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ABSTRACT 

In order to estimate the response of biometric variables in different irrigation depths in 

radish crop, as well as their relations in the development of the crop, a fuzzy mathematical 

analysis was carried out from irrigation with depths of different percentages of the crop 

evapotranspiration (ETc), using Gaussian pertinence functions for the input variable and 

triangular for the biometric output variables. Validations were performed using neural 

network models, smoothing splines and polynomial regression. The relation among the 

biometric variables was measured applying the Pearson correlation coefficient. The 

results showed that the fuzzy modeling presented superiority in the crop development 

estimate over the quadratic polynomial regression model, neural network and smoothing 

splines, because it achieved an average reduction of errors among the biometric variables, 

of 7.8% 94.6% and 9.2% for the RMSE in the respective models, as well as a better 

adjustment of the data with average R2 of the variables. The modeling with neural network 

showed inadequate agronomic behavior in data representation. Regarding biometric 

variables, the length and diameter of the tuberous root are inversely correlated, and the 

fresh phytomass of the tuberous root is correlated only with the fresh phytomass of the 

root.  
 

 

INTRODUCTION 

Radish (Raphanus sativus) is a crop that has its 

biometric parameters highly influenced by external factors. 

It belongs to the Brassicaceae family and is composed of 

tuberous roots below ground, and stem and leaves above it 

(Embrapa, 2012). The tuberous roots are divided into edible 

parts (where energy is stored) and fixing parts (where it 

fixes itself to the substrate, nutrients are absorbed, and water 

and mineral salts are conducted). The edible part can be 

found in several shapes, from elliptical to elongated or 

round forms, with diameters ranging between 2 and 5 

centimeters. It can also be white, purple, red, or black 

colored, while its pulp is white (Dantas et al., 2015). 

From studies of Filgueira (2007), the radish poor 

quality and productivity is related to the water stress and the 

soil temperature and can obtain spongy aspects of the root 

and cracks. In a study conducted by Bregonci et al. (2008), 

the diameter and length reduction of the roots in the two 

crop cycles was observed. 

New structures for verifying information from field 

experiments allow the use of more advanced techniques. 

One option is the introduction of mathematical modeling, as 

it allows, in more advanced processes, to consolidate the 

results obtained experimentally (Bordin, 2016). 

According to Gabriel Filho et al. (2015), the fuzzy 

logic enables such solidification in a more comprehensive 

way, because it is applied in vague concepts where it cannot 

allow the manipulation by traditional logic. By using sets, 

the fuzzy theory performs its concepts close to the human 

reasoning in inaccuracies sites (Cremasco et al., 2015, 

Olivindo et al., 2019). 

The use of this tool can be employed in several 

agricultural areas, such as in studies involving the impacts 

generated by the irrigation depths in beet crop (Gabriel 

Filho et al., 2015), in analyzes involving the growth of 

lettuce crop irrigated with magnetically treated water (Putti, 
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2015), effects on tomato crop by the use of saline water 

(Bordin, 2016), among other studies that need mathematical 

and computational methods. 

Given the above, this study aimed to analyze the 

efficiency of fuzzy modeling in estimating biometric 

parameters of the development of radish plants under 

different irrigation depths, based on crop evapotranspiration, 

correlating the parameters among themselves. 

  

MATERIAL AND METHODS 

Experiment description 

The experiment was carried out from September to 

November 2013, at the Department of Rural Engineering of 

the School of Agronomic Sciences of UNESP, Botucatu, 

Brazil (22° 51′ 𝑆, 48° 26′ 𝑊, and 786 𝑚 altitude. The local 

climate is defined by Köppen's classification as Cfa type, 

which stands for humid subtropical climate (Köppen & 

Geiger, 1928). 

Crop evapotranspiration was measured using a class-

A tank installed in the vicinity of the experimental area. The 

measurements were performed daily at 08:00 a.m., with an 

accumulated value of 114.2 mm throughout the cycle. 

The experiment irrigation used two independent drip 

systems, with a main line, and secondary lines with drips 

separated among each other in 0.30 𝑚, with a pressure 

of 10 𝑚. 𝑤. 𝑐. and a flow of 1.47 𝐿. ℎ−1. The system 

efficiency was of 95% and for calculation of the irrigation, 

time the following equation was used: 

𝑇𝑖 = 6000  
𝐾𝑐 .  𝐾𝑝 .  𝐸𝑐𝑎 .  𝑆𝑙 .  𝑆𝑔 .  𝑇𝑅

𝐸𝑖 . 𝑉𝑔
 (1) 

Where: 

𝐾𝑝: the tank coefficient; 

𝐾𝑐: the crop coefficient; 

𝑆𝑙: the spacing between sides (m); 

𝐸𝑖: the irrigation efficiency (%); 

𝐸𝑐𝑎: the evaporation of “Class A” tank (mm day-1); 

𝑆𝑔: spacing among drips (m), 

𝑉𝑔: the drips flow (L h-1). 

 

The total irrigation depth was stipulated according to 

the methodology proposed by Snyder (1992), where it is 

necessary to use the tank coefficient (𝐾𝑝) defined by the 

following equation: 

𝐾𝑝 =  0.0482 +  0.024 𝑙𝑛(𝐵) −  0.00376 𝑉 +  0.0045 𝑈𝑅  (2) 

Where: 

𝐵: the border of the vegetation area around the tank 

(m); 

𝑉: the wind speed at 2 meters high (m.s-1); 

𝐾𝑝: the tank coefficient; 

𝑈𝐻: the average of relative humidity in percentage. 

The values of the irrigation depths applied were 28.6, 

57.1, 85.7, 114.2 and 142.8, for 25%, 50%, 75%, 100% and 

125%, respectively. As definition for this study, the 

variables related to the tuberous root are indicating the 

values regarding the commercialized part of the root of the 

radish crop. 

For the cultivation of radish, sowing was carried out 

directly in the soil, with pruning on the fourteenth day after 

the sowing (DAS). The spacing adopted among the crops 

was of 25 cm by 5 cm, with plots of 4 planting lines in an 

area of 3.6 m² described by 1.2 m wide and 3 m in length. 

To evaluate the development and productivity of the 

radish crop, biometric variables were analyzed: leaf number 

(LN), root length (RL), tuberous root diameter (TRD), 

tuberous root length (TRL), fresh root phytomass (FRP), 

fresh leaf phytomass (FLP), fresh tuberous root phytomass 

(FTRP), dry root phytomass (DRP), dry leaf phytomass 

(DLP), dry tuberous root phytomass (DTRP). 

The experiment was conducted in an entirely 

randomized design (RD), with 5 irrigation depth, where 

each depth was evaluated with 5 repetitions. The radish crop 

used in the experiment was Maçarias - Radish No. 19, of 

Sakata company. 

After the harvest, there was the separation of 

biometric variables to obtain the desired data. The leaves 

were separated and counted manually. The fresh leaf 

phytomass was measured with the help of a digital scale 

graduated at 0.001 𝑔 and then maintained in a greenhouse 

with temperature of 65 °C for 72 hours, performing the dry 

matter weighing. For measuring the root length, diameter 

and the tuberous root length, a caliper was used, calibrated 

in millimeter (mm). 

Fuzzy Modeling 

Fuzzy models were developed to estimate the 

biometric variables of radish development and production 

at harvest point (35 days after transplant). The models were 

designed according to an agronomic model presented and 

defined by Putti (2015), which is based on the following 

function: 𝑓: 𝑋 ⊂  ℝ → ℝ10; wherein 𝐹(𝑥) =
(𝑓1(𝑥),  𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥), 𝑓5(𝑥), 𝑓6(𝑥), 𝑓7(𝑥), 𝑓8(𝑥),
𝑓9(𝑥), 𝑓10(𝑥)), in which 𝑥 is the irrigation depth (% ETc),  

with 𝑥 ∈ 𝑋 = [25,125] and 𝑦 =  (𝑦𝑖) representing the 

biometric variables to be assessed. 

The fresh root phytomass (FRP) variable was 

analyzed by several fuzzy models, with details of all 

possible methodological procedures in Boso et al. (2021). 

Figure 1 shows the Fuzzy Rule Based System 

(SBRF) for radish crop, which is composed of five input 

variables, namely: Irrigation depths (%), indicated as Li, 

wherein 𝑖 = 1,2,3,4,5; ten output variables; and a set of five 

rules for the development of the system. This definition was 

materialized as the experiment was performed. The 

irrigation depths were estimated by ETc levels, increasing 

by 25% from one to another. Biometric variables of crop 

yield were used as output variables. 
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FIGURE 1. Fuzzy rule-based system for estimating radish crop yield, with Gaussian membership functions for the input variable 

(irrigation depth in % of ETc) and triangular membership functions for the output biometric variables and 5 rules. Output 

variables: leaf number (LN), root length (RL), tuberous root diameter (TRD), tuberous root length (TRL), fresh root phytomass 

(FRP), fresh leaf phytomass (FLP), fresh tuberous root phytomass (FTRP), dry root phytomass (DRP), dry leaf phytomass (DLP), 

dry tuberous root phytomass (DTRP). 

 

Figure 2 shows the Gaussian pertinence functions adopted for the fuzzy sets of the input variable “Irrigation Depth”, which 

points with pertinence degree equals 1 represent the adopted depths, namely 25%, 50%, 75%, 100% and 125% of the ETc. 

 

 

FIGURE 2. Gaussian pertinence functions for the input variables (irrigation depth), of the FRBS, related to the fuzzy 

sets 𝐶1, 𝐶2, 𝐶3, 𝐶4 𝑎𝑛𝑑 𝐶5, concerning the irrigation depths 25%, 50%, 75%, 100% and 125% of the ETc, respectively, with 

pertinence degree points varying between 0 and 1. 

 

The rule base was developed from the argument: “If 

Depths is 𝐶𝑖 then the output variable is 𝐶𝑘𝑖
, 𝑖 = 1,2,3, 4, 5” 

where the input variable is the antecedent and the output 

variable is the consequent. Five rules were created with the 

input (𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑝ℎ𝑡𝑠) and output variables the biometric 

variables (LN, RL, TRD, TRL, FRP, FLP, FTRP, DRP, 

DLP, DTRP). 

The fuzzy rules construction was performed with the 

combinations among the mentioned variables, according to 

the pertinence degree that are associated to the input fuzzy 

sets (𝐶𝑖), and to the output fuzzy set (𝐶𝑘𝑖
). Table 1 describes 

the combination of the input and output variables for the 

formation of the FRBS rule base. 
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TABLE 1. FRBS rules base, for radish culture, in the estimate of the biometric variables in the harvest point, with 5 input fuzzy 

sets, 5 output fuzzy sets and 5 rules. Output sets: LN (leaf number); RL (root length); TRD (tuberous root diameter); TRL 

(tuberous root length); FRP (fresh root phytomass); FLP (fresh leaf phytomass); FTRP (fresh tuberous root phytomass); DRP 

(dry root phytomass; DLP (dry leaf phytomass); DTRP (dry tuberous root phytomass). 

Rules Input Sets 
Output Sets 

LN LR TRD TRL FRP FLP FTRP DRP DLP DTRP 

1 1 5 4 2 4 5 4 3 4 5 4 

2 2 4 3 5 3 3 3 1 5 4 3 

3 3 3 5 4 1 4 5 4 3 3 5 

4 4 2 2 3 2 2 1 5 2 2 2 

5 5 1 1 1 5 1 2 2 1 1 1 

The construction and development of the fuzzy 

modeling, was initially analytical and subsequently 

structuring it mathematically with the aid of electronic 

spreadsheets (Excel software) and by the Fuzzy Logic 

Toolbox, present in Matlab® software. Similar systems can 

be found in Cremasco et al. (2010), Cremasco et al. (2015) 

Gabriel Filho et al. (2011, 2015, 2016), Pereira et al. (2008), 

Putti et al. (2014, 2017a, 2017b), Viais Neto et al. (2019a, 

2019b), Martínez et al. (2020) and Góes et al. (2021). 

Model validation 

The efficiency of fuzzy models was analyzed by a 

polynomial regression of second degree. According to Sousa 

& Alves (2016), regression analyses aim to predict possible 

relationships between dependent and independent variables 

in experimental data by mathematical models developed. 

In order to realize and emphasize the efficiency of 

fuzzy modeling, it has also developed the smoothing spline 

modeling and neural network. According to Helwig (2017) 

splines is a set of flexible functions capable of smoothly 

modeling data. The analyzed data are called nodes, where 

these are in the spline interval. For each pair of nodes, the 

spline function assumed a polynomial of n degree. The 

Smoothing Spline is defined for the parameter p and weight 

Wi. The non-definition of weights presupposes 1 for all 

analyzed data and the p value is defined between values 0 

and 1. The Smoothing Spline is defined by the minimizer 

(Boor, 2001): 

𝑝 ∑ 𝑊𝑖(𝑌𝑖 − 𝑓(𝑥𝑖))2

𝑖

+ (1 − 𝑝) ∫ (
𝐷2𝑓

𝐷𝑥2
)

2

𝐷𝑥   (3) 

 

For Teramoto et al. (2020), neural networks are 

made up of neurons capable of processing information 

efficiently. Using a data set and a training program, the 

algorithm allows estimating values closer to reality. For the 

data of the present study, 10 hidden neurons and the 

Levenberg-Marquardt algorithm were used. This algorithm 

is based on the least squares method, seeking to find the 

most appropriate adjustment for a given set of data, 

minimizing residues between the real data and the 

adjustment curve. Its resolution is given by the following 

equation (França et al., 2009):  

(𝐽𝑇(𝑥𝑘)𝐽(𝑥𝑘) + 𝜆𝑘𝐼)𝑑𝑘 = −𝐽𝑇(𝑥𝑘)𝑅(𝑥𝑘) (4) 

 

Where:  

J is the Jacobian matrix;  

I is the identity matrix, and  

λk is a determinable parameter. 

 

From the generated models, we sought to measure 

their efficiency using the coefficient of determination (R2) 

and the root mean square error (RMSE). The values of the 

deviation from the root mean square error (RMSE) indicate 

the uncertainty of the model according to the size of the 

error generated. The smaller the error presented, the better 

the model is adjusted (Santos et al., 2014; Meskini-

Vishkaee & Davatgar, 2018). The determination coefficient 

(R2) consists of validating the quality of the model in 

representing real data, in a range between 0 and 1, indicating 

as a percentage (Grácio & Oliveira, 2015). 

As a way to evaluate the influence of a variable in 

the development of another biometric variable of the studied 

crop, the correlation coefficient (r) was used, which 

indicates the linear association degree among the two 

variables and its direction measure. This association is 

expressed by a correlation coefficient, in a numerical way, 

by clouds of dots in a dispersion diagram (Martins & 

Rodrigues, 2014). 

The correlation coefficient has values understood 

between -1 and 1, where the negative demonstrates that the 

variables are inverse, and the positive value demonstrates 

that the variables are direct. The higher the coefficient, the 

higher will be the association degree of the analyzed 

variables (Lordelo et al., 2018) 

The yield estimation data for radish crop generated 

by the fuzzy model and by polynomial regression were 

statistically assessed by the Minitab software. 

 

RESULTS AND DISCUSSION 

Based on data of biometric parameters of radish 

yield, fuzzy models were employed by Gaussian pertinence 

functions for input variables (irrigation depths, in %ETc) and 

triangular functions for output values (biometric variables). 

Gaussian pertinence functions were chosen for Input 

variables because they produce smoother curves and better 

phenomenon presentation, from an agricultural point of 

view. However, by allowing function points to coincide 

with data averages and better results with fewer errors, a 

triangular pertinence function was used for output variables. 

Figure 3 shows triangular pertinence functions of the output 

variables, and Table 2 their delimiters. 
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FIGURE 3. Triangular pertinence functions of the fuzzy sets 𝐶1, 𝐶2, 𝐶3, 𝐶4 and 𝐶5 of the biometric (output) variables of the radish culture. 

 

TABLE 2. Delimitators of the triangular pertinence functions of the fuzzy sets 𝐶1, 𝐶2, 𝐶3,  and 𝐶5 of the biometric output variables, 

concerning the irrigation depths 25%, 50%, 75%, 100% and 125% of the ETc, respectively.Output sets: LN (leaf number); RL 

(root length); TRD (tuberous root diameter); TRL (tuberous root length); FRP (fresh root phytomass); FLP (fresh leaf 

phytomass); FTRP (fresh tuberous root phytomass); DRP (dry root phytomass; DLP (dry leaf phytomass); DTRP (dry tuberous 

root phytomass). 

    Degree of membership 

   C1 C2 C3 C4 C5 

O
u

tp
u

t 
V

a
ri

a
b

le
s 

LN [5.04  5.8  6.6] [5.7  6.1  6.5] [5.9  6.6  7.3] [6.2  6.8  7.4] [6.2  6.9  7.6] 

RL [27.4  34.8  42.3] [31.2  35.2  39.2] [43.4  45.0  46.7] [39.7  45.8  51.8] [40.6  47.8  55.0] 

TRD [10.2  14.9  19.6] [14.8  39.8  64.8] [36.2  41.4  46.5] [37.9  44.8  51.7] [43.4  49  54.6] 

TRL [12.9  20.9  28.9] [17.6  20.9  24.3] [18.6  24.3  30.0] [18.1  27.9  37.5] [28.5  33.9  39.3] 

FRP [0.4  0.6  0.9] [0.8  1.12  1.4] [0.8  1.5  1.5] [0.7  1.4  2.1] [0.8  1.7  2.6] 

FLP [8.8  12.2  15.5] [8.8  13.6  18.4] [14.4  18.5  22.6] [17.2  20.6  23.8] [17.2  29.3  41.3] 

FTRP [11.1  13.8  16.5] [3.9  14.3  24.6] [12.5  21.3  30.2] [18.0  25.1  32.1] [29.1  31.9  34.8] 

DRP [0.3  0.6  1.0] [0.61  0.7  0.8] [0.7  0.9  1.] [0.90  1.2  1.5] [1.1  1.5  1.9] 

DLP [0.6  1.1  1.6] [1.1  1.4  1.7] [1.2  2.1  2.9] [1.6  2.2  2.8] [2.0  2.9  3.9] 

DTRP [0.3  0.7  0.9] [0.6  0.7  0.8] [0.8  1.1  1.4] [1.0  1.2  1.4] [0.9  1.7  2.5] 
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After defining the output pertinence functions, the efficiency of the models for each biometric variable was verified by 

statistical tests. Table 3 shows the statistical results obtained for the validation of the models. 

 

TABLE 3. Validations for the biometric output variables of the radish culture, with information of the determination coefficient 

(R²), root mean square error (RMSE) of the fuzzy model, smoothing splines, neural network and polynomial regression. 

Variables: RL (root length); LN (Leaves Number); DTR (Diameter of the tuberous root); TRL (tuberous root length); FRP (fresh 

root phytomass); FLP (fresh leaf phytomass); FTRP (fresh tuberous root phytomass); DRP (dry root phytomass); DLP (dry leaf 

phytomass); DTRP (dry tuberous root phytomass). All R² values have p<1%. 

Variable Index 
Fuzzy  

Model 

Polynomial 

regression 

Smoothing 

Splines 
Neural Network 

LN 
R² 0.37 0.36 0.37 0.36 

RMSE 0.56 0.56 0.62 0.34 

RL 
R² 0.53 0.41 0.48 0.59 

RMSE 5.20 5.81 5.90 26.05 

TRD 
R² 0.54 0.52 0.53 0.49 

RMSE 11.21 11.25 12.11 156.39 

TRL 
R² 0.38 0.34  0.37 0.02 

RMSE 6.14 6.34 6.67 448.10 

FRP 
R² 0.34 0.27 0.32 0.33 

RMSE 0.49 0.52 0.54 0.25 

FLP 
R² 0.46 0.21 0.35 0.52 

RMSE 6.37 7.46 7.29 33.92 

FTRP 
R² 0.50 0.10 0.45 0.52 

RMSE 6.89 8.81 7.49 42.04 

DRP 
R² 0.59 0.43 0.55 0.59 

RMSE 0.28 0.32 0.31 0.08 

DLP 
R² 0.54 0.52 0.51 0.49 

RMSE 0.60 0.61 0.66 0.41 

DTRP 
R² 0.41 0.26 0.37 0.48 

RMSE 0.42 0.46 0.46 0.15 

Mean 
R² 0.47 0.34 0.43 0.44 

RMSE 3.82 4.21 4.21 70.77 

According to the statistical analysis of the models, 

the fuzzy model stood out for all biometric parameters of 

radish yield when compared to the polynomial regression 

models. Fuzzy modeling promoted an average reduction of 

errors among biometric parameters by 7.83% for RMSE as 

well as better data fitting with average correlation 

coefficient of biometric parameters (25.9%), thus showing 

its efficiency for estimating crop yield of radish.  

Such fuzzy logic superiority over second-degree 

polynomial regression for MRSD was also observed by 

Silva et al., (2014), who analyzed wheat yield with nitrogen 

fertilization, as well as that by Putti (2015) when analyzing 

lettuce development when irrigated with magnetically-

treated water. 

Fuzzy models proved to be more suitable than 

smoothing splines and neural networks for data analysis. 

Smoothing splines had an average value of 4.2 of the RMSE 

error, while that of the fuzzy model was 3.8 for the analyzed 

parameters. Such a difference shows an average error 

reduction by 9.2%, thus confirming the efficiency of fuzzy 

modeling. Neural networks had R² values higher than the 

other models for some biometric parameters. However, the 

RMSE values (on average, 70.77) of the neural network 

model demonstrated its unsuitability for such analyses. 

To represent a comparison of the model developed 

for each biometric parameter, Figure 4 graphically 

demonstrates a comparison between the fuzzy model and 

statistical model, highlighting the efficiency of each one. 
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FIGURE 4. Comparison among the fuzzy and linear regression models of the biometric variables of the radish culture according 

to the irrigation depths. Variables: LN (leaf number); RL (root length); TRD (tuberous root diameter); TRL (tuberous root 

length); FRP (fresh root phytomass); FLP (fresh leaf phytomass); FTRP (fresh tuberous root phytomass); DRP (dry root 

phytomass; DLP (dry leaf phytomass); DTRP (dry tuberous root phytomass). In each variable, the quadratic regression equation 

is shown along the curve. 

 

The response function for the number of leaves (LN) 

showed a difference between the proposed fuzzy model and 

the statistical model. However, when analyzing model 

validation, the fuzzy model presented an R² of 0.37 for LN, 

and 0.56 for RMSE, in contrast to the regression model that 

presented R² of 0.36 for LN, and 0.56 for RMSE.  

Root length (RL) had higher estimates for irrigation 

depth of 75% 𝐸𝑇𝑐 using the fuzzy model. For Wan & Kang 

(2006), more developed root systems may be related to low 

water availability in the soil, as roots tend to grow more to 

meet their water needs. The same behavior could be seen for 

fresh root phytomass (FRP) and dry root phytomass (DRP). 

Results of tuberous root diameter (TRD) for 

irrigation depths of 50 and 75% ETc were similar for both 

models analyzed. Likewise, Klar et al. (2015) analyzed 

TRD of radish and observed higher values for irrigation 

depths of 72 and 85% ETc. However, it reduced irrigation 

for irrigation depths of 25 and 125% ETc. This was also 

reported by Bregonci et al., (2008), who found TRD 

reductions when radish plants were submitted to water 

stress. Water deficit increases soil tension, increasing soil 

water retention and withdrawal by plants. On the other side, 

water excess decreases plant absorption of the oxygen in the 

soil, reducing development (Lacerda et al., 2017). 

These radish development behaviors are 

physiological and biochemical consequences that affect 

biometric parameters. When subjected to stress, the first 

defense mechanism of plants is stomatal closure to prevent 
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water loss (Hosseinzadeh et al., 2016). As a result, internal 

CO2 concentration increases, inhibiting Rubisco activity 

and hence photosynthesis (Rahbarian et al., 2011). 

Accordingly, it leads to biometric changes including 

increases in hypocotyls, internodes, petioles, sheaths, and 

leaf inclination angle; reductions in leaf area, branch length, 

and tillering; as well as early flowering (Zhang et al., 2019). 

This can be seen also in the dry tuberous root 

phytomass (DTRP) and fresh tuberous root phytomass 

(FTRP), where they had low results with the irrigation 

depths of 25% and 125%, and (1.2 and 21.3) and (0.7 and 

14.3) respectively. The tuberous root length variable (TRL) 

achieved productivity in the depth of 125% (34 𝑚𝑚), with 

approximation of its value in the depth of 25%, (28 𝑚𝑚), 

when observed by the fuzzy modeling. 

Analyzing the efficiency of the irrigation depths, by 

the fuzzy modeling in the biometric variables, it is verified 

that the depth corresponding to 75% of ETc presented 

significant production and development, in the radish crop, 

over the other irrigation depths used. The same can be seen 

by the polynomial regression model, where the irrigation 

depth in 75% of the ETc also demonstrates efficiency in the 

development of most of the biometric variables analyzed. 

This can be an option in the reduction of resources destined 

for irrigation for the radish crop, in the climate and local 

conditions of the experiment. 

Regarding the neural network model, Figure 5 

shows, from an agronomic point of view, the disadvantage 

of applying the model in data analysis. It is observed that 

among the irrigation depths of 100% and 125%, the values 

obtained from the productivity of the dry phytomass 

variable of the tuberous root reached negative points, as 

well as peaks in the data representation curve, which is not 

consistent with phenomena related to the plant growth and 

with the opposite representation of fuzzy modeling, which 

demonstrated with efficiency and smoothness the curves in 

the data estimation. 

 

 

FIGURE 5. Graphical validation of the neural network model for the biometric variable Dry Tuberose Root Phytomass. 

 

As a way to analyze the development relationship among the biometric variables, the Pearson correlation coefficient was 

calculated (Table 4). The Pearson ratio verifies the association degree between two variables, through the correlation coefficient 

and of the p-value. 

 

TABLE 4. Correlations among the biometric output variables of the fuzzy model, for the radish culture, referring to the DAS 35. 

Variables with the symbol “ * ” demonstrated correlation at a 5% significance level of the F test. Variables: RL (root length); 

LN (Leaves Number); DTR (Diameter of the tuberous root); TRL (tuberous root length); FRP (fresh root phytomass); FLP (fresh 

leaf phytomass); FTRP (fresh tuberous root phytomass); DRP (dry root phytomass); DLP (dry leaf phytomass); DTRP (dry 

tuberous root phytomass). 

 LN RL TRD TRL FRP FLP FTRP DRP DLP 

RL 0,52*         

TRD 0,47* -        

TRL - - -0,411*       

FRP 0,61* 0,58* - -      

FLP 0,44* 0,81* - - 0,51*     

FTRP - - - - 0,42* -    

DRP 0,49* 0,53* 0,53* - - - -   

DLP 0,73* 0,69* - - 0,89* 0,55* - 0,49*  

DTRP 0,46* 0,84* 0,40* - 0,58* 0,97* - - 0,62* 
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 It was verified that the variables, dry leaf 

phytomass (DLP) and fresh root phytomass (FRP) 

presented r (correlation coefficient index) high and positive, 

with the leaf number variable (LN), with values 0.726 and 

0.614 respectively. According to Putti (2015), this 

phenomenon occurs due to the high temperatures that are 

perceived in the site during the performance of an 

experiment, since high temperatures cause the plant to have 

greater growth in the initial phenological phases. 

The root length variable (RL) presented high 

correlation with the dry tuberous root phytomass (DTRP) 

and fresh leaf phytomass (FLP) variables. According to El-

Desuki et al. (2005), the root length productivity is related 

to the plant leaf number and the leaf area. This relation 

occurs due to a light interception, generating a greater 

production of photoassimilates. 

Regarding the tuberous root diameter variable 

(TRD), a negative correlation was observed with the 

tuberous root length (TRL), that is, the variables are inverse. 

As the tuberous root diameter increases, the length 

decreases and vice versa. This is due to the high temperature 

in the cultivation period. According to Lima & Oliveira 

(2018), the tuberous root growth is impaired by the high 

environment temperatures and by the excess of irrigation 

before the tuberous root development period. This promotes 

a fast TRD growth and a decrease of its length. The tuberous 

root growth coefficient with the other variables did not 

demonstrate significance at the level of 5%. 

The fresh leaf phytomass variable (FLP) reached a 

high correlation (0.970), with the dry tuberous root 

phytomass variable (DTRP). Hence, according to Lacerda 

et al. (2017), the relation between fresh leaf phytomass and 

the dry tuberous root phytomass is directed with the water 

availability. In his study, the author mentions that the crop 

productivity obtained better results when applied a depth of 

100% and 125%. 
The similarity among the biometric variables can be 

related to the environment conditions, which allows better 

photosynthetic performance and higher quantity of 

photoassimilates (Santos et al., 2019; Silva et al., 2016) 

 

CONCLUSIONS 

According to the validation of the developed models 

(fuzzy and linear regression), the fuzzy model showed to be 

superior over the statistical model for all biometric 

parameters, with higher R² values and lower error indexes 

(MRSP and MAE), thus demonstrating its efficiency in data 

estimation for the decision-making in setting irrigation 

timing.  The quadratic polynomial regression model 

exhibited correlation coefficients (R²) of p > 0.05, therefore, 

it is not a significant model for the analyzed data.  

The same analysis also showed that the fuzzy 

modeling was also superior to the neural network and 

smoothing splines models, which had mean errors of 

RMSE for biometric parameters superior to the RMSE of 

the fuzzy modeling. 

Neural network model cannot be used to represent 

yield data for radish crop since it showed curves with 

unsuitable behavior for agronomic representation. 

The analyses showed that the fuzzy modeling was 

predominant in all developed models, with emphasis on its 

superiority over neural network modeling due to its more 

suitable R² and RMSE for data validation, as well as its 

smooth graphical representation that is closer to the 

agronomic reality of crop development. 

Based on the biometric parameters analyzed, radish 

crop can achieve high yields with an irrigation depth of 75% 

of the crop evapotranspiration, which can lead to great 

savings in relation to the final cost of production. 

Correlation coefficients demonstrate that biometric 

parameters of radish have association with plant yield and 

photoassimilate productions. 

 

ACKNOWLEDGMENTS 

The authors would like to thank the National Council 

for Scientific and Technological Development (CNPq) for 

the research productivity scholarships awarded to the 

penultimate (Process 303923/2018-0) and to the last 

(Process 315228/2020-2) authors. 

 

REFERENCES 

Bregonci IS, Almeida GD, Brum VJ, Zini Júnior A, Reis 

EF (2008) Desenvolvimento do sistema radicular do 

rabanete em condição de estresse hídrico. Idesia (Arica) 

26(1):33-38. DOI: http://doi.org/10.4067/S0718-

34292008000100005 

Boor C (2001) A practical guide to splines. New York: 

Springer, 346 p. 

Bordin D (2016) Plataforma computacional fuzzy para 

avaliação nos estágios do tomateiro dos efeitos da irrigação e 

salinidade da água.  Dissertação (Mestrado em Agronegócio e 

Desenvolvimento) - Universidade Estadual Paulista. 

Boso ACMR, Cremasco CP, Putti FF, Gabriel Filho LRA 

(2021) Fuzzy modeling of the effects of different irrigation 

depths on the radish crop. Part I: Productivity analysis. 

Engenharia Agrícola 41(3). 

Cremasco, CP, Gabriel Filho, LRA, Putti, FF, Ludwig, R, 

Silva Junior, JF (2015) Resposta da cultura do rabanete 

irrigado com água tratada magneticamente e convencional. In: 

XLIV Congresso Brasileiro de Engenharia Agrícola 

(CONBEA), São Pedro-SP. v. 54. p. 1-9 

Cremasco CP, Gabriel Filho LRA, Cataneo A (2010) 

Metodologia de determinação de funções de pertinência de 

controladores fuzzy para a avaliação energética de 

empresas de avicultura de postura. Revista Energia na 

Agricultura 25 (1): 21-39 . DOI: 

http://doi.org/10.17224/EnergAgric.2010v25n1p21-39 

Dantas AEA, Souza TA, Alves TM, Souza TSL, Souto LS 

(2015) Produção de rabanete (Raphanus sativus L.) sob 

diferentes níveis e fontes de fertilizantes orgânicos. In: 

Congresso Técnico Científico da Engenharia e da 

Agronomia. Jaboticabal, Associação Brasileira de 

Engenharia Agrícola, 1-9. 

EMBRAPA - Empresa Brasileira de Pesquisa 

Agropecuária (2012) Hortaliças em revista: importância 

nutricional das hortaliças. Embrapa Produção de 

informação, 16p. 

Filgueira FAR (2007) Novo manual de olericultura: 

agrotecnologia moderna na produção e comercialização de 

hortaliças, Viçosa, Universidade Federal de Viçosa, 3 ed. 

rev. 421p. 



Ana C. M. R. Boso, Camila P. Cremasco, Fernando F. Putti, et al.  328

 

 
Engenharia Agrícola, Jaboticabal, v.41, n.3, p.319-329, may/jun. 2021 

França JA, Morais França MB, Koyama MH, Silva TP 

(2009) Uma implementação do algoritmo Levenberg-

Marquardt dividido para aplicações em visão 

computacional. Semina: Ciências Exatas e 

Tecnológicas 30(1): 51-62. DOI: 

http://doi.org/10.1590/0102-7786351010  

Gabriel Filho LRA, Cremasco CP, Putti FF, Chacur MGM 

(2011) Application of fuzzy logic for the evaluation of 

livestock slaughtering. Engenharia Agrícola, 31(4):813-

825. DOI: http://doi.org/10.1590/S0100-

69162011000400019 

Gabriel Filho LRA, Pigatto GAS, Lourenzani AEBS 

(2015) Fuzzy rule-based system for evaluation of 

uncertainty in cassava chain. Engenharia Agrícola 

35(2):350-367. DOI: http://doi.org/10.1590/1809-4430-

Eng.Agric.v35n2p350-367/2015 

Gabriel Filho LRA, Putti FF, Cremasco CP, Bordin D, 

Chacur MGM, Gabriel LRA (2016) Software to assess 

beef cattle body mass through the fuzzy body mass index. 

Engenharia Agrícola 36(1): 179-193. DOI: 

http://doi.org/10.1590/1809-4430-Eng.Agric.v36n1p179-

193/2016 

Góes BC, Goes RJ, Cremasco CP, Gabriel Filho LRA 

(2021) Fuzzy modeling of vegetable straw cover crop 

productivity at different nitrogen doses. Modeling Earth 

Systems and Environment, 7. DOI: 

http://doi.org/10.1007/s40808-021-01125-4. 

Grácio MCC, Oliveira EFT (2015) Indicadores de 

proximidades em análise de cocitação de autores: um 

estudo comparativo entre coeficiente de Correlação de 

Pearson e Cosseno de Salton. Informação e Sociedade: 

Estudos 25(2):105-116.  

Helwig NE (2017) Regression with ordered predictors via 

ordinal smoothing splines. Frontiers in Applied 

Mathematics and Statistics 3: 15. DOI: 

http://doi.org/10.3389/fams.2017.00015 

Hosseinzadeh SR, Amiri H, Ismaili A (2016) Effect of 

vermicompost fertilizer on photosynthetic characteristics 

of chickpea (Cicer arietinum L.) under drought 

stress. Photosynthetica 54(1):87-92. DOI: 

http://doi.org/10.1007/s11099-015-0162-x 

Klar AE, Putti FF, Gabriel Filho LRA, Silva Júnior JF, 

Cremasco CP (2015) The effects of different irrigation 

depths on radish crops. Irriga 1(1):150-159. DOI: 

http://doi.org/10.15809/irriga.2015v1n1p150 

Köppen W, Geiger R. Klimate der Erde. Gotha, Verlag 

Justus Perthes, 1928. Wall-map 150cmx200cm. 

Lacerda VR, Gonçalves BG, Oliveira FG, Sousa YB, 

Castro IL (2017) Características morfológicas e produtivas 

do rabanete sob diferentes lâminas de irrigação. Revista 

Brasileira de Agricultura Irrigada 11(1):1127-1134. DOI: 

http://doi.org/10.7127/RBAI.V11N100513 

Lordelo LMK, Hongyu K, Borja PC, Porsani MJ (2018) 

Análise fatorial por meio da matriz de correlação de 

Pearson e Policórica no campo das cisternas. Engineering 

and Science, 7(1):58-70. 

http://doi.org/10.18607/ES201875266 

Lima CEP, Oliveira VR (2018) Árvore do conhecimento: 

cebola. AGEITEC: Agência Embrapa de Informação 

tecnológica. Available: 

http://www.agencia.cnptia.embrapa.br/gestor/cebola/arvor

e/CONT000gn0iyu2a02wx5ok0liq1mq7mr143w.html. 

Accessed Maio 12, 2018.  

Martínez MP, Cremasco CP, Gabriel Filho LRA, Braga 

Junior SS, Bednaski AV, Quevedo-Silva F, Correa CM, 

Silva D, Padgett RCML (2020) Fuzzy inference system to 

study the behavior of the green consumer facing the 

perception of greenwashing. Journal of Cleaner 

Production, 242: 116064. DOI: 

http://doi.org/10.1016/j.jclepro.2019.03.060 

Martins MEG, Rodrigues JF (2014) Coeficiente de 

correlação amostral. Revista de Ciência Elementar 2(2):34-

36. DOI: http://doi.org/10.24927/rce2014.042 

Meskini-Vishkaee F, Davatgar N (2018) Evaluation of 

different predictor models for detailed soil particle-size 

distribution. Pedosphere 28(1): 157-164. DOI: 

https//doi.org/10.1016/S1002-0160(17)60422-3 

Olivindo MS, Costa JV, Brito RX (2019) Sistema Fuzzy 

Como Ferramenta Auxiliadora na Predição de 

Malformações Fetais Causadas por Agrotóxicos. In: Anais 

da VII Escola Regional de Computação do Ceará, 

Maranhão e Piauí SBC, Anais... 

Pereira DF, Bighi CA, Gabriel Filho LRA, Cremasco CPC 

(2008) Sistema fuzzy para estimativa do bem-estar de 

matrizes pesadas. Engenharia Agrícola 28(4):624-633. 

DOI: http://doi.org/10.1590/S0100-69162008000400002 

Putti FF (2015) Análise dos indicadores biométricos e 

nutricionais da cultura da alface (Lactuca sativa L.) 

irrigada com água tratada magneticamente utilizando 

modelagem fuzzy. Tese Doutorado, Jaboticabal, 

Universidade Estadual Paulista. 

Putti FF, Gabriel Filho LRA, Cremasco CP, Bonini Neto 

A, Bonini CSB, Reis AR (2017) A Fuzzy mathematical 

model to estimate the effects of global warming on the 

vitality of Laelia purpurata orchids. Mathematical 

Biosciences 288:124-129. DOI: 

http://doi.org/10.1016/j.mbs.2017.03.005 

Putti FF, Gabriel Filho LRA, Silva AO, Ludwig R, 

Cremasco CP (2014) Fuzzy logic to evaluate vitality of 

catasetum fimbiratum species (Orchidacea). Revista Irriga 

19(3):405-413. DOI: 

http://doi.org/10.15809/irriga.2014v19n3p405 

Putti FF, Kummer ACB, Grassi Filho H, Gabriel Filho 

LRA, Cremasco CP (2017) Fuzzy modeling on wheat 

productivity under different doses of sludge and sewage 

effluent. Engenharia Agrícola 37(6):1103-1115. DOI: 

http://doi.org/10.1590/1809-4430-eng.agric.v37n6p1103-

1115/2017 

 

http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v35n2p350-367/2015
http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v35n2p350-367/2015
http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n1p179-193/2016
http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n1p179-193/2016
http://dx.doi.org/10.1590/S0100-69162008000400002
http://dx.doi.org/10.15809/irriga.2014v19n3p405
http://dx.doi.org/10.1590/1809-4430-eng.agric.v37n6p1103-1115/2017
http://dx.doi.org/10.1590/1809-4430-eng.agric.v37n6p1103-1115/2017


Fuzzy modeling of the effects of different irrigation depth in radish crop. Part II: biometric variables analysis  329

 

 
Engenharia Agrícola, Jaboticabal, v.41, n.3, p.319-329, may/jun. 2021 

Rahbarian R, Khavari-Nejad R, Ganjeali A, Bagheri A, 

Najafi F (2011) Drought stress effects on photosynthesis, 

chlorophyll fluorescence and water relations in tolerant and 

susceptible chickpea (Cicer arietinum L.) genotypes. Acta 

biologica Cracoviensia. Series botânica 53:47–56. DOI: 

http://doi.org/10.2478/v10182-011-0007-2 

Santos BDB, Silva PF, Matos RM, Borges VE, Dantas 

Neto J, Lima VLA (2019) Qualidade agronômica da 

cenoura sob níveis de salinidade da água de irrigação e 

adubação orgânica. Revista Ibero-Americana de Ciências 

Ambientais 10(2): 1-9. DOI: 

http://doi.org/10.6008/CBPC2179-6858.2019.002.0001 

Santos JD, Silva CD, Santos CD, Silva CDS, Melo E, 

Barros A (2014). Análise de crescimento e 

evapotranspiração da cultura do rabanete submetido a 

diferentes lâminas de água. Revista Verde de Agroecologia 

e Desenvolvimento Sustentável 9(1):151-156. 

Silva AA, Silva IA, Teixeira Filho M, Buzetti S, Teixeira 

M (2014). Estimativa da produtividade de trigo em função 

da adubação nitrogenada utilizando modelagem neuro 

fuzzy. Revista Brasileira de Engenharia Agrícola e 

Ambiental 18(2):180–187. DOI: 

http://doi.org/10.1590/S1415-43662014000200008 

Silva DFD, Pio R, Soares JDR, Nogueira PV, Peche, PM, 

Villa F (2016) The production of Physalis spp. seedlings 

grown under different-colored shade nets. Acta 

Scientiarum. Agronomy 38(2):257-263. DOI: 

http://doi.org/10.4025/actasciagron.v38i2.27893 

Snyder RL (1992) Equation for evaporation pan to 

evapotranspiration conversions. Journal of Irrigation and 

Drainage Engineering 118(6):977-980. DOI: 

http://doi.org/10.1061/(ASCE)0733-9437(1992)118:6(977) 

Sousa GC, Alves JMS (2016) A regressão linear de galton: 

atividades históricas para função afim e estatística básica 

usando planilhas eletrônicas. Conexões-Ciência e 

Tecnologia 9(4):26-36. DOI: 

http://doi.org/10.21439/conexoes.v9i4.936 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Teramoto ÉT, Santos CMD, Escobedo JF, Pai AD, Silva 

SHMG (2020) Comparing different methods for estimating 

hourly solar ultraviolet radiation: Empirical Models, 

Artificial Neural Network and Support Vector 

Machine. Revista Brasileira de Meteorologia 35(1): 35-43. 

DOI: http://doi.org/10.1590/0102-7786351010 

Viais Neto DS, Cremasco CP, Bordin D, Putti FF, Silva 

Junior JF, Gabriel Filho LRA (2019) Fuzzy modeling of the 

effects of irrigation and water salinity in harvest point of 

tomato crop. Part I: Description of the method. Engenharia 

Agrícola 39(3):294–304. DOI: http://doi.org/10.1590/1809-

4430-eng.agric.v39n3p294-304/2019 

Viais Neto DS, Cremasco CP, Bordin D, Putti FF, Silva 

Junior JF, Gabriel Filho LRA (2019) Fuzzy modeling of 

the effects of irrigation and water salinity in harvest point 

of tomato crop. Part II: Application and interpretation. 

Engenharia Agrícola 39(3):305–14. DOI: 

http://doi.org/10.1590/1809-4430-eng.agric.v39n3p305-

314/2019 

Vieira JH, Silva FD (2017) Resposta da cultura da 

beterraba a distintos níveis de quantidade e qualidade da 

água de irrigação em Alagoas. In: Congresso Nacional de 

Irrigação e Drenagem, UFS - São Cristóvão/SE 996-1001. 

Available: http://www.abid.org.br/cd-xxv-

conird/PDF/168.pdf. Accessed Ago 9, 2019 

Wan S, Kang Y (2006) Effect of drip irrigation frequency 

on radish (Raphanus sativus L.) growth and water use. 

Irrigation Science 24:161-174. DOI: 

http://doi.org/10.1007/s00271-005-0005-9 

Zhang N, Westreenen AV, Anten NP, Evers JB, Marcelis 

LF (2019) Disentangling the effects of photosynthetically 

active radiation and red to far-red ratio on plant 

photosynthesis under canopy shading. A simulation study 

using a functional-structural plant model. Annals of 

Botany 1-12. DOI: http://doi.org/10.1093/aob/mcz197 

http://dx.doi.org/10.15809/irriga.2014v19n3p405
http://dx.doi.org/10.1590/1809-4430-eng.agric.v39n3p305-314/2019
http://dx.doi.org/10.1590/1809-4430-eng.agric.v39n3p305-314/2019

