
 

Engenharia Agrícola 
 

ISSN: 1809-4430 (on-line) 

www.engenhariaagricola.org.br 
 

 

1 Department of Agricultural Engineering, Federal University of Viçosa/Viçosa - MG, Brazil. 
2 Brazilian Agricultural Research Corporation (Embrapa), Embrapa Cotton/Campina Grande - PB, Brazil. 
3 Department of Agronomy, Federal University of Viçosa/Viçosa - MG, Brazil. 
4 Federal University of West Bahia/Barreiras - BA, Brazil. 

Area Editor: Job Teixeira de Oliveira 
Received in: 12-8-2022 
Accepted in: 8-15-2023 

Engenharia Agrícola, Jaboticabal, v.43, n.3, e20220218, 2023 
Edited by SBEA 

Scientific Paper 
Doi: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v43n3e20220218/2023 

 
USING REMOTELY PILOTED AIRCRAFT (RPA) IMAGERY TO MAP THE 

PROFITABILITY OF COTTON CROPS 
 

Erli P. dos Santos1*, Michel C. Moreira1, Charles C. Santana1, 
Fabiano J. Perina2, Renata R. P. Cruz3, Luís G. Carvalho4 

 
1*Corresponding author. Department of Agricultural Engineering, Federal University of Viçosa/Viçosa - MG, Brazil.  
E-mail: erlipinto@gmail.com | ORCID ID: https://orcid.org/0000-0002-4888-906X

 
 
KEYWORDS  

precision agriculture, 
management zones, 
clustering analysis, 
vegetation index. 

ABSTRACT 

The goal of this paper was to apply a method for the delineation of vegetation 
homogeneous zones (HZs) to map the profitability of cotton (Gossypium sp.) using NDVI 
(Normalized Difference Vegetation Index) data from RPA imagery. Two irrigated cotton 
crops, at the FAU (103 ha) and FRP farms (106 ha), located in the western region of Bahia 
State, Brazil, were studied. The NDVI images were classified into three HZs: “high”, 
“medium” and “low” plant vigor; using the k-means clustering method. In each HZ the 
yield was measured, and the profitability estimated. In FAU we found that the lower the 
HZ’s NDVI values, the lower its profitability, because there was profit in the “high vigor” 
HZ, of US$ 829.40 ha-1, and loss in the “low vigor” HZ, of about US$ ‒1.256.09 ha-1 (‒
251.44% compared with the “high vigor”). In the FRP plantation, the lower the NDVI 
values, the lower the loss of the plantation, as there were losses in all HZs: from “high” 
to “low vigor” HZ, the percentage difference in profitability was ‒343.43%. Thus, the use 
of a low-cost modified near-infrared Canon S100 on an RPA enabled the mapping of crop 
profitability, aiding the search for the factors behind yield variability. 

 
 
INTRODUCTION 

Optical vegetation indices (VIs) are mathematical 
models, applied to remote sensing measurements, that were 
developed to represent vegetation properties such as 
photosynthetic activity, pigment content, canopy structure, 
and others. After a systematic review of the scientific 
literature, Zeng et al. (2022) proposed a classification of VIs 
into three main ecological traits: biophysical, biochemical, 
and physiological. The VIs associated with biophysical 
plant parameters are those related to parameters such as the 
leaf area index and green biomass. In this regard, one of the 
most used VIs is the NDVI (Normalized Difference 
Vegetation Index), which is an index developed to represent 
the structure of canopies. 

In precision agriculture, VIs such as the NDVI have 
already been used in agricultural applications, mainly in 
delineating management zones (MZs), as performed by 

Breunig et al. (2020), Oliveira Maia et al. (2022), Georgi et 
al. (2018), Kuiawski et al. (2017), Romano et al. (2021), and 
Scudiero et al. (2018). MZs are a basic concept for most 
approaches in precision agriculture (Breunig et al., 2020), 
and are characterized by areas of the field where plant 
productivity and soil attributes are similar in space and time. 
Among the advantages of delineating the MZs is the 
possibility of applying site-specific management per 
management unit, aiming to maximize profit and yield and 
minimize production costs and the impact of the activity on 
the environment. 

The best variables for delineating MZs should be 
spatially correlated with crop yield (Gavioli et al., 2016). 
Yield maps, however, are not always readily available, so 
other methods for delineating MZs have been proposed. 
Such methods include the fusion of yield and soil attribute 
maps (such as soil apparent electrical conductivity) or 
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delineating MZs using only soil attribute maps, while other 
methods are based on the application of VIs (Breunig et al., 
2020), which are founded on the correlation of crop yield 
and biophysical, biochemical, and/or physiological 
properties of the plants. 

MZs delineation is commonly applied with the use 
of data from more than one crop and when the other 
variables used in the delineation are considered stable in 
time and space (such as soil attributes), as can be observed 
in the works of Breunig et al. (2020), Georgi et al. (2018), 
and Maestrini & Basso (2018). When information from 
plants of the same harvest is used to delineate zones, these 
zones of similar plant behavior are commonly called 
homogeneous zones (HZs) (Marino & Alvino, 2018; 
Romano et al., 2021). 

The use of VIs for delineation of MZs or HZs and 
their use for site-specific management configure a practical 
application of data surveyed by remote sensing platforms, 
from orbiting satellites to the aerial survey level using 
remotely piloted aircraft (RPAs). In fact, the use of RPAs 
for crop monitoring has become increasingly frequent 

(Chen et al., 2021; Marino & Alvino, 2018; Rasmussen et 
al., 2021), since they allow a greater level of detail than 
satellite images. 

In crops like cotton, in which financial investments, 
agrochemical application, and mechanization are intensive, 
the use of technologies for continuous monitoring is 
fundamental to ensure the high yield and profitability of the 
crop. Thus, in this work, we applied a method for the 
delineation of HZs to estimate and map the profitability of 
two cotton crops (Gossypium sp.) using NDVI images 
obtained using an RPA. 
 
MATERIAL AND METHODS 

Aerial survey of cotton fields using an RPA 

Two central pivot-irrigated farms in the municipality 
of Barreiras, in the western region of Bahia State, Brazil, 
were used in this study (FIGURE 1). The first farm, Pivot 
23 of the FAU farm, has approximately 103 ha of planted 
area, while the second farm, Pivot 01 of the FRP farm, has 
approximately 106 ha.

 
 

 

FIGURE 1. Location of the studied cotton fields. 
 

The field data survey was conducted in the 2018/2019 
crop season: cotton was sown on January 25 and February 02, 
2019, on the FAU and FRP farms, respectively. The aerial 
survey of both crops was conducted with the crop already 

established in the field, on June 05, 2019, i.e., 123 and 131 
days after planting on the FAU and FRP farms, respectively. 
The aerial survey was conducted using the RPA model ISIS, 
from Horus Aeronaves (FIGURE 2). 
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FIGURE 2. Remotely piloted aircraft (RPA) used for aerial survey, model ISIS, from Horus Aeronaves. 
 

Coupled to the ISIS RPA was a low-cost 
multispectral camera used to collect the images. A 
consumer-grade point-and-shot Canon S100 modified 
camera was used to collect light in the green, red and near-
infrared (NIR) bands. The modified Canon S100 collected 
the three green-red-NIR bands from 520 to 880 nm. The 
sensor was used because of its low acquisition cost, as well 
as being widely used in plant evaluation studies and 
vegetation vigor zoning (Barrows & Bulanon, 2017; Duarte-
Carvajalino et al., 2018; Haghighattalab et al., 2017; Jewan 
et al., 2022; Ogliari et al., 2022; Van der Merwe & Price, 
2015), including phenotyping (Haghighattalab et al., 2016).  

The Canon S100, with a GPS receiver attached, 
captured frames at a resolution of 12.1 MP (effective 
pixels), which corresponds to 4000 × 3000 pixels per frame. 
With a focal length of 5.2 mm for all shots, it was possible 
to obtain a GSD (ground sample distance), or spatial 
resolution, of 5 cm (pixel size) at the flight height of 120 m. 
The flights were planned for image captures with an image 
overlap of 75% (overlap in the flight direction) and 65% 
(side overlap). 

Delineation of homogeneous zones (HZs) with NDVI 
images  

The images obtained in each plantation with the 
RPA were processed in Pix4Dmapper software. This step 
consisted of the generation of orthomosaics, from 
georeferencing, orthorectification, and mosaicking of the 
obtained images. Then the NDVI was calculated for each 
orthomosaic and the areas of interest (AOI) were cut out, a 
step in which only the pixels of the crops were kept. 

The orthomosaics were generated with a spatial 
resolution of 0.11 m, which tends to be a very fine 
resolution for the purposes of applications in agriculture 
such as delineating HZs. Georgi et al. (2018) reached this 
conclusion by analyzing RapidEye images, of 6.5 m spatial 
resolution. Thus, the NDVI images underwent post-
processing in order to attenuate their detailing level. 

The post-processing consisted of filling in missing 
data, i.e., possible pixels with no-data value had their values 
interpolated by averaging the values of neighboring pixels 
(in a 3 × 3 kernel, with a maximum search of 9 × 9 pixels); 
resampling, to reduce the spatial resolution, configuring an 
output resolution of 1.0 m and employing the averaging 
resampling method; then the images were smoothed with an 
averaging filter with a 51 × 51 pixel moving window 
(kernel). This post-processing was adapted from the 
methodology of Georgi et al. (2018), and although 
resampling and smoothing have a strong impact on the level 
of detail in the images, the focus of this work was on 
delineating geometric zones, and high levels of detail tend 
to produce small-scale detail, which may be too much for 
practical implementation in agricultural machinery. 

After post-processing, the images were classified 
using the k-means clustering method, where three classes 
(number of clusters) of NDVI were segmented. An odd 
number of classes was chosen to ensure an “average” class 
of crop behavior (Georgi et al., 2018), and a smaller number 
of classes (such as three) facilitates an overall analysis of 
the crops (Albornoz et al., 2018; Song et al., 2009), in this 
case, an analysis of the crop’s profitability. 

The post-processing and classification of the NDVI 
images were performed with Python programming 
language resources (version 3.7). Subsequently, the 
delineation of homogeneous zones was performed using the 
QGIS software (version 3.22.10), where the NDVI classes 
were converted into polygons. All the processing for 
obtaining the NDVI-based HZs is presented in FIGURE 3. 

Finally, the HZs were delineated and labeled, 
according to the median NDVI (𝑀𝑑(𝑁𝐷𝑉𝐼)) of the HZ, 
into: “high vigor” cotton plants (HZ with the highest 
𝑀𝑑(𝑁𝐷𝑉𝐼), or 𝑀𝑑(𝑁𝐷𝑉𝐼) ), “low vigor” (HZ with the 
lowest 𝑀𝑑(𝑁𝐷𝑉𝐼), or 𝑀𝑑(𝑁𝐷𝑉𝐼) ), and “medium 
vigor” (the HZ with 𝑀𝑑(𝑁𝐷𝑉𝐼) < 𝑀𝑑(𝑁𝐷𝑉𝐼)) <
 𝑀𝑑(𝑁𝐷𝑉𝐼) ).
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FIGURE 3. Post-processing of the NDVI images and delineation of the homogeneous zones (HZs) in the cotton fields. 
 

After defining the HZs, the NDVI distribution of 
each HZ was submitted to statistical similarity tests. For 
this, the non-parametric Kruskal‒Wallis test was applied to 
test the overall statistical difference between the three 
groups of NDVI (coming from the three HZs), followed by 
Dunn’s post-hoc test (also non-parametric), where pairs of 
NDVI distributions were tested. Both non-parametric tests 
were chosen because the NDVI distributions did not meet 
the requirement of homogeneity of variances to be 
submitted to the parametric test (ANOVA). 

Estimating crop yield and profitability  

Once the HZs were delineated, the yields (CY) in 
each of them were calculated. To obtain the CY, the harvest 
was carried out, in a sampled area, followed by weighing, 
to obtain the harvested production (HP) and the harvested 
area (HA) per HZ. With the CY per HZ, the profitability (P) 
of each HZ was computed using [eq. (1)]. 
 

𝑃(𝐻𝑍) = [𝐶𝑌(𝐻𝑍) ∙ 0.40 ∙ 𝐶𝐿𝑃] +
𝐶𝑌(𝐻𝑍) ∙ 0.55

1000
∙ 𝐶𝑆𝑃 − 𝐶𝑃𝐶  

(1) 

Where:  

P(HZ) is the profitability of the HZ (US$ ha-1);  

CY(HZ) is the calculated cotton yield (which 
considers cotton lint + cottonseed + impurities) in 
the HZ (kg ha-1);  

CLP is the cotton lint selling price (US$ kg-1); 

CSP is the cottonseed selling price (US$ Mg-1), and  

CPC is the cotton production cost, in US$ ha-1. The 
values 0.40 and 0.55 refer to the percentage of cotton 
lint in CY and the percentage of cottonseed in CY, 
respectively. 
 
The first and second terms of [eq. (1)] refer to the 

revenue obtained from the sale of the production harvested 
(selling of cotton lint and cottonseed, respectively), while 
the third term (CPC) refers to the unit cost of cotton crop 
production in the Western region of the State of Bahia (for 
the 2018/2019 crop season). The values adopted for CLP 
and CSP were R$ 5.79 kg-1 and R$ 500.18 Mg-1, 
respectively, while the CPC value adopted was about R$ 
10,106.20 ha-1. All data were obtained for the study region, 
from the 2018/2019 crop season, through the Brazilian 
Confederation of Agriculture and Livestock (CNA, 2019) 
and the Associação Brasileira dos Produtores de Algodão 
(the Brazilian Association of Cotton Producers) (ABRAPA, 
2022). The CLP, CSP, and CPC values were converted from 
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R$ to US$ using the 2019 average exchange rate of 3.9445 
R$/US$, provided by the Banco Central do Brasil (IPEA, 
2022). So, the values employed in [eq. (1)] were: 𝐶𝐿𝑃 =
 1.47 𝑈𝑆$ 𝑘𝑔 , CSP = 126.80 𝑈𝑆$ 𝑀𝑔 , and 𝐶𝑃𝐶 =
2,562.10 𝑈𝑆$ ℎ𝑎 . 

Considering that the studied crops did not receive 
any site-specific management, that is, they received the 
same treatment (of irrigation, fertilizers, etc.), the 
expectation was that the yield and profitability should 
perform uniformly. However, due to the interaction of 
production factors and the spatial variability of the yield, 
this homogeneity of productivity and profitability was not 
evident. Thus, in addition to estimating CY(HZ) and P(HZ), 
the loss of profitability was also calculated. The loss of 
profitability was calculated using [eq. (2)], where the 
difference between the P of the high vigor HZ and the P of 
the other HZs is calculated. 

𝑳𝒐𝒔𝒔 𝒐𝒇 𝑷(𝑯𝒁) = − 𝑷(𝑯𝒁)𝒉𝒊𝒈𝒉 𝒗𝒊𝒈𝒐𝒓 − 𝑷𝑯𝒁 (2)
 
RESULTS AND DISCUSSION 

The NDVI of the crops, after image resampling from 
0.11 to 1.0 m, is presented in FIGURE 4. In both cotton 
plots, we have identified visually regions with different 
cotton canopy biomass behavior. After image classification, 
the HZs were delineated and are displayed in FIGURE 4b) 
for FAU and FIGURE 4e) for FRP. For the FAU plantation, 
the “high vigor” HZ was delineated as 47.40 ha, the 
“medium vigor” HZ as 44.20 ha, and the “low vigor” HZ as 
11.55 ha. For the FRP plantation, the “high vigor” HZ was 
delineated with 50.06 ha, the “medium vigor” HZ with 
36.62 ha, and the “low vigor” HZ with 21.06 ha

 

 

FIGURE 4. Study areas: FAU, in subplot a) the NDVI map, in b) the homogeneous zones (HZs), and in c) the distribution of 
NDVI values for each HZ; for FRP d) shows its NDVI map, b) its homogeneous zones, and c) the distribution of NDVI values 
in each HZ. 

 
FIGURE 4c) and FIGURE 4f) display the NDVI distribution for FAU and FRP, respectively, in each HZ. The NDVI 

distributions of HZs are statistically different (P = 0.05) in each crop, as can be seen in TABLE 1. 
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TABLE 1. Results of the Kruskal‒Wallis and Dunn’s tests displaying the statistical difference of NDVI values from each HZ in 
each crop area. 𝜒  is the chi-squared Kruskal‒Wallis test statistics, df is the degrees of freedom, Z-stat is the statistics of Dunn’s 
pairwise test, and * indicates significant statistical difference between groups (for the Kruskal‒Wallis test) and between pairwise 
groups (for Dunn’s test). 

Kruskal‒Wallis test for NDVI of each HZ Dunn’s test 

NDVI from 𝝌𝟐 df 
Adjusted  
p-value 

NDVI from pairwised HZs Z-stat Adjusted p-value 

FAU 187361.9946 2 < 2.2E-16 * 

High vigor - Low vigor 402.9602 0 * 

High vigor - Medium vigor 274.3264 0 * 

Low vigor - Medium vigor ‒226.545 0 * 

FRP 330654.0388 2 < 2.2E-16 * 

High vigor - Low vigor 560.599 0 * 

High vigor - Medium vigor 317.9911 0 * 

Low vigor - Medium vigor ‒279.589 0 * 
 

Some work has been done to develop, implement, or 
test automatic methods for classifying and determining the 
optimal number of classes (i.e., management zones and/or 
HZs) (Albornoz et al., 2018; Gavioli et al., 2016; Ohana-
Levi et al., 2021; Oldoni & Bassoi, 2016; Schenatto et al., 
2017; Song et al., 2009). In these works, there is a consensus 
that the feasible limit of MZs per plot is approximately six 
classes. Methods for automatic definition of the optimum 
number of classes use indices such as the FPI (fuzziness 
performance index) to indicate the degree of dissimilarity 
between delineated classes (Schenatto et al., 2017). This 
type of methodology was not used in this work because we 
sought to represent the general behavior of crops concerning 

their economic return, and a larger number of classes would 
make it difficult to obtain the crop’s cash yield in each HZ 
since even smaller areas would be delineated. Therefore, the 
number of HZs was set to three, ensuring the detection of 
an average behavior class. Indeed, employing methods such 
as the FPI, Song et al. (2009) likewise detected an optimal 
number of three HZs also using vegetation indices. 

In each delineated HZ, the cotton harvest was done 
to obtain an estimate of the crop yield (CY), as presented in 
TABLE 2. Crossing the delineation of the HZs, presented in 
FIGURE 4, with the CY for each HZ, we have noticed that 
the lower the NDVI (see boxplots in FIGURE 4c) and 
FIGURE 4f)), the lower the CY.

 
TABLE 2. Obtained harvested area (HA), harvested production (HP), and crop yield (CY) for each homogeneous zone (HZ) 
from FAU and FRP farms. 

HZ 

Crop 

FAU FRP 

HA (ha) HP (kg) 
CY 

(kg ha-1) 
HA (ha) HP (kg) 

CY 
(kg ha-1) 

High vigor 2.06 10,640.0 344.34 2.31 8,310.0 239.83 

Medium vigor 2.13 8,660.0 271.05 2.75 8,750.0 212.12 

Low vigor 3.62 7,200.0 132.60 3.68 9,390.0 170.11 
 

Damian et al. (2017) developed a study to monitor 
the yield variability of soybean (Glycine max (L.) Merrill) 
and black oat (Avena strigosa Screb.) using NDVI images 
obtained by an RPA. The authors concluded that the NDVI 
images were efficient in monitoring crop yield since the 
crop cover (or canopy) is correlated with its yield. This 
correlation was also found by Breunig et al. (2020), who 
studied rapeseed (Raphanys sativus L.), white oat (Avena 
sativa L.), and rye (Secale cereale L.) crops. Although we 
did not apply correlation tests in the methodology from the 
data presented in FIGURE 4 and TABLE 2, we could infer 

that the NDVI of cotton also tends to decrease when its yield 
decreases, and this finding allowed us to map the profit    
and loss of profit of the crops based on the crop yield of 
each HZ. 

The result of this economic profitability analysis, 
i.e., the calculation of profit and loss of profit in the crops, 
is presented in FIGURE 5. FIGURE 5a) and FIGURE 5b) 
display the profitability and loss of profitability, 
respectively, of the FAU plantation, while FIGURE 5c) and 
FIGURE 5d) show the profitability and loss of profitability, 
respectively, of the FRP plantation.
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FIGURE 5. Profitability (P) and loss of P from cotton planting in each homogeneous zone (HZ) in a) and b) for FAU plantation 
and in c) and d) for FRP plantation. 

 
In the FAU plantation, there are two HZs where there 

is profit from the activity, in the “high and medium vigor” 
HZs. However, of the 103-ha planted, there are losses in 
approximately 11 ha, in the “low vigor” HZ. In this region 
of the farm, the interaction of the genotype and 
environmental factors did not favor the maximum 
productivity of the plants. In the FRP plantation, there was 
no profit from the activity. In all the HZs, we calculated 
losses in cotton production; however, the degree of loss is 
different for each HZ.  In FRP, the lower the NDVI 
(ranked), the greater the loss.  

The loss of profitability (FIGURE 5b) and FIGURE 
5d)) represents the negative difference between the highest 
profitability achieved in the plantation (P of the “high 
vigor” HZ) and the profitability of the other HZs. For the 
FAU plantation, two HZs showed a profit, and the third HZ 
showed a loss. Although the inputs and water were applied 
aiming for uniformity of crop yield throughout the area, 
obtaining different results, in this situation, configures a 
loss of yield and, consequently, profitability. 

In these situations, if the patterns are repeated for 
successive crops, it is necessary to investigate the causal 
agent(s) of this limitation, be it the occurrence and 
interaction of pathogens with the plants, the carry-over of 
fertilizers along with soil losses, or even unevenness in the 
irrigation depth, and make a decision, which could be to 
reanalyze the agricultural suitability of the crop in the 
existing edaphic conditions, or to perform specific local 

management of the crop, seeking to optimize the production 
cost and cash yield. Unlike FAU, in FRP the whole crop 
would need site-specific management to obtain profits.  

Throughout the literature, there is a consensus on the 
importance of the yield map for knowledge of the spatial 
variability of crops (Momin et al., 2019; Sanches et al., 
2019), since it represents the response of plants to the 
conditions of the production factors during cultivation. 
However, yield monitors are not always available in 
existing harvesters on farms, and this may be a hindrance to 
the use of precision farming practices, since there is a close 
relationship between plant yield and vegetation indices 
(Breunig et al., 2020; Oliveira Maia et al., 2022; Ferrer et al., 
2020; Georgi et al., 2018; Romano et al., 2021), which aim to 
represent their biophysical or biochemical parameters. 

Operational and net profits tend to increase with the 
employment of yield maps (Schimmelpfennig, 2016), so we 
cannot neglect the existence of on-board technologies in the 
most recent harvesters available, such as yield monitors, 
which, after correct calibration of the system and 
appropriate data treatment (which requires personnel with 
expertise), are used to generate the so-called yield maps. 
However, not all farms, even in developed countries such as 
the United States of America, have access to or use these 
technologies, as shown in the USDA (U.S. Department of 
Agriculture) report published by Schimmelpfennig (2016). 
The data in that report also show that the adoption of these 
precision farming technologies is even lower in the cotton 
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crop. Therefore, the use of technologies such as RPAs – and 
data processing techniques generated by these platforms – 
is an alternative for these farms, since the producer does not 
necessarily need to own the equipment required for aerial 
mapping and expertise for data processing, since 
specialized companies can be hired. 

Furthermore, both yield and vegetation index maps 
do not show the possible causes of the spatial variability of 
plant yield, which can be associated with (for example) 
spatial variability of soil attributes. In this case, the use of 
RPA images should be employed not as an end, but as a 
means for searching for these causes, which should be 
investigated by obtaining and evaluating other variables of 
the agricultural systems environment. This subject is widely 
explored in literature reviews such as those by Maes & 
Steppe (2019) and Aslan et al. (2022). 

 
CONCLUSIONS 

In the FAU plantation, we verified losses to the 
farmer in the “low vigor” homogeneous zone. As for the 
FRP plantation, we verified losses throughout the crop, 
although in different degrees: the lower the NDVI values, 
the greater the estimated loss. Thus, the methodology 
employed with the use of remotely piloted aircraft allows 
the farmer to map the areas with profitability and loss, and 
provides evidence for the adoption of site-specific 
management in the plots, such as the search for the causes 
of spatial variability of crop yield. 
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