
Morphology and Biochemistry of Ovulation

Morfologia e bioquímica da ovulação
Sebastião Freitas de Medeiros1,2 Bruna Barcelo Barbosa2 Matheus Antonio Souto de Medeiros2

Márcia Marly Winck Yamamoto2

1Department of Gynecology and Obstetrics, Faculdade de Medicina,
Universidade Federal do Mato Grosso, Cuiabá, Mato Grosso, MT,
Brazil

2 Instituto Tropical de Medicina Reprodutiva, Cuiabá, Mato Grosso,
MT, Brazil

Rev Bras Ginecol Obstet 2021;43(6):480–486.

Address for correspondence Sebastião Freitas de Medeiros, MD,
Rua Henrique P Guedes, 195, Bairro Duque de Caxias, 78043-306, 900,
Mato Grosso, MT, Brazil (e-mail: de.medeiros@terra.com.br).

Introduction

Ovulation is the term used to define the ovarian release of the
femalematuregamete that is ready tobefertilized.Theprocess
of ovulation includes a series of morphological and biochemi-
cal events within the preovulatory follicle. Several genes are

activated in the ovarian environment, leading to enzymatic
and structural transformations under the influence of gona-
dotropins and sex steroids that are modulated by several
growth factors. All of these events ensure that the oocyte
becomes likely to be fertilized and extruded on the ovarian
surface to form the corpus luteum.1 The clinical marker of the
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Abstract The process of ovulation involves multiple and iterrelated genetic, biochemical, and
morphological events: cessation of the proliferation of granulosa cells, resumption of
oocyte meiosis, expansion of cumulus cell-oocyte complexes, digestion of the follicle
wall, and extrusion of the metaphase-II oocyte. The present narrative review examines
these interrelated steps in detail. The combined or isolated roles of the follicle-
stimulating hormone (FSH) and luteinizing hormone (LH) are highlighted. Genes
indiced by the FSH genes are relevant in the cumulus expansion, and LH-induced
genes are critical for the resumption of meiosis and digestion of the follicle wall. A non-
human model for follicle-wall digestion and oocyte release was provided.
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Resumo O processo de ovulação envolve modificações genéticas, bioquímicas e morfológicas
múltiplas e interrelacionadas: suspensão da proliferação das células da granulosa,
reinício da meiose do oócito, expansão das células do complexo cumulus-oócito,
digestão da parede folicular, e extrusão do oócito. Esta revisão narrativa examina em
detalhes cada um desses eventos e os principais genes e proteínas envolvidos. Mais
importante, a ação combinada ou isolada do hormônio folículo-estimulante (HFE) e do
hormônio luteinizante (HL) é destacada. Detalha-se o papel do HFE na expansão do
cumulus e do HL na digestão da parede folicular, permitindo a extrusão do oócito na
superfície ovariana. Proveu-se um modelo não humano para explicar a digestão da
parede folicular.
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beginning of the reproductive cycle responsible for the
maturation and extrusion of the oocyte is menstruation. In
regular cycles, at intervals of 24 to 38 days,2 ovulation occurs
mid-cycle, at around the 14th day. In this scenario, in an
orchestrated way, the follicle-stimulating hormone (FSH),
and the luteinizing hormone (LH) actively participate in the
events that ensure ovulation, mostly through activation of
multiplegenes in thecaandgranulosacells. Thepresent review
aims to examine the basic mechanisms of ovulation and
describe the morphological and molecular events intercon-
nected during the ovulatory process.

Methods

We searched for articles published in English in the PubMed
andGoogle Scholar databases. Thekeywordswere as follows:
menstrual cycle, menstrual cycle physiology, folliculogenesis,
theca cells, granulosa cells, oocyte, oocyte-cumulus complex,
follicular wall digestion, cumulus-oocyte-complex expansion,
oocytematuration, gene expression, FSH, LH, and progesterone
receptor. We expanded the search to the references of the
retrieved articles.

Follicular Dynamics and Folliculogenesis
The more advanced stages of follicle development are charac-
terized by the appearance of intercellular spacefilled by antral
fluid. At this stage, the granulosa cells are differentiated into
two distinct populations: cumulus cells, which are those
closely linked to the oocyte, andwall or mural granulosa cells,
which internally line the follicular wall. Although these two
cell types share a common origin, there are differences in the
production of transcribers and proteins.3 At the end of follicu-
lardevelopment, theFSHandestradiolpromote theexpression
of the LH receptor (LHR) in granulosa cells. Most LHmolecules
bind to mural granulosa cells rather than to cumulus cells.4

Cumulus cells provide energy input to the oocyte, controlling
its growth and metabolism.5 On the other hand, mural gran-
ulosa cells are responsible for steroid synthesis and differenti-
ation in luteum cells after ovulation.6 Cumulus granulosa cells

playa smaller role regarding thefunctionof thecorpus luteum.
Follicular architecture is provided by the inner and outer
theca-cell layers (►Fig. 1). The theca cells, provided with
LHR, are responsible for the capture of the substrate choles-
terol and its enzymatic conversion into androgens, mainly
testosterone (T) and androstenedione (A4). In turn, granulosa
cells, which are adjacent to the theca cells, capture A4 and T
and, by the action of the aromatase enzyme, convert them into
estrone and estradiol respectively (►Fig. 2).7

Folliculogenesis begins with the formation of the primor-
dial follicle, and ends with the preovulatory follicle.8 The FSH,
released by the anterior pituitary gland, promotes the recruit-
mentof follicularwaves that, in response, secrete estradiol and
inhibin. When synthesized, these hormones modulate the
release of pituitary FSH and LH in a pulsatile way. At the end
of folliculogenesis, the preovulatory peaks of FSH and LH
induce a complex sequence (or even a concurrence) of events:
oocyte maturation, cumulus cell expansion, follicular wall
digestion, and release of the cumulus-oocyte complex.9

Ovulation Process

Genetic Aspects Determining Ovulation
The ovulation process occurs in a coordinated and interrelated
way in five complex steps: interruption of granulosa cell

Fig. 1 Structure of the periovulatory follicle showing internal and
external theca cell layers, granulosa cells, and the oocyte.

Fig. 2 Scheme showing the steroidogenesis of theca and granulosa ovarian cells. Abbreviations: P450ssc, cytochrome P450 for cleavage of
cholesterol side chains; 3-βSHD, 3 β hydroxysteroid dehydrogenase; 17-HSD3, 17-hydroxysteroid dehydrogenase. Source: Medeiros et al.7
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proliferation, resumptionofmeiosis, expansionof thecumulus
with oocyte release inside the antrum, lysis of the follicular
wall, and oocyte extrusion at the metaphase II (MII) stage. In
mammals, oocytes are stationed inmeiosis I at prophase I. The
resumptionofmeiosis I occurs duringpubertyas a result of the
gonadotropic stimulus in follicles in the preovulatory stage,
culminating in the rupture of the germ vesicle.10 The increase
in the concentrations of LH and FSH in the mid-cycle in the
presence of the preovulatory follicle, now provided with LHR
ingranulosa cells, promotes theactivationof severalgenes that
encode thesynthesis of variousproteins. Thisprocess is similar
to inflammatory processes.11 The LH activates cyclase, result-
ing in intracellular increases in cyclic adenosine monophos-
phate (cAMP) that activate cAMP-dependent kinases and the
expression of the hyaluronic synthase 2 (HAS-2) and cycloox-
ygenase 2 (COX-2) enzymes, the tumor necrosis factor-induc-
ible gene 6 protein (TSG-6), pentraxin 3 (PTX-3), and genes of
the epidermal growth factor (EGF)-like family, such as amphir-
egulin (AREG), epiregulin (EREG), and betacellulin (BTC).12–14

Tissue rearrangement occurs as a result of the activation of
these genes participating in the cascade of ovulation events.

The Role of the Follicle-stimulating Hormone
Periovulatory gene expression induced by the FSH in cumulus
cells plays a minor but necessary role in the mediation of
ovulation (►Fig. 3). The occurrence of the FSH peak activates
its own receptor (FSHR), stimulates the expression of steroido-
genic factors, and induces LHR synthesis in granulosa cells. Such
functions of the FSHR are related to the FSH activation of cAMP
synthesis, and are triggered mainly through the expression of
protein kinases A (PKA) and C (PKC) enzymes in granulosa
cells.15 The FSH activates the phosphatidylinositol 3-kinase/-
proteinkinaseB (PI3K/Akt)pathway tomediate cell survival and
granulosa proliferation, including the expression of the vascular
endothelial growth factor (VEGF) gene, and it activates extracel-
lular-regulated kinase (ERK) signaling in mural granulosa and
cumulus cells, facilitating cumulus expansion.16 The FSH may
also induce COX-2 and other prostaglandin synthases through
cAMP/PKA activation.17 Activation of the COX-2 gene results
mainly inprostaglandinF-α (PGF2α) that induces changes in the
gene expression of the cumulus-oocyte-complex, which is
critical for cumulus-oocyte-complex expansion.18 Additionally,
the FSH induces the expression of genes belonging to the family
of disintegrin andmetalloproteinases (A disintegrin andmetal-
loproteinase with thrombospondin motifs, ADAMTS), mole-
cules relevant in the process of cleavage of the extracellular
matrix (►Fig. 3). It seems that these proteins are the main
regulators of the release of EGF-like proteolytic factors in a
soluble form (AREG, EREG, and BTC),19 which activate the EGF
receptor tyrosine kinase and the extracellular signal-regulated
kinase (ERK) involved in cumulus expansion.13 Metalloprotei-
nases ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMS-16,
genes expressed in granulosa cells, are involved in the dissocia-
tion of the cumulus-oocyte complex and in the formationof the
corpus luteum.20,21 Then, the FSH, in the same way as in
the mucification of the cumulus, plays a role with the LH in
the synthesis of enzymes responsible for the digestion of the
follicle wall.

The Role of the Luteinizing Hormone
The role the LH in the ovulation process is complex and
fundamental for the resumption of meiosis, loosening of the
cumulus cells, and rupture of the follicle.22 With the peak of
the LH, the messenger ribonucleic acid (mRNA) for the
progesterone receptor (PR) as well as other genes is now
transcribed into the granulosa cells of preovulatory follicles
(►Fig. 4).23 The PR has an indirect influence on the synthesis
of proteolytic enzymes cathepsin L and ADAMTS-1, which
together play a role in tissue degradation and the remodeling
of the extracellular matrix at the apex of the preovulatory
follicle until ovulation occurs.24 The LH peak, modulated by
AMP, participates in the process of suppression of the
proliferation of granulosa cells, and restarts meiosis, disso-
ciation of the granulosa, digestion of the follicle wall, and
luteinization.

Biochemical Aspects Determining Ovulation

Mucification and Cumulus Expansion
The genetic and biochemical events responsible for cumulus
mucification are summarized in ►Fig. 5.23 The matrix on
which the cumulus cells move has three major components:
hyaluronic acid (HA) and two HA binding proteins, TSG-6,
and inter-α-trypsin inhibitor (ITI).9,25 Induced by the peaks

Fig. 3 Biochemical events initiated by the follicle stimulating
hormone (FSH) in the preovulatory follicle. Abbreviations: VEGF,
vascular endothelial growth factor; COX-2, cyclaoxygenase-2; PKA,
protein kinase A; PKC, protein kinase C.

Fig. 4 Expression of several genes induced by the luteinizing
hormone (LH) peak. Source: Richards et al.23Abbreviations: PO,
preovulatory; PR, progesterone receptor; PGS, prostaglandins;
C/EBPβ, CAAT enhancer-binding protein β; p27KIP1, cyclin-dependent
kinase inhibitor 1B; Start 5, steroidogenic enzymes; IGF, insulin
growth factor; COX, cyclooxygenase.
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of FSH and LH, HAS-2 is the main enzyme responsible for the
synthesis of arachidonic acids and HAs in the cumulus-
oocyte complex, and, in synergy with COX-2, causes the
synthesis of prostaglandins (PGs) from arachidonic acid in
the granulosa cells of the cumulus. Thus, the expression of
COX-2 in the cumulus cells promotes the synthesis of PGs,
mainly prostaglandin E (PGE), and ensures the expansion of
the cumulus.18,25,26 However, cumulus expansion occurs
only when the ITI enters the follicle. The TSG-6 and the
proteoglycans brevican and versican, induced by high con-
centrations of LH and HA stabilization, are rapidly expressed
in the cumulus granulosa cells of preovulatory follicles.16 In
the context of deficiency of the TSG-6 enzyme, the extracel-
lular matrix is not structured, compromising cumulus ex-
pansion.27 The PTX-3 protein, with an affinity for TSG6, is
also responsible for the stability of the cumulus matrix. The
interaction between these enzymes appears to be crucial for
the structuring and expansion of the cumulus matrix, en-
abling the dispersion of the cumulus cells away from the
oocyte.20 Collectively, these observations indicate that HA,
ITI, and COX-2, induced by the TSG-6 gene, are critical for
cumulus matrix formation, cumulus cell differentiation, and,
ultimately, cumulus expansion.

Oocyte Maturation
The oocyte maturation process aims to empower the female
gamete and ensure its subsequent development until the
activation of the embryonic genome occurs. Therefore, chro-
matin condensation is relevant in the continuity of meiosis,
redistribution of organelles in the cytoplasm, and alterations
in the cytoskeleton; all of these modifications are precisely
regulated and coordinated (►Fig. 6).28 For this to happen,
there is paracrine cross-talk between the oocyte and cumu-
lus cells. Cumulus cells penetrate the zona pellucida and limit
the ooelema gap junction between the cumulus and the
oocyte transfer of small molecules.28 Biochemically, the
oocyte regulates the metabolism of cumulus cells, which in
turnprovide ions,metabolites, amino acids, and small oocyte
regulatory molecules (►Fig. 7).29 Paracrine oocyte factors

are soluble, and are generically referred to as oocyte-secreted
factors (OSFs).30 The growth differentiation factor 9 (GDF-9),
the bonemorphogenetic protein 15 (BMP15), and, to a lesser
extent, the BMP6 are considered OSFs; all belong to the
family of transforming growth factors β (TGFβ).30,31 These
factors coordinate the differentiation lineage and function of
granulosa cells.

The functions of the OSFs include growth stimulation,
prevention of apoptosis, inhibition of luteinization, regula-
tion of energy metabolism, cholesterol biosynthesis, and
regulation of cumulus expansion.32–34 The factors that regu-
late the relationship between cumulus granulosa cells and
the oocyte include ions, metabolites, amino acids, and small
intracellular signaling molecules such as cAMP, cyclic gua-
nosine monophosphate (cGMP), and inositol triphosphate-3
(IP3).6,32 In the regulation of meiosis, cAMP synthesized by
the oocyte itself and by cells of the mural granulosa and
cumulus reaches the oocyte through the junctions of the
hexameric lacunar canal composed of connectin
proteins.35,36

In general, the properties of lacunar junctions enable the
direct and bidirectional transport of small molecules be-
tween the oocyte and the granulosa cells. High intraoocyte
levels of cAMP maintain the oocyte in the stage of germ
vesicle, through suppression of the activity of the matura-
tion-proimoting factor (MPF).37–39 Follicle somatic cells also
provide cGMP to the oocyte, inhibiting the phosphodiester-
ase enzyme type 3A (PDE3A), thereby preventing the

Fig. 6 The role of the LH in meiosis resumption. Source: Coticchio
et al.28 Abbreviations: TGFβ, transforming growth factor β; EGF,
epidermal growth factor.

Fig. 5 Combined actions of the FSH and LH in the expansion of
oocyte-cumulus cells. Source: Richards et al.23 Abbreviations: HA,
hyaluronic acid; GDF, growth defferentation factor; BMP, bone
morphogenetic protein; PE, prostaglandin E receptor.

Fig. 7 Cell-cell signaling between the oocyte and granulosa cells in
the final stage of follicle development. Source: Adapted from: Sutton
et al.29 Abbreviations: GDF-9, growth differentiation factor 9; BMP-15,
bone morphogenetic protein 15; FGF-8B, fibroblast growth factor 8B.
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degradation of cAMP with the accumulation of this factor
and inhibition of the resumption ofmeiosis.38,40With the LH
stimulus at high concentrations, the connectins close, de-
creasing the contribution of cAMP and cGMP from the
cumulus cells to the oocyte. Therefore, the decrease in
cAMP levels leads to the phosphorylation of PDE3A that
degrades the cAMP. The degradation of cAMP enables the
synthesis of the MPF, which promotes the resumption of
meiosis I.41

In a recent study42 in mice, the expression of natriuretic
peptide type C (NPPC) was found in the mural granulosa
cells, and natriuretic peptide receptor 2 (NPR2) was found
in cumulus cells. With the communication between these
two cell types the NPPC ligand and NPR2 stimulate
the secretion of cGMP and cAMP. By adding NPPC to the
culture media, an increase in the rates of oocytes that did
not resume meiosis was observed, favoring the synchrony
between nuclear maturation and cytoplasmic maturation.42

During cytoplasmic maturation, there is a physical rear-
rangement of mitochondrial groups and endoplasmic retic-
ulum, following the maturation time and energy
dependence of the meiotic spindles so that chromatin is
divided.

The meiotic spindles are responsible for the continuity of
the meiotic division and extrusion of the two polar cor-
puscles. Initially, the mitochondrial groups are in a central
position in the oocyte. As the maturation progresses, they
migrate to the edges of the oocyte, close to the extruding
regions of the polar body.43,44 The MPF is the factor directly
involved in cytoplasmic maturation, because, in addition to
inducing the breakdown of the germ vesicle, it promotes the
condensation of chromosomes, moving them from pro-
phase I to metaphase I (MI), in which there is the formation
of the meiotic spindle and the alignment of chromosomes in
the center of the spindle. Then, anaphase I occurs, which
consists of the separation of homologous chromosomes.
Sequentially, telophase I begins with the extrusion of
the first polar body, and the oocyte is in the metastasis II
stage. At this stage, there is the formation of the second
meiotic spindle and alignment of chromosomes, following
anaphase II and telophase II and, finally, the extrusion of
the second polar body.45,46 The oocyte remains in this stage
until ovulation occurs and there is the penetration of the
sperm.

Follicular Wall Digestion
Morphological and biochemical changes that result in rup-
ture of the follicular wall and oocyte extrusion occur basi-
cally by the action of the LH, because it induces the synthesis
and secretion of various enzymes (►Fig. 8). The role of the
FSH is smaller in this process, when the oocyte and cumulus
cells are stillfixed in the extracellularmatrix (ECM).With the
LH peak, LHR on the surface of the granulosa cells activates
the digestion of the ECM within the theca layers and tunica
albuginea at the ovarian surface via adenyl cyclase. The
effectiveness of ECM digestion occurs through the balance
between matrix components and proteases in the cumulus,
oocyte, and endothelium cells that form the corpus luteum.21

Theca cells express a variety of matrix metalloproteinases
(MMPs), including MMP2 (gelatinase A), MMP9 (gelatinase
B), MMP13 (collagenase), MMP14, MMP16, MMP19, and
tissue inhibitor of MMPs-1 (TIMP-1).9

The ADAMTS 16, present in luteinized granulosa cells,
responds to FSH stimulation and actively participates in
the process of structural follicle remodeling at the time of
ovulation. The role of the LH on PR is mimicked by cAMP-
inducing agonists (FSH, forskolin). Targets of PR appear to
control the rupture of the follicle, mainly ADAMTS-1 (a
disintegrin and metalloproteinase with thrombospondin)
and cathepsin L. Among the proteases involved, thrombo-
spondins 1 and 4 (ADAMTS1/4) promote the breakdown of
the proteoglycan family structures, such as versican,
through granulosa activation by PRs,47 thereby contribut-
ing to the follicular rupture. Through its receptor in
granulosa cells, the LH induces the transcription of early
growth regulatory factor-1 (EGR-1), CAAT enhancer-bind-
ing protein β (C/EBPβ), PR, and other activator protein-1
family members (proto-oncogenes, c-Fos, c-Jun, Fra2,
JunD), all involved in the functional activity of the gran-
ulosa cells of the ovulating follicle.

The proteoglycan (versican, brevican) components of the
ECM induced by the LH peak, on either granulosa or theca
cells, serve as substrates preferably for ADAMTS 1, culminat-
ing in follicular rupture.47 Metalloproteinases such as plas-
minogen and collagenase are part of the follicular digestion
process, and their control is mediated by metalloproteinase
inhibitors, ensuring local homeostasis and completion of the
ovulation process.48 To illustrate, the model proposed by
Ogiwara et al.49 in the Japanese rice fish, also known as
medaka, shows the involvement of proteinases in the lysis of
the follicular wall (►Fig. 9).

After the rupture of the follicular wall, there is tissue
reorganization by the activation of promatrix factors, which,
in an organized and vascularized way, causes granulosa cell
differentiation into luteal cells, thereby originating the cor-
pus luteum. The corpus luteum is composed of functional
cells for the synthesis of progesterone, the main regulator of
the pituitary secretion of gonadotropins, the principal fac-
tors involved in the maintenance of the corpus luteum until
initial gestation.50 In the absence of maternal recognition of
pregnancy, the corpus luteum regresses rapidly, and the
ovarian cycle is resumed.51

Fig. 8 Role of LH-induced genes in the digestion of the follicular wall.
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