, there is a gradual 
increase in NDVI (0.808), corresponding to the period in 
which the fourth trifoliate leaf is fully developed (V5). 
There is a tendency towards stabilization at 48 days after 
planting, during the V4 and V5 stages of soybean.  

The maximum NDVI (0.890) occurred 72 days after 
planting, namely at the reproductive stage R5. NDVI 
indicated increased phytomass in the more advanced 

phenological stages. The highest NDVI coincided with the 
period of increased plant development. At this phase, the 
pod was 3 cm long in one of the top four nodes of the main 
stem with a fully developed leaf semi-open flowers, and the 
plant at its maximum height (Fehr & Caviness, 1977). A 
decrease in NDVI began at 88 days after planting, reaching 
the minimum value on day 112 after planting, stage R8 of 
the crop, with full maturation. At this phase, senescence of 
the plants is expressed by a lack of green soybean 
phytomass at the end of the cycle.  Similar results from the 
NDVI curve for monitoring soybean cultivation were found 
by Liao et al. (2019). 

Variations that occurred in the curve may be 
associated with weather factors related to harvest, lighting 
geometry, and the selected day for the generation of the 8-
day composition (products MOD13Q1 and MYD13Q1), 
among other factors.  Water requirements during the 
vegetative growth phase are less important compared to the 
flowering and fruiting phases. Figure 3 shows the real (ET) 
and potential (PET) evapotranspiration values that occurred 
in the verified period. Before this, as can be seen, at the 
beginning of the vegetative growth phase, the average 
amount of evapotranspirated water was 0.47 mm (Figure 3). 

 
 
 



A spectral agrometeorological model for estimating soybean grain productivity in Mato Grosso, Brazil 409

 

 
Engenharia Agrícola, Jaboticabal, v.40, n.3, p.405-412, may/jun. 2020 

  

 

FIGURE 3. Average spectral behavior of ET and PET products (MOD16) for the plots analyzed during the 2012/2013 harvest. 
The Y-axis is the ET and PET values and the X-axis is the soybean crop cycle.  

 
Excess water or water deficiency between 

germination and flowering delays vegetative growth and 
prevents achieving uniformity in the plant population 
(Camargo, 2006). The availability of water is important 
during the two main periods of soybean development: 
germination-emergence and flowering-grain filling. During 
these periods, there is an increase in the need for water, 
according to development (Silva, 2011). Water deficiency 
during flowering (R1-R3) reduces the total number of pods, 
because soybean is sensitive to water deficiency (Camargo 
et al., 1986). From this perspective, the flowering and filling 
stages of grains have the highest water consumption and are 
therefore the most critical to water deficiency. 

From the beginning of the vegetation development 
phase (V3) to the beginning of grain filling (R5), there was 
a constant increase in the amount of water 
evapotranspiration in the plots, which can be seen between  

32 to 88 days after planting. Up to 56 days after planting, 
ET and PET showed opposite values and then maintained a 
similar pattern (Figure 3). It is worth noting, for example, 
that 8 days after planting, ET and PET had the opposite 
behavior, that is, soybean plants had a higher potential of 
evapotranspiration than real evapotranspiration. This can be 
attributed to weather influences such as precipitation and 
temperature, photoperiod, and number of hours of sunlight, 
among other factors that relate to the radiation being 
released on the Earth's surface.  

The amount of evapotranspiration during the 
phenological development cycle presented behavior 
favorable to soybean production for the analyzed plots. In 
addition to this analysis, information on sunlight hours and 
temperature (Figure 4) are also important for the 
development of soybean culture (Rodrigues et al., 2001). 

  

 

FIGURE 4. Average spectral behavior based on the sunlight hours and temperature for the plots analyzed during the 2012/2013 
harvest. The Y-axis is the value of sunlight hours and temperature and the X-axis is the crop cycle.  
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Soybeans adapt better in regions where temperatures 
range from 20ºC to 30ºC (Farias et al., 2007). In this study, 
the minimum average temperature was 23.8ºC and 
maximum average temperature was 29ºC, which is 
favorable to the development of soybean crops. The daily 
average temperature (ºC) data provided by Merra-2 were 
decisive for the choice of a correction factor for the plant's 
respiration and were inserted in the calculation of gross dry 
matter production for each plot during the entire cycle. As 
for sunlight hours, its value did not follow a pattern and 

varied throughout the cycle. The maximum number of 
sunlight hours occurred between 80 and 88 days after 
planting, during phases R2 to R5, which correspond to the 
flowering phases and the beginning of grain filling.  

Agrometeorological-Spectral  Model 

Table 3 shows the estimate of production and 
productivity calculated by the model and the number of days 
after planting of each analyzed plot where there was high 
correlation with the real production values and productivity.  

 
TABLE 3. Final and estimated net production and productivity (kg/hectare) for the 10 plots. 

Plot 
Real net production  

(kg) 
Net production model  

(kg) 
Prod. Real  

(kg/ha) 
Prod. Model 

(kg/ha) 
Days after planting 

1 553,508.00 508,434.94 3,791.15 3,482.43 112 

2 1,089,822.00 1,071,750.55 3,052.72 3,002.10 96 

3 554,763.00 525,084.582 3,533.52 3,344.48 112 

4 479,419.00 450,597.73 3,217.57 3,024, 14 104 

5 434,852.00 438,424.39 3,245.16 3,271.82 112 

6 837,983.00 853,113.9 3299.14 3358.71 112 

7 526,336.00 513,238.4 2,860.52 2,789.33 96 

8 1,039,132.00 989,488.80 3633.32 3459.75 112 

9 404,579.00 421,616.1 3289.26 3427.773 112 

10 504,812.00 515,251.3 3321.132 3389.811 112 

 
Thus, by using the model it is possible to infer the 

appropriate harvest date for the estimated production and 
productivity. Rizzi & Rudorff (2007) scored good results in 
the productivity estimate while also applying a spectral 
agronomic model using MODIS images, with an estimate 
difference ranging from 1 to 228 kg ha-1 between 
2000/2001, 2001/2002, and 2002/2003 harvests. By using 
the spectral agrometeorological model integrated to a 
Geographical Information System, for the estimation of 
soybean productivity, Berka et al. (2003) verified 
overestimated results with an extra 284 kg ha-1.  

Table 4 presents statistical analyses of the results 
obtained in the field and by the spectral agrometeorological 
model. It has been estimated that the results that we 
calculated and estimated by using the model showed a 

coefficient of correlation classified as very high net 
production (r=0.99) and productivity (r=0.84), with a 
coefficient of determination of R²=0.99 and R²= 0.72 for 
production (p=<0.0001) and productivity (p=0.0019), 
respectively. The production and productivity obtained in 
the field and estimated by the model agree with each other, 
which corroborates the Willmott d Index presented in Table 
4 with 0.99 for net production and 0.96 for productivity. The 
mean quadratic error (MQE) associated with production 
was 24,634.36 kg for an area of 1,942 hectares. Considering 
that the 10 plots have different areas, productivity in 
kg/hectare was calculated individually. Thus, after the 
calculation of the productivity of each plot, the MQE 
obtained was 131 kg/hectare, i.e. 2.18 bags of soybean (60 
kg) per hectare.  

 
TABLE 4. Yield and statistical analyses of production and productivity results obtained in the field compared to the results of 
the agrometeorological spectral model in 10 soybean plots in Mato Grosso harvested from 2012/2013. 

Yield and statistical information 
Net production  

(kg) 
Productivity 

(kg ha-1) 

Field 6,425,206 3,308,55 

Agrometeorological-Spectral Model 6,287,000 3,237,38 

Correlation coefficient (r) 0.99 0.84 

p value <0.0001 0.0019 

Coefficient of determination (R²) 0.991 0.7202 

Regression model y = 6704.7047 + 0.9681 x y = 822.4739 + 0.7317 x 

MQE (Mean Quadratic Error) 24,634.36 131.54 

Willmott d-test 0.99 0.96 
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The data obtained in this study corroborate with 
Gusso et al., (2017), which estimated the soybean 
production in Mato Grosso in 2005 and 2006 by using 
MODIS EVI and reported coefficients of determination 
ranging between 0.91 and 0.98, with an overall result of 
R2=0.96 (p≤0.01). The coupled model used by the authors 
was adjusted to the official statistics. At the local level, 
spatially distributed data were compared to production data 
for 422 plantations. The coefficient of determination 
(R2=0.87) confirmed the reliability of the EVI applied in 
models based on remote sensing for the prediction of 
soybean production.  
 
CONCLUSIONS 

Projecting and monitoring agricultural crops in the 
field by objective and direct means remains a challenge. 
This study contributed to surpassing this challenge, 
proposing a methodology capable of monitoring the 
development and quantifying the production and 
productivity of soybeans in certain parts of the state of Mato 
Grosso. Analyses of the NDVI vegetation index profile 
were able to identify and monitor the phenological phases 
of the cycle and whether crop development takes place 
within the expected phytomass production. Analysis of the 
evapotranspiration profile proved efficient for monitoring 
the water needs of the crop throughout the cycle, providing 
information for water restriction data, which is important in 
the calculation of final productivity. The spectral 
agrometeorological model, based on the methodology by 
Doorenbos & Kassam (1979) and developed with the aid of 
spectral data and the Merra-2 model instead of field 
variables, was efficient for estimating the net production 
(kg) and productivity (kg ha-1) of soybean. Statistical 
analyses confirmed that the variables estimated by the 
agrometeorological spectral model coincide with the 
variable collected in the field. For the study area, the 
estimation error of the agrometeorological spectral model 
was low, at 2.18 bags (around 120 kg) of soybean per 
hectare. Therefore, for the study area, the proposed 
methodology was consistent and objective for estimating 
the production and productivity of soybean cultivation.  
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