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Abstract

Preference for specific protein substrates together with differential
sensitivity to activators and inhibitors has allowed classification of
serine/threonine protein phosphatases (PPs) into four major types
designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C,
respectively). Comparison of sequences within their catalytic domains
has indicated that PP1, PP2A and PP2B are members of the same gene
family named PPP. On the other hand, the type 2C enzyme does not
share sequence homology with the PPP members and thus represents
another gene family, known as PPM. In this report we briefly summa-
rize some of our studies about the role of serine/threonine phos-
phatases in growth and differentiation of three different eukaryotic
models: Blastocladiella emersonii, Neurospora crassa and Dictyoste-
lium discoideum. Our observations suggest that PP2C is the major
phosphatase responsible for dephosphorylation of amidotransferase,
an enzyme that controls cell wall synthesis during Blastocladiella
emersonii zoospore germination. We also report the existence of a
novel acid- and thermo-stable protein purified from Neurospora
crassa mycelia, which specifically inhibits the PP1 activity of this
fungus and mammals. Finally, we comment on our recent results
demonstrating that Dictyostelium discoideum expresses a gene that
codes for PP1, although this activity has never been demonstrated
biochemically in this organism.
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Introduction

In recent years, the participation of pro-
tein phosphatases in the dynamic process of
protein phosphorylation has gained consid-
erable interest. These enzymes are generally
divided into two main groups according to
the phosphoamino acid hydrolyzed. Serine/
threonine protein phosphatases (PPs) attack
phosphoserine/threonine and tyrosine phos-
phatases (PTPs) hydrolyze phosphotyrosine.

A subfamily of PTPs, known as dual speci-
ficity phosphatases, comprises enzymes that
hydrolyze both phosphoserine/threonine and
phosphotyrosine. This difference in substrate
specificity between PP and PTP groups re-
flects their tridimensional structures and dis-
tinct catalytic mechanisms (1-3).

Specificity towards protein substrates to-
gether with differential sensitivity to activa-
tors and inhibitors has permitted the classifi-
cation of PPs into four major types desig-
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nated types 1, 2A, 2B and 2C (PP1, PP2A,
PP2B and PP2C, respectively) (4). Amino
acid sequence comparisons of their catalytic
domains have demonstrated that PP1, PP2A
and PP2B are members of the same gene
family, named PPP. Novel phosphatases, such
as PP4, PP5 and PP6, are being identified by
molecular cloning, rapidly expanding the
PPP family. On the other hand, the type 2C
enzyme shares no sequence homology with
the PPP family and represents another gene
family, known as PPM (5,6).

Sensitivity to okadaic acid is one of the
many biochemical criteria used to identify
each type of serine/threonine phosphatase.
PP2A, PP4, PP6 and PP5 are inhibited by
ten-fold lower concentrations of okadaic acid
than those required to inhibit PP1. Even
though PP2B, a calcium/calmodulin-acti-
vated phosphatase, belongs to the PPP fam-
ily, it is poorly inhibited by okadaic acid.
Enzymes of the PPM family such as PP2C, a
magnesium-dependent enzyme, are not af-
fected by okadaic acid (1,2,4,5).

Both PP1 and PP2A exist as multimeric
holoenzymes in vivo, where a limited num-
ber of catalytic subunits are associated with
a variety of regulatory subunits. The latter
are believed to modulate catalytic activity
and substrate specificity and to act as deter-
minants of subcellular localization of the
catalytic subunits (7,8).

The function of PPs in general metabo-
lism, growth and differentiation has been
addressed using molecular genetics, princi-
pally in yeast and Drosophila. In parallel,
the use of some natural toxins, such as okadaic
acid, which can act in vivo as potent and
specific protein phosphatase inhibitors, has
uncovered important physiological roles for
these enzymes in different organisms (1,5,7).

In this report we review some of the
studies of our laboratory about the participa-
tion of serine/threonine phosphatases in
growth and differentiation in three different
eukaryotic microorganisms: Blastocladiella
emersonii, a unicellular aquatic fungus (9),

Neurospora crassa, a filamentous fungus
(10), and Dictyostelium discoideum, a mi-
croorganism which represents the evolution-
ary transition between unicellular and multi-
cellular forms of life (11).

PP2C and its role in cell wall
biosynthesis during germination in
Blastocladiella emersonii

The initial 20 min of germination by this
fungus do not require protein synthesis.
Among the many changes leading the zoo-
spore to transform into a round cell, the
synthesis of a thin cell wall made of chitin is
most significant. In contrast, the conversion
of the round cell into a germling does require
protein synthesis, which depends on zoo-
spore-stored mRNAs. The germling is able
to proliferate and finally differentiate, gen-
erating new zoospores. In vitro, potassium,
sodium or cyclic AMP triggers germination
(9,12).

Some years ago we demonstrated that in
the presence of okadaic acid, zoospores form
a round cell but cannot produce germlings.
Using a chitin-specific fluorescent dye, it
was possible to demonstrate that okadaic
acid does not inhibit cell wall synthesis (13).
Previous work supported the idea that the
regulation of cell wall synthesis was mainly
at the level of amidotransferase, the first
enzyme in the biosynthetic pathway respon-
sible for the synthesis of UDP-N-acetylglu-
cosamine (UDP-GlcNAc), the substrate for
chitin synthesis. When this enzyme is phos-
phorylated by a unknown kinase it is sensi-
tive to inhibition by the final product of the
pathway, UDP-GlcNAc, already present in
zoospores. Dephosphorylation of amido-
transferase allows it to escape from inhibi-
tion by UDP-GlcNAc and the pathway can
go on to provide enough substrate for the
synthesis of chitin (12,13).

Dephosphorylation of amidotransferase
can be measured through the loss of UDP-
GlcNAc inhibition. When zoospore extracts
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containing phosphorylated amidotransferase
are preincubated with partially purified PP2A
and PP2C in the presence of okadaic acid,
EDTA and EGTA almost no dephosphoryla-
tion of the enzyme can be observed after up
to 60 min preincubation. However, if okadaic
acid is not included in the preincubation
period some dephosphorylation occurs.
Maximum dephosphorylation is observed
when the extracts are incubated in the pres-
ence of magnesium, which activates PP2C
(13). In addition, we have observed that
partially purified amidotransferase can be
dephosphorylated when preincubated with
PP2C purified by us from Blastocladiella
zoospores and the dephosphorylation, as
expected, is not affected by okadaic acid and
is dependent on magnesium (Campanhã RB,
unpublished results).

These results lead us to propose that PP2C
is the major phosphatase responsible for
amidotransferase dephosphorylation during
zoospore germination (Figure 1). Dephos-
phorylation of amidotransferase releases it
from the inhibition by UDP-GlcNAc, allow-
ing the enzyme to catalyze the first reaction
in the pathway for UDP-GlcNAc synthesis.
Recently, we demonstrated a direct in vitro
inhibition of PP2C by UDP-GlcNAc (Cam-
panhã RB, unpublished results). Thus, UDP-
GlcNAc plays a dual role in hexosamine
biosynthesis and chitin synthesis in Blasto-
cladiella zoospores. It not only inhibits the
phosphorylated form of the enzyme (12,13)
but it also prevents its dephosphorylation by
direct inhibition of PP2C.

A novel PP1 inhibitor from
Neurospora crassa

The major active serine/threonine phos-
phatase in Neurospora crassa is PP1, which
accounts for about 60% of the total activity.
PP2A, PP2B and PP2C activities are also
demonstrable in crude extracts (14-16). Dur-
ing our attempts to characterize these activi-
ties in Neurospora, we observed that a short

period of incubation of crude extracts with
trypsin resulted in a slight increase in PP1
activity, which suggested that PP1 catalytic
subunits were complexed with inhibitory
proteins, as observed for mammalian PP1
(4,17). These inhibitory proteins have been
described for mammal and invertebrate cells,
and appear to modulate PP1 activity as well
as its subcellular localization (8).

These observations led us to search for
PP1 inhibitory proteins in crude Neurospora
mycelial extracts. As reported elsewhere (14),
we partially purified a protein fraction that
was highly effective in inhibiting Neuro-
spora PP1 activity. This acid- and thermo-
stable inhibitory protein was further purified
and its inhibitory properties were confirmed
using partially purified Neurospora crassa
PP1 and commercial rabbit recombinant PP1.
The Neurospora crassa purified PP1 inhibi-
tor (INc) is specific for the PP1 catalytic
subunit, since it does not inhibit the PP2A
catalytic subunit purified from Dictyostelium
discoideum, or partially purified PP2A from
Neurospora crassa or rat liver (14; Figure
2).

Recently we succeeded in demonstrating
the inhibitory activity of INc against N. crassa
recombinant PP1 expressed in E. coli (Zapella

fructose-6-P + glutamine

amidotransferaseamidotransferase-P

glucosamine-6-P + glutamate

N-acetylglucosamine-6-P

N-acetylglucosamine-1-P

UDP-N-acetylglucosamine

UDP
chitin

PPi

UTP

CoA
acetyl-CoA

PK

BePP2C

Figure 1 - Control of chitin syn-
thesis in Blastocladiella emerso-
nii. Both forms of amidotrans-
ferase catalyze the synthesis of
glucosamine-6-phosphate. How-
ever, only the phosphorylated
form (amidotransferase-P) is in-
hibited by UDP-GlcNAc (dashed
line on the left side). UDP-
GlcNAc also prevents amido-
transferase dephosphorylation
by direct inhibition of PP2C
(dashed line on the right side).
PK, Protein kinase; BePP2C,
PP2C purified from Blastocladi-
ella. This scheme was modified
from Ref. 12 to include PP2C as
the major enzyme responsible
for amidotransferase dephos-
phorylation.
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PDA, unpublished results). In order to per-
form this kind of experiment we isolated a
2333-base pair cDNA corresponding to Neu-
rospora PP1 (GenBank accession number
AF049853), which probably is related to a
PP1 catalytic subunit that was recently puri-
fied from this fungus (16). The N. crassa
recombinant PP1 has been an important tool
for in vitro binding assays to INc. In addition
PP1 cDNA is also being used as bait in yeast
two hybrid assays to search for N. crassa
PP1 modulatory subunits.

To our knowledge, no other fungal PP1
inhibitor has been identified by biochemical
approaches thus far. The biochemical char-
acteristics of INc are currently being investi-
gated in depth and preliminary data on its
amino acid sequence suggests that INc is a
novel protein.

Dictyostelium cells express a
PP1-like gene

Many of the major groups of known pro-
tein kinases have been identified in Dictyos-
telium and their roles in controlling growth
and development are under investigation (18-
20). In contrast, almost nothing is known
about the protein phosphatases that partici-
pate in these processes. Previous work dem-
onstrated that Dictyostelium extracts contain
PP2A, PP2B and PP2C catalytic activities
with biochemical properties similar to those
of their mammalian and yeast counterparts

(21). In contrast, no type 1 protein phos-
phatase (PP1) was detected during Dictyos-
telium life cycle (21) even though PP1 has
been shown to be present in all other organ-
isms analyzed.

Increasing efforts are been devoted to the
identification of Dictyostelium genes that
code for protein phosphatases. Such genes
should be important tools to better under-
stand the role of these enzymes in Dictyoste-
lium growth and development. A complete
cDNA clone for PP2B was isolated but the
role played by this enzyme in Dictyostelium
is still unclear (22,23). More recently a novel
PP2C gene found in Dictyostelium was de-
scribed as essential for its cell type differen-
tiation (24).

Through the use of PCR with a pair of
degenerated oligonucleotide primers derived
from conserved residues in the catalytic core
of the PPP family, it has been possible to
identify different members of this gene fam-
ily in many organisms (5,25) including Dic-
tyostelium discoideum (26). Using this ap-
proach we have isolated genomic DNA se-
quences encoding putative PP catalytic sub-
units. Amplified DNA fragments of the ex-
pected size were cloned and sequenced. Two
of the selected clones were chosen for fur-
ther analysis. One with high similarity to
PP1 and the other with high similarity to
PP4. These clones were used as probes to
screen a cDNA library derived from Dicty-
ostelium vegetative cells. Full length cDNAs
for both catalytic subunits were isolated
(Andrioli LPM and Fiorini LC, unpublished
results), revealing that Dictyostelium cells
express genes that code for PP1 and for PP4
catalytic subunits. The sequence of the cDNA
that encodes PP1 (GenBank accession num-
ber AF020537) showed that Dictyostelium
enzyme is similar to PP1 from other organ-
isms. Moreover Dictyostelium recombinant
PP1 expressed in E. coli is active and shows
biochemical properties similar to those of a
typical PP1 (Andrioli LPM, unpublished re-
sults). PP1 activity seems to be essential for

Figure 2 - Neurospora crassa
PP1 inhibitor (INc) is specific
against PP1 activity when phos-
phorylase phosphatase is used
as substrate to assay this en-
zyme. Serial dilutions of purified
INc were assayed as described
(14) against Neurospora partially
purified PP1 (black triangle), rab-
bit recombinant PP1 (open tri-
angle) and PP2A catalytic sub-
unit purified from Dictyostelium
discoideum (black circle).
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growth of Dictyostelium cells since we have
failed after many attempts to knock out the
only PP1 gene that exists in the Dictyosteli-
um genome (Andrioli LPM, unpublished re-
sults). Taken together, these observations
contrast with the failure in detecting bio-
chemically PP1 activity in Dictyostelium cell
extracts. Hence the question is why is this
enzyme activity not demonstrable in Dicty-

ostelium cell extracts? One possibility is the
existence of an inhibitory subunit tightly
associated with the PP1 catalytic subunits in
the cell extracts. The availability of cDNA
clones coding for protein phosphatases paves
the way for a molecular genetic analysis of
the role of this class of enzymes in Dictyos-
telium growth and development.
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