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ABSTRACT 

Considering the challenges faced by poultry farming, this study aimed to develop a neuro-

fuzzy model to predict eyeball and crest temperatures of egg-laying hens based on 

environmental conditions (dry bulb temperature and relative humidity). To develop the 

models and simulations, Matlab’s Fuzzy Toolbox® (Anfisedit) was used. Different 

configurations were used for each of the several neuro-fuzzy models developed. Eyeball 

temperature (ET) and chicken crest temperature (CCT) were simulated from the 

developed neuro-fuzzy models, and the obtained results were validated with the variables 

collected experimentally with the aid of recorder sensors and an infrared thermographic 

camera. The proposed neuro-fuzzy models allow the accurate estimation of ET and CCT 

of two lineages of egg-laying hens raised in conventional aviaries, thus helping in 

decision-making for better animal welfare. 
 

 

INTRODUCTION 

Poultry farming is one of the most important 

activities of the agricultural sector in Brazil (Coelho et al., 

2015). The environment of the rearing system is one of the 

main factors that cause losses in production (Oliveira et al., 

2014). When thermal comfort limits are exceeded, the 

energy that should be used for egg production is spent in 

thermoregulatory processes. This compensation is part of 

the homeostasis mechanisms of homeotherms (Lara & 

Rostagno, 2013; Lourençoni et al., 2019). In this context, 

thermal control of the environment is crucial for broilers, 

which develop their maximum genetic potential in an 

optimal temperature range (Abreu et al., 2015). 

Chickens release heat by breathing and through body 

surfaces that have no feathers, such as the crest (Welker et 

al., 2008). The surface temperature of an animal can be a 

quick response to thermal discomfort caused by the 

environment (Bahuti et al., 2018). Stewart et al. (2010) 

concluded that ocular temperature is the most reliable 

parameter to measure the surface temperature of cattle, and 

it is directly correlated with pain and thermal stress. 

A new concept, “precision livestock farming,” 

emerged with the modernization of animal husbandry. It 

assists with decision-making as well as real-time 

monitoring and reduces losses (Nascimento et al, 2011). 

Thus, computational modeling tools, such as fuzzy logic 

and neural networks, have been widely applied in this 

context (Schiassi et al., 2014; Schiassi et al., 2015; Yanagi 

Junior et al., 2012). According to Putti (2015), 

computational modeling provides more accurate results 

than regression modeling. 

Intelligent systems based on fuzzy logic can work 

with inaccurate information and translate it into a 

mathematical language that is easily executed on a 

computer. Fuzzy logic can be used as an aid to decision-

making, helping in the control of the thermal environment 

within poultry facilities (Campos et al., 2013; Oliveira et al., 

2018). The rule base, which relates the system’s input 

variables with the output variables, is designed according to 

expert opinions; therefore, it might present a subjective 

aspect to modeling (Mirzaee-Ghaleh et al., 2015). 

Based on the assumption that ambient temperature 

and humidity influence the productive development of egg-

laying hens, the use of artificial neural networks (ANNs) 

can be useful for predicting zootechnical responses of birds, 

thus helping in decision-making for the thermal comfort and 

welfare conditions of birds (Ferraz et al., 2014). 
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Considering the challenges faced by poultry 

farming, this study aimed to develop a neuro-fuzzy model 

for predicting the eyeball temperature (ET) and chicken 

crest temperature (CCT) of egg-laying hens based on 

environmental conditions of dry bulb temperature (DBT) 

and relative humidity (RH). 

 

MATERIAL AND METHODS 

The procedures performed in this experiment were 

approved by the Committee on Ethics in the Use of 

Animals, Federal University of Lavras, protocol no. 026/12. 

The experiment was conducted in two conventional 7 m × 

120 m aviaries, with an asbestos cement roofing tile, a 

height of 2.50 m, and an east-west orientation. At the 

beginning of the experiment, egg-laying hens (Figure 1) of 

the Hyline W-36 (A) and Dekalb Brown (B) lineages, aged 

17 weeks and 71 weeks, respectively, were housed 

separately in conventional aviaries. During the 

experimental period, the birds received water and feed ad 

libitum, and their eggs were collected twice a day. 

 

(A)      (B) 

FIGURE 1. Hyline W-36 (A) and Dekalb Brown (B). 

 

The DBT and RH were measured every 15 min using 

recorder sensors (Onset HOBO® TEMP/RH, accuracy of ± 

0.35 °C for temperature and ± 5% for relative humidity), 

located close to the birds and at a medium height of the 

cages. The surface temperature of the hens was also 

recorded using an infrared thermographic camera (Fluke Ti 

55ft; Fluke Corporation, Everett, WA) with an emissivity 

set configured between 0.95 and 0.98 (Salles et al., 2016). 

The images were collected three times a day (9, 13, and 17 

h) for 25 weeks in each shed, with two birds per period, for 

a total of 125 hens per aviary. The images were then 

analyzed using the Fluke SmartView 3.0 software, and the 

ET and CCT temperatures could be obtained (Figure 2). 

 

 

 FIGURE 2. Thermographic image. 

 

The neuro-fuzzy-based models were constructed, 

adjusted, and validated from the database collected from the 

sheds. DBT and RH were used as input variables, and ET 

and CCT were set as output variables. 

For each data set, three subgroups (training, 

validation, and testing) were assigned to develop the neuro-

fuzzy system, and 70% of the set was used for training while 

30% for validation and testing. A neuro-fuzzy system was 

derived from the Takagi–Sugeno fuzzy inference system 

(FIS). In this system, the input and output dispositions are 

based on rules; therefore, the answers are elaborated by 

piecewise functions (not fuzzy) (Takagi & Sugeno, 1985). 

To develop the models and simulations, Matlab® 

Fuzzy Toolbox® software version 7.13.0.564 (R2011b) 

was employed, with Anfisedit. Different configurations 

were utilized for the development of several neuro-fuzzy 

models. The types of relevance functions (Gaussian, 

triangular, and trapezoidal), number of training seasons, and 

optimization methods (retropropagation or hybrid) were 

tested. Based on the tests, the model with the lowest training 

error and no internal output errors in its sets were selected. 

The observed (O) and predicted (P) values were 

plotted. From the resulting dispersion diagram, a linear 

model was created, and the intercept and slope were 

determined. This model was used for observing the general 

behavior of the predictions and their deviations from the 

ideal forecast (O = P). 

The ET and CCT were simulated from the neuro-

fuzzy models developed, and the results were validated 

with the variables collected experimentally using the 

following equations:  

 

Mean error or tendency =  𝑀𝐸 = Systematic error = 𝐵𝑖𝑎𝑠 =  
1 

𝑛
 ∑ (𝑃𝑖 − 𝑂𝑖)𝑛

𝑖=1 ,  

Absolute error = 𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑃𝑖 − 𝑂𝑖|𝑛

𝑖=1 ,  
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Mean square error = 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑃 𝑖 − 𝑂𝑖)

2,𝑛
𝑖=1   

Root mean square error =  𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑃 𝑖 − 𝑂𝑖)2𝑛

𝑖=1 ,  

Mean absolute percentage error =  𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑂𝑖−𝑃𝑖

𝑂𝑖
| ∙ 100,𝑛

𝑖=1   

Coefficient of determination =  𝑅2 = 1 − 
∑ (𝑃𝑖−Ō)2𝑛

𝑖=1

∑ (𝑂𝑖−Ō )2𝑛
𝑖=1

,   

Nash − Sutcliffe efficiency index =  𝑁𝑆𝐸 = 1 −  [
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−Ō)2𝑛
𝑖=1

],  

 

Where:  

Pi is the ith predicted value (%);  

Oi is the ith observed value (%);  

n is the total number of samples, and  

O̅ is the mean of the observed values (%). For NSE see (Nash & Sutcliffe, 1970). 

 

These equations are intended to evaluate the model's 

ability to predict ET and CCT for all possible combinations 

of the input data; thus, they can be used as a tool to assist in 

decision-making regarding the thermal comfort and welfare 

conditions of egg-laying hens. 

 

RESULTS AND DISCUSSION 

Figure 3 shows the dispersion graphs for ET and 

CCT respectively of predicted values (P) from neuro-fuzzy 

simulations (y-axis) at experimentally observed values (O) 

(x-axis). The diagonal lines represent the ideal cases, in 

which P = O. 

It is observed that there was a correlation between 

the predicted and observed temperatures, with coefficients 

of determination of 0.68 and 0.66 for ET and CC, 

respectively. This result can be explained by the fact that, in 

egg-laying hens, the surface temperature variation is high 

mainly due to race and environmental factors, and these 

animals present adjustments in peripheral circulation as a 

form of heat dissipation (Soerensen & Pedersen, 2015). 

Heat stress affects the hens because their feathers prevent 

the dissipation of internal heat; therefore, it increases the 

blood flow to the peripheral areas, resulting in heat 

exchange with the environment (Coelho et al., 2015). 
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(B) 

FIGURE 3. Dispersion diagrams for eyeball temperature (ET, °C) (A) and chicken crest temperature (CCT, °C) (B) for Neuro-

Fuzzy simulations.  

 

The statistical indices of adequacy and accuracy of the models for the responses of ocular and crest temperatures obtained 

through the neuro-fuzzy model are shown in Table 1. 

 

TABLE 1. Statistical indices to verify the adequacy of adjustment and accuracy of neuro-fuzzy models for ET and CCT. 

Variables 
Performance indices 

ME=BIASBIAS MAE MSE RMSE MAPE NSE 

To 0,0006 0,9817 1,7908 1,3382 2,9027 -0,0286 

Tc -0,0019 1,9577 7,2906 2,7001 6,3080 -0,0245 

 

From the results of ME or BIASBIAS, although the 

individual errors of the system are not considered, it is 

possible to realize that both prediction models for ET and 

CCT present a low difference between the results. A low 

dispersion of the observed and predicted values can also be 

deduced when the values of MAE, MSE, and RMSE are close 

to zero. The dispersion of the observed and predicted values 

was slightly higher for the model that predicted the CCT. 

The MAPE, which is widely used to indicate precision 

in simulations, was 2.9% and 6.3% for ET and CCT, 

respectively. These values are considered acceptable in case 

studies, proving the accuracy of the two proposed models. 

The values of NSE, commonly used for the 

performance evaluation of models hydrological studies 

(Tongal & Booij, 2018), were approximately -0.02 for both 

ET and CCT. These results reiterate the adaptive capacity 

of the models for the simulation of ET and CCT.  

Overall, the statistical indicators ME (=BIASBIAS), 

MAE, MSE, RMSE, MAPE, and NSE presented a better fit 

in the prediction of ET. This can be explained by the high 

variation in the temperature of the crest (CCT), which is one 

of the main forms of heat exchange with the environment 

(Nascimento et al., 2013). 

 

CONCLUSIONS 

The proposed neuro-fuzzy models allow the accurate 

estimation of the eyeball temperature (ET) and the chicken 

crest temperature (CCT) of two lineages of egg-laying hens 

raised in conventional aviaries, thus helping in decision-

making for better animal welfare. 
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