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Abstract

There is increasing evidence that angiotensin-(1-7) (Ang-(1-7)) is an
endogenous biologically active component of the renin-angiotensin
system (RAS). In the present study, we investigated the effects of Ang-
(1-7) on reperfusion arrhythmias in isolated rat hearts. Isolated rat
hearts were perfused with two different media, i.e., Krebs-Ringer
(2.52 mM CaCl2) and low-Ca2+ Krebs-Ringer (1.12 mM CaCl2). In
hearts perfused with Krebs-Ringer, Ang-(1-7) produced a concentra-
tion-dependent (27-210 nM) reduction in coronary flow (25% reduc-
tion at highest concentration), while only slight and variable changes
in contraction force and heart rate were observed. Under the same
conditions, angiotensin II (Ang II; 27 and 70 nM) produced a signifi-
cant reduction in coronary flow (39% and 48%, respectively) associ-
ated with a significant increase in force. A decrease in heart rate was
also observed. In low-Ca2+ Krebs-Ringer solution, perfusion with
Ang-(1-7) or Ang II at 27 nM concentration produced similar changes
in coronary flow, contraction force and heart rate. In isolated hearts
perfused with normal Krebs-Ringer, Ang-(1-7) produced a significant
enhancement of reperfusion arrhythmias revealed by an increase in the
incidence and duration of ventricular tachycardia and ventricular
fibrillation (more than 30-min duration). The facilitation of reperfu-
sion arrhythmias by Ang-(1-7) was associated with an increase in the
magnitude of the decreased force usually observed during the post-
ischemic period. The effects of Ang-(1-7) were abolished in isolated
rat hearts perfused with low-Ca2+ Krebs-Ringer. The effect of Ang II
(27 nM) was similar but less pronounced than that of Ang-(1-7) at the
same concentration. These results indicate that the heart is a site of
action for Ang-(1-7) and suggest that this heptapeptide may be in-
volved in the mediation of the cardiac effects of the RAS.
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Introduction

A large body of data has been accumu-
lated regarding the existence of a local, inde-
pendently regulated, myocardial renin-an-
giotensin system (RAS) (1,2). Besides the
direct modulation of cardiac function through

effects on coronary vascular tone, myocar-
dial contractility, neurotransmitter release
from sympathetic nerve endings and cardiac
growth, the cardiac RAS appears to be in-
volved in post-ischemic reperfusion arrhyth-
mias (3).

Until recently the systemic or local ef-

ISSN 0100-879X



802

Braz J Med Biol Res 30(6) 1997

L.A.A. Neves et al.

fects of the RAS were attributed solely to the
interaction of the octapeptide angiotensin II
(Ang II) with its receptors (1). Over the past
few years, however, other endogenous bio-
logically active products of the RAS have
been identified including angiotensin-(1-7)
(Ang-(1-7)) (4,5) and angiotensin-(3-8) (Ang-
(3-8)) (6). Among the biologically active
end-products of the RAS, the heptapeptide
Ang-(1-7) is particularly interesting because
it can be formed directly from angiotensin I
by an angiotensin converting enzyme (ACE)
independent pathway (7-9) and is essentially
devoid of effects exerted by Ang II through
AT1 receptors including vasoconstriction and
induction of drinking (4,10).

ACE inhibitors have beneficial effects
on reperfusion arrhythmias which have been
attributed to a reduction of both local Ang II
generation and bradykinin degradation (3).
However, plasma Ang-(1-7) concentration
increases several-fold during treatment with
ACE inhibitors (11,12). Furthermore, Ang-
(1-7) has been recently reported to produce
vasodilation in canine coronary artery rings
pre-constricted with the thromboxane A2

analogue U46619 (13) and to increase the
release of [3H]norepinephrine from isolated
rat atria (14). These observations suggest
that Ang-(1-7) can participate in the pharma-
cological effects of ACE inhibitors in the
reperfusion arrhythmias. However, there are
no data regarding the effects of Ang-(1-7) on
ischemic hearts. In this study we evaluated
the role of Ang-(1-7) in post-ischemic reper-
fusion arrhythmias by determining its ef-
fects on isolated rat hearts.

Material and Methods

Male Wistar rats (200-300 g body weight)
were decapitated 15 min after intraperito-
neal injection of 200 IU heparin. The thorax
was opened and the heart was carefully dis-
sected and perfused with Krebs-Ringer solu-
tion or a low-Ca2+ Krebs-Ringer solution
through a 1.0 ± 0.3 cm aortic stump. The

perfusion fluid was maintained at 37 ± 0.1oC,
with a pressure of 65 mmHg and constant
oxygenation (5% CO2 and 95% O2). A force
transducer (model BG-25 g, Gould, Valley
View, OH) was attached through a heart clip
to the apex of the ventricles to record the
contractile force (developed tension) on a
Gould recorder (model RS 3200). A dia-
stolic tension of 1.0 g was applied to the
heart. Electrical activity was recorded with
an electrocardiograph (Nihon Kohden, To-
kyo, Japan) with the aid of two cotton wicks
placed directly on the surface of the right
atrium and left ventricle (bipolar lead). Cor-
onary flow was measured by collecting the
perfusate over a period of 30 s at regular
intervals. The composition of the perfusion
solutions was as follows: 1) Krebs-Ringer
solution: 118.6 mM NaCl, 4.75 mM KCl,
2.52 mM CaCl2, 2.52 mM KH2PO4, 1.17
mM MgSO4.7 H2O, 25.0 mM NaHCO3 and
11.0 mM glucose, and 2) low-Ca2+ Krebs-
Ringer solution: 118.6 mM NaCl, 4.75 mM
KCl, 1.12 mM CaCl2, 2.52 mM KH2PO4,
1.17 mM MgSO4.7 H2O, 25.0 mM NaHCO3
and 11.0 mM glucose.

The hearts were allowed to equilibrate
for 20-30 min and then perfused for an addi-
tional 20 min with Krebs-Ringer solution
(control group) or Krebs-Ringer solution
containing Ang-(1-7) (27, 70 or 210 nM) or
Ang II (27 or 70 nM). Each isolated heart
was perfused with only one concentration of
peptide (N = 3-11 for each concentration).
To study the effect of Ang-(1-7) and Ang II
on the reperfusion arrhythmias isolated hearts
were perfused for an initial 20-min period
with 1) Krebs-Ringer solution (control, N =
11), 2) Krebs-Ringer solution containing
Ang-(1-7) (27 nM, N = 8) and 3) Krebs-
Ringer solution containing Ang II (27 nM, N
= 6). Since the biological effects of Ang-(1-
7) are considered to be independent of cal-
cium, additional hearts were perfused with
4) low-Ca2+ Krebs-Ringer solution (N = 5),
5) low-Ca2+ Krebs-Ringer solution contain-
ing Ang-(1-7) (27 nM, N = 4), and 6) low-
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Ca2+ Krebs-Ringer solution containing Ang
II (27 nM, N = 2). Immediately after the 20-
min perfusion period, the left anterior de-
scending coronary artery was ligated by the
method described by Lubbe et al. (15) be-
neath the left auricular appendage together
with the adjacent veins. The ligature was
released after 15 min and reperfusion with
different Krebs-Ringer solutions (above) was
performed for an additional 30 min. Cardiac
arrhythmias were defined as the presence of
ventricular tachycardia and/or ventricular fi-
brillation after the ligature of the coronary
artery was released. In order to obtain a
quantitative measurement, the arrhythmias
were graded arbitrarily according to their
duration considering a duration of 30 min as
irreversible arrhythmia. Therefore, the oc-
currence of cardiac arrhythmias for up to 5
min was assigned the factor 1, 10 min was
assigned the factor 2, 15 min was assigned
the factor 3, 20 min was assigned the factor
6, 25 min was assigned the factor 9, and 30
min was assigned the factor 12. A value of
0-12 was thus obtained in each experiment
and is denoted “arrhythmia severity index”
(ASI) (16,17). Data are reported as means ±
SEM. Statistical analysis was performed by
the Student t-test or ANOVA followed by
the Least Significant Difference test or the
Newman-Keuls test, when appropriate. The
level of significance was set at P<0.05.

Results

The averaged basal values for contrac-
tion force, heart rate and coronary flow in
isolated rat hearts (N = 58) perfused with
normal Krebs-Ringer solution were 8.35 ±
0.21 g, 264 ± 7 bpm and 7.92 ± 0.35 ml/min,
respectively. When the isolated rat hearts (N
= 11) were perfused with low-Ca2+ Krebs-
Ringer there was, as expected, a decrease in
contraction force to 6.61 ± 0.39 g that was
not accompanied by changes in heart rate
(260 ± 9 bpm) or coronary flow (7.80 ± 0.68
ml/min).

Figure 1 shows the percentage of change
in contraction force, heart rate and coronary
flow in isolated hearts perfused with normal
Krebs-Ringer solution or normal Krebs-
Ringer solution containing different concen-
trations of Ang-(1-7) and Ang II. No signifi-
cant differences were observed in contrac-
tion force (7.60 ± 0.47 g vs 7.76 ± 0.73 g at
the end of the equilibration period), heart
rate (278 ± 14 bpm vs 260 ± 21 bpm at the
end of the equilibration period), or coronary
flow (9.03 ± 1.10 ml/min vs 9.12 ± 1.04 ml/
min at the end of the equilibration period) in
isolated hearts perfused with normal Krebs-
Ringer solution. Perfusion of isolated hearts
with normal Krebs-Ringer solution contain-
ing Ang-(1-7) did not consistently change
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Figure 1 - Contraction force, heart rate and coronary flow in isolated rat hearts perfused with
1) Krebs-Ringer solution (control, N = 9); 2) Krebs-Ringer solution containing Ang-(1-7)
concentrations of 27 nM (N = 9), 70 nM (N = 9), or 210 nM (N = 3) and 3) Krebs-Ringer
solution containing Ang II concentrations of 27 nM (N = 11), or 70 nM (N = 6). *P<0.05
compared to the end of the equilibration period (Student t-test for paired observations).
**P<0.05 compared to the end of the equilibration period and the control group (Student t-
test for paired observations and ANOVA followed by the Newman-Keuls test).
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In contrast, Ang II produced a dose-de-
pendent increase in contraction force (9%
and 12% at 27 nM and 70 nM concentra-
tions, respectively, Figure 1) and a decrease
in heart rate (approximately 20% at both
concentrations, Figure 1). In addition, Ang II
markedly reduced the coronary flow by 39%
and 48% at concentrations of 27 nM and 70
nM, respectively (Figure 1). Under basal
conditions no changes in diastolic tension
were produced by Ang-(1-7) or Ang II.

Occlusion of the coronary artery in other
rat hearts resulted in a comparable flow re-
duction (approximately 50%), which was
sustained throughout the ischemic period.
The flow reduction was associated with a
marked decrease in contractility (60%) with-
out major changes in diastolic tension. The
changes in coronary flow in the hearts per-
fused with Ang II were greater than those of
the control group since a significant decrease
(35%) in flow was already observed before
occlusion. A slight decrease in heart rate was
also observed during ischemia in all groups
(data not shown). Figures 2 and 3 graphi-
cally show the percentage of change in coro-
nary flow (before, after 15 min of coronary
occlusion and after 30 min of reperfusion)
and the percentage of change in contraction
force and diastolic tension (before, after 15
min of coronary occlusion and after 5, 10, 20
and 30 min of reperfusion).

Upon reperfusion, coronary flow in-
creased to values corresponding to approxi-
mately 80% of the values before occlusion.
However, upon reperfusion there was an
initial further decrease (35%) in contraction
force and a significant increase (250%) in
diastolic tension in all groups (Figure 2). In
addition, following the initial increase in
diastolic tension a small decrease was ob-
served for all groups (Figure 2). The initial
decrease in force was followed by a small
gradual increase in the control and Ang II-
perfused hearts (Figure 2). In contrast, in the
hearts perfused with Ang-(1-7) no apparent
recovery was observed (Figure 2).

Figure 2 - Coronary flow (upper),
contraction force (middle) and di-
astolic tension (lower) in isolated
rat hearts perfused with Krebs-
Ringer solution (control, N = 11),
Krebs-Ringer solution containing
27 nM Ang-(1-7) (N = 8) or Krebs-
Ringer solution containing 27
nM Ang II (N = 6) before and
after (reperfusion) coronary oc-
clusion. Percentage was calcu-
lated in relation to the last value
of the equilibration period. *P
<0.05 compared to the control
group (ANOVA followed by the
Least Significant Difference
test).
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contraction force or heart rate. However, a
concentration-dependent decrease in coro-
nary flow of 10%, 18% and 25% was ob-
served with Ang-(1-7) concentrations of 27
nM (N = 9), 70 nM (N = 9) and 210 nM (N =
3), respectively (Figure 1).

Control Ang-(1-7) Ang II- - -- - -
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When the isolated hearts were perfused
with low-Ca2+ Krebs-Ringer solution, addi-
tion of Ang-(1-7) or Ang II produced results
in basal heart rate (data not shown) and
contraction force and coronary flow (Figure 3)
similar to those observed with normal Krebs-
Ringer. Coronary occlusion in low Ca2+-
perfused hearts also produced a significant
decrease in coronary flow associated with a
decrease in contraction force without changes
in diastolic tension (Figure 3). Upon reper-
fusion, the initial changes were also similar
to those of normal Krebs-Ringer-perfused
hearts except for the changes in diastolic
tension that were more modest (Figures 2
and 3). However, different from the data ob-
served with normal Krebs-Ringer, after these
initial changes there was an increase in con-
traction force accompanied by a complete re-
covery of diastolic tension for control, Ang II-
and Ang-(1-7)-perfused hearts (Figure 3).

Ventricular tachycardia and/or ventricu-
lar fibrillation upon reperfusion were ob-
served in all groups. A facilitatory effect of
Ang-(1-7) on reperfusion arrhythmias in iso-
lated hearts perfused with normal Krebs-
Ringer solution was evidenced by a signifi-
cant increase of about 60% in ASI (10.62 ±
1.32 vs 6.64 ± 1.29 for the control group;
Figure 4). On the other hand, a tendency to
an increased ASI was observed in Ang II-
perfused hearts (8.00 ± 1.84 vs 6.64 ± 1.29
for the control group, P>0.05; Figure 4). In
addition, there was an increase in the occur-
rence of irreversible arrhythmias ranging
from 27% in control hearts to 75% and 50%
in the hearts perfused with Krebs-Ringer
solution containing Ang-(1-7) and Ang II,
respectively (Figure 4). Perfusion of isolated
hearts with Krebs-Ringer containing low Ca2+

reduced the ASI from a value of 6.64 ± 1.29
observed in normal Krebs-Ringer solution to
1.40 ± 0.40, and abolished the occurrence
of irreversible arrhythmias. In addition,
low-Ca2+ Krebs-Ringer prevented the ar-
rhythmogenic effect of Ang-(1-7) and Ang II
(Figure 4).
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Discussion

In the present study we observed that
Ang-(1-7) produced a concentration-depend-
ent reduction in coronary flow in isolated rat
hearts. More important, Ang-(1-7) enhanced

Figure 3 - Coronary flow (upper),
contraction force (middle) and
diastolic tension (lower) in iso-
lated rat hearts perfused with
low-Ca2+ Krebs-Ringer solution
(control, N = 5), low-Ca2+ Krebs-
Ringer solution containing 27
nM Ang-(1-7) (N = 4) or low-Ca2+

Krebs-Ringer solution containing
27 nM Ang II (N = 2) before and
after (reperfusion) coronary oc-
clusion. Percentage was calcu-
lated in relation to the last value
at the equilibration period.
*P<0.05 compared to the con-
trol group (ANOVA followed by
the Least Significant Difference
test).

- - - - - - Ang II



806

Braz J Med Biol Res 30(6) 1997

L.A.A. Neves et al.

reperfusion arrhythmias. The increase in di-
astolic tension and the decrease in contrac-
tion force observed during the post-ischemic
period in isolated rat hearts were also poten-
tiated by Ang-(1-7). These effects resembled
those produced by Ang II. However, these
two peptides differed significantly in their
action on basal force and frequency. Ang II
produced a significant increase in force and
a decrease in frequency while Ang-(1-7)
produced only slight and inconsistent changes
in these parameters.

Our data confirm and extend previous
observations showing that the heptapeptide
Ang-(1-7) is a biologically active end-prod-
uct of the renin-angiotensin system (4,5,18,
19). The selectivity of the biological action
of Ang-(1-7) reported previously (4,18,20)
is apparently also true for isolated rat hearts.
Although Ang-(1-7) and Ang II decreased
coronary flow, Ang-(1-7) did not signifi-
cantly change the contraction force or heart
rate, which were significantly modified by
Ang II. In addition, Ang-(1-7) was more
potent in inducing arrhythmogenesis under
our experimental conditions. As pointed out
earlier, the selectivity of Ang-(1-7) is prob-

ably related to the absence of phenylalanine
at the carboxyl terminus (4).

A vasoconstrictor effect of Ang-(1-7) on
the coronary vessels was first reported by
Kumagai et al. (21) in isolated hamster hearts.
However, it has been recently reported that
Ang-(1-7) has a vasodilator effect on canine
coronary arteries (13). These contrasting
observations may be related to species dif-
ferences. In this regard, the vasodilator ef-
fect of Ang-(1-7) on the feline hindquarter
vascular bed is mainly dependent on the
release of nitric oxide (22), while in pithed
rats Ang-(1-7) produced systemic vasodila-
tation dependent on prostaglandin release
(23). Although the mechanism of the vaso-
constrictor effect of Ang-(1-7) in the iso-
lated rat heart was not investigated a likely
explanation is that it depends, at least in part,
on the release of coronary vasoconstrictors
(14).

The arrhythmogenic effect of Ang II has
been attributed to its vasoconstrictor action
and to its facilitatory effect on sympathetic
neurotransmission (3). Alternatively, Ang II
may promote reperfusion arrhythmias by
stimulating phospholipase C and/or A2, thus
enhancing the formation of free radicals via
the arachidonic acid pathway (24). Our ob-
servation that the arrhythmogenic effect of
Ang II was absent in the two isolated hearts
perfused with low-Ca2+ Krebs-Ringer also
suggests an important role for Ca2+ in this
mechanism. However, these data should be
interpreted with caution due to the small
number of isolated hearts used. Although we
have no data regarding the mechanism of the
Ang-(1-7) arrhythmogenic effect, it appears
that Ca2+ also plays an important role. This
finding contrasts with a previous study on
CRTG3 cells showing that Ang-(1-7) in-
duced the release of prostaglandins inde-
pendent of Ca2+ mobilization (25). It should
be pointed out, however, that Fura 2, the
compound used to study Ca2+ transport in
the study by Tallant et al. (25), could inhibit
some types of calcium mobilization such as

Figure 4 - Averaged arrhythmia
severity index (upper panel) and
percentage of irreversible ar-
rhythmias (more than 30 min)
(lower panel) upon reperfusion
after 15 min of occlusion of the
left anterior descending coro-
nary artery in isolated rat hearts
perfused with normal or low-
Ca2+ Krebs-Ringer solution (con-
trol), normal or low-Ca2+ Krebs-
Ringer solution containing 27
nM Ang-(1-7) or normal or low-
Ca2+ Krebs-Ringer solution con-
taining 27 nM Ang II. Numbers
above the bars indicate the inci-
dence of irreversible arrhythmias
during the reperfusion period.
*P<0.05 in comparison to the
control group (Student t-test).
**P<0.01 compared to the re-
spective group submitted to nor-
mal Krebs-Ringer solution (Stu-
dent t-test).
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that induced by ATP, through IP3 receptors
in megakaryocytes (26). Activation of phos-
pholipase A2, as demonstrated in rat proxi-
mal tubular cells (27), and facilitation of
sympathetic neurotransmission (14) are also
likely mechanisms involved in the Ang-(1-
7) arrhythmogenic effects in isolated rat
hearts.

We have found that in isolated hearts
perfused with normal Krebs-Ringer solution
Ang-(1-7) facilitated the decrease in force
observed during the post-ischemic period.
The absence of this effect in isolated hearts
perfused with a low-Ca2+ Krebs-Ringer so-
lution suggests that Ang-(1-7) could be act-
ing by facilitating the increase in cytosolic
Ca2+ usually observed during the reperfu-
sion period (28). This increased cytosolic
Ca2+ may impair myocardial function by
several mechanisms including impairment
of mitochondrial function and activation of
Ca2+-ATPases leading to a reduction in in-
tracellular ATP, or by activation of Ca2+-
lipases (28).

We have observed that Ang II produced a
dose-dependent positive inotropic effect in
Krebs-Ringer-perfused hearts. This finding
is in contrast to previous studies showing
that Ang II has no inotropic effect on the
heart of adult rats (29). Ang II, however, has
been reported to stimulate contractility in
isolated adult rat ventricular myocytes (30).
In addition, Ang II has been reported to
produce a direct positive chronotropic effect
in cultured neonatal rat heart cells (31). How-
ever, we found a negative chronotropic ef-
fect, not dose dependent, in rat hearts per-
fused with normal Krebs-Ringer solution.
No chronotropic effect was observed in hearts
perfused with low-Ca2+ Krebs-Ringer solu-
tion.

Similarly to Ang II, Ang-(1-7) produced
a reduction in coronary blood flow and fa-
cilitated reperfusion arrhythmias whereas its
effect on cardiac force under basal condi-
tions was not consistent, in contrast to the
significant increase in force produced by

Ang II. This selectivity indicates that differ-
ent angiotensin receptor subtypes are in-
volved in the mediation of the Ang-(1-7) and
Ang II effects. All the known actions of Ang
II in the heart appear to be mediated mainly
by the AT1 receptor subtype (32,33). The
receptor(s) mediating the Ang-(1-7) effects
remains to be determined. Although no di-
rect data were obtained in this study, recent
reports strongly indicate that a selective Ang-
(1-7) receptor may exist (4,13). We have
recently found that central and peripheral
actions of Ang-(1-7) can be blocked by its
analog, compound A-779, which does not
change the pressor, myotropic or dipsogenic
effects of Ang II (20). On the other hand, the
cardiovascular effects produced by microin-
jection of Ang-(1-7) into the rostral ventro-
lateral medulla (4) or its vasodilator effect
on canine coronary arteries (13) could not be
blocked by AT1 or AT2 angiotensin receptor
antagonists. In contrast, Gironacci et al. (14)
have recently reported that the facilitatory
effect of Ang-(1-7) on the release of [3H]
norepinephrine in isolated rat atria could be
blocked by either DUP 753 or the AT2 an-
tagonist PD 123177. This observation sug-
gests that the Ang-(1-7) receptor in the rat
heart resembles the AT1 receptor subtype
described by Ernsberger et al. (34) in rat
mesangial cells.

The pharmacological effects of ACE in-
hibitors have been attributed to a reduction
in Ang II generation or to an increase in
bradykinin levels (3). We have previously
shown that Ang-(1-7) can be formed by an
ACE-independent pathway (7-9). In accor-
dance with this finding, a marked increase in
Ang-(1-7) has been observed in rats or pa-
tients chronically treated with ACE inhibi-
tors (11,12). These data illustrate the impor-
tance of determining the effects of Ang-(1-7)
which could be involved in the mechanism
of action of ACE inhibitors. In this regard,
the present study indicates that the heart is an
important site for the actions of this endoge-
nous biologically active angiotensin. Further
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studies are necessary to elucidate whether
the results obtained in our study for isolated
rat hearts are also demonstrable in vivo and/
or in other species.
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