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Abstract

Water and saline intake is controlled by several mechanisms activated
during dehydration. Some mechanisms, such as the production of
angiotensin II and unloading of cardiovascular receptors, activate both
behaviors, while others, such as the increase in blood osmolality or
sodium concentration, activate water, but inhibit saline intake. Aldos-
terone probably activates only saline intake. Clonidine, an α2-adrener-
gic agonist, inhibits water and saline intake induced by these mecha-
nisms. One model to describe the interactions between these multiple
mechanisms is a wire-block diagram, where the brain circuit that
controls each intake is represented by a summing point of its respec-
tive inhibiting and activating factors. The α2-adrenoceptors constitute
an inhibitory factor common to both summing points.
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Mechanisms of hydrosaline intake
and their inhibition by clonidine,
an ααααα2-adrenoceptor agonist

Water and sodium intake are ingestive
behaviors important for the control of body
fluid homeostasis. Both behaviors are criti-
cal for correcting the reduction in extracellu-
lar fluid volume, and water intake is also
important for the correction of intracellular
dehydration that ensues during an increase in
body fluid osmolality.

The double-depletion hypothesis consid-
ers the water intake of water-deprived ani-
mals to be activated by a combination of
signals derived from both intracellular and
extracellular dehydration, which activates two
separate pathways dependent on osmorecep-
tors and angiotensin II (ANG II), respec-
tively (1). The osmotic pathway is probably

dependent on central acetylcholine (2). The
inhibition of water intake dependent on each
pathway by the α2-adrenergic agonist cloni-
dine has suggested that both pathways con-
verge to a final common pathway (3,4). Some
of the many different forms of induction of
water intake related to each pathway and
inhibited by clonidine acting in the brain
include increase in blood osmolality by ad-
ministration of hypertonic solutions, direct
cholinergic activation, direct angiotensiner-
gic activation, and water deprivation (5-7).
Meal-dependent water intake, which involves
peripheral histamine (8) and probably cen-
tral cholinergic receptors (9), is also inhib-
ited by clonidine (10). Thus, clonidine is a
ubiquitous inhibitor of thirst-inducing mecha-
nisms. This inhibition is mediated by central
α2-adrenergic receptors since it is antago-
nized by the α2-adrenergic antagonists yo-
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himbine and idazoxan injected into the brain
(5,11-13). Prazosin, an α1-adrenergic an-
tagonist, also inhibits the effect of clonidine
(5,12,13), but it can also bind to α2-adrener-
gic receptors (14). This observation, together
with the effects of yohimbine and idazoxan,
suggests that the receptors on which cloni-
dine acts to inhibit water intake include α2-
prazosin-binding sites.

The control of salt intake in the form of
saline solution also involves more than one
mechanism. Sodium depletion and the con-
sequent volume contraction activate hor-
monal and sensory signals that in turn acti-
vate the central circuits of saline intake.
These signals include ANG II and aldoster-
one (15) and reduction in the load of cardio-
vascular pressor receptors (16). The release
of ANG II and reduction in the activity of
pressor receptors are also involved in the
activation of water intake (16). If sodium-
depleted animals have access to water, re-
duction in blood osmolality also occurs,
which in turn inhibits the central release of
oxytocin, a component of inhibitory mecha-
nisms of saline intake (17). Another form of
saline intake is that expressed by normovol-
emic and normosodic animals. This intake is
characteristically non-regulatory since it oc-
curs in non-depleted animals. Its basis has
not been systematically explored, but an in-
teresting hypothesis is that it is controlled
like circadian behaviors dependent on en-

dogenous clocks (18). Finally, saline intake
is also induced by water deprivation (19),
and although the mechanism is still not fully
described, it probably involves ANG II (20).
Interestingly, all these forms of saline intake
are also inhibited by clonidine (10,21,22).
This inhibition is also dependent on α2-adre-
noceptors since it is antagonized by idazoxan
and prazosin (13,22). The different models
of water and saline intake inhibited by cloni-
dine are listed in Table 1.

The mechanisms of action of clonidine
on fluid intake involve at least the activation
of α2-adrenergic receptors as discussed
above. The circuit that mediates this inhibi-
tion is very probably specific for the behav-
ior of water and saline intake since it is
preferential for these forms of intake com-
pared to solid food or sucrose solution (5,10).
Other possible mechanisms are currently
under investigation in our laboratory. Pre-
liminary results suggest that the inhibition
depends, at least in part, on the reduction of
endogenous release of noradrenaline (23).
Clonidine injected centrally also induces al-
terations in arterial pressure, but these alter-
ations are not related to the inhibition of
hydrosaline intake because similar alterations
in arterial pressure are induced by other
compounds, such as carbachol or isoproter-
enol, which do not affect water or saline
intake (10,22). Another effect of clonidine is
the induction of systemic release of atrial
natriuretic peptide (ANP) (24). Interestingly,
central ANP also inhibits water and saline
intake (25), and, like central oxytocin, medi-
ates osmotic inhibition of salt intake (26).
An increase in blood ANP concentration is
probably not the mediator of inhibition of
fluid intake induced by clonidine since cen-
tral cholinergic activation also induces the
release of ANP (27), but this activation does
not alter saline intake of water-deprived rats
(20). Yet, a participation of ANP of central
origin as a mediator of the effect of clonidine
is a possibility to be tested.

Table 1 - Models of water and saline intake inhibited by clonidine.

Each model corresponds to at least one mechanism that induces
water or saline intake and is inhibited by clonidine acting in the brain.
Numbers in parentheses indicate the reference for each model in the
text.

Water intake Saline intake

Water deprivation (5,6,10,12,13) Sodium depletion (10,13,22)

Cholinergic activation (6,7) Water deprivation (22)

Angiotensin II (4,6,11,42) Angiotensin II (21)

Cell dehydration (6) Mineralocorticoid (21)

Meal associated (10) Non-regulatory (need-free) (22)
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A multifactorial model for dehydra-
tion-induced hydrosaline intake

One implication of the effects of cloni-
dine on saline intake is that the concept of a
final common pathway inhibited by α2-adre-
noceptors (3,4) should include this behav-
ior. However, since water intake and saline
intake are distinct behaviors, it is not pos-
sible to assume a final common pathway for
both of them. Therefore, there must be two
central circuits that are activated by different
types of dehydration and inhibited by α2-
adrenoceptors, one for the control of water
and the other for the control of saline intake.
As mentioned above, these circuits share the
activation by ANG II and by volume recep-
tors during extracellular dehydration
(1,15,16), but one (water) is activated
(1,28,29) and the other (saline) is inhibited
(17,30,31) by the increase in osmolality or in
sodium concentration. Furthermore, aldos-
terone release activated by ANG II during

Figure 1 - Multifactorial block-
diagram model of the control of
water and saline intake. Central
circuits that control water and
saline intake and integrate the
multiple inhibiting and activat-
ing factors described in the lit-
erature are represented by sum-
ming points (see text for refer-
ences and discussion). Bold
lines indicate central factors.
Dotted lines indicate inhibiting
and continuous lines indicate
activating factors. Indents indi-
cate bypass points. ECV, Extra-
cellular volume; ACH, acetylcho-
line; ANP, atrial natriuretic pep-
tide; OT, oxytocin; ANG II, an-
giotensin II (either central or pe-
ripheral).
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extracellular depletion but inhibited by the
increase in osmolality (32) acts synergisti-
cally with ANG II in the brain to induce
saline intake (15), in spite of the controversy
on whether central or systemic ANG II is
important for saline intake (15,33-36). Fi-
nally, the unloading of volume receptors
probably removes the inhibition that hind-
brain structures exert on water and saline
intake (16,37,38). Every mechanism so far
tested (Table 1) that induces water and sa-
line intake is inhibited by clonidine. There-
fore, these two behaviors share a common
inhibitory factor represented by α2-adreno-
ceptors. The wire-block diagram shown in
Figure 1 summarizes the connections be-
tween the multiple factors that control water
and saline intake resulting from dehydra-
tion, and their relation to α2-adrenoceptors
in the rat. The central circuits that control
water and saline intake are represented sepa-
rately, each corresponding to one summing
point of multiple factors (variables) that con-
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trol each respective behavior. A summing
point in the block diagram is represented by
a circle receiving inputs from variables that
can be added to or subtracted from the others
(39). The central core of the diagram is the
α2-adrenoceptor as a subtraction factor com-
mon to both summation points. The diagram
of course does not intend to be definitive and
still has points to be confirmed or modified.
A question mark in the model exemplifies an
important part to be understood, i.e., the
mechanism of activation of α2-adrenocep-
tors in physiological situations. The diagram
also does not include non-regulatory intakes
or distinguish between central and peripher-
al ANG II acting in the brain.

Importance of the ααααα2-adrenoceptors
for the understanding of the role of
noradrenaline in hydrosaline intake

The effects of clonidine described above
suggest that endogenous noradrenaline acts
on α2-adrenoceptors belonging to central
inhibitory circuits that control water and sa-
line intake. Noradrenaline injected into the
brain inhibits water intake (10,40,41), but is
also considered to be important for the acti-
vation of these behaviors.

Early studies have suggested opposite
actions for alpha- and beta-receptors on wa-

ter intake, the first inhibiting and the second
activating this behavior (41). Recently, a
dual role for noradrenaline in water intake
was proposed based on the opposite effects
alpha-adrenergic antagonists (yohimbine or
prazosin) had on water intake (42). When
water intake was induced by water depriva-
tion, yohimbine or prazosin inhibited the
antidipsogenic effect of clonidine, but nei-
ther one injected alone altered water intake
(5). When water intake was induced by ANG
II, yohimbine or prazosin induced an inhibi-
tion of the behavior which was potentiated
by clonidine (42). This potentiation suggests
that clonidine and the antagonists act on
receptors located at different sites and, there-
fore, that noradrenaline participates in one
site that inhibits and in another that activates
water intake. The importance of noradrena-
line for the activation of water intake is
confirmed by other studies utilizing alpha-
antagonists or destruction of noradrenergic
terminals (43-46).

Saline intake is also inhibited (10,21) or
activated by noradrenaline (47). Thus, this
double mediation of the control of water and
saline intake by noradrenaline is explained
by the dual-role hypothesis which proposes
that central noradrenaline participates in the
inhibition and activation of both behaviors
(10,42,48).
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